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Objective: This study aims to develop and validate a CT-based radiomics nomogram
integrated with clinic-radiological factors for preoperatively differentiating high-grade from
low-grade clear cell renal cell carcinomas (CCRCCs).

Methods: 370 patients with complete clinical, pathological, and CT image data were
enrolled in this retrospective study, and were randomly divided into training and testing
sets with a 7:3 ratio. Radiomics features were extracted from nephrographic phase (NP)
contrast-enhanced images, and then a radiomics model was constructed by the selected
radiomics features using a multivariable logistic regression combined with the most
suitable feature selection algorithm determined by the comparison among least
absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE)
and ReliefF. A clinical model was established using clinical and radiological features. A
radiomics nomogram was constructed by integrating the radiomics signature and
independent clinic-radiological features. Performance of these three models was
assessed using receiver operating characteristic (ROC) curve analysis and decision
curve analysis (DCA).

Results: Using multivariate logistic regression analysis, three clinic-radiological features
including intratumoral necrosis (OR=3.00, 95% CI=1.30-6.90, p=0.049), intratumoral
angiogenesis (OR=3.28, 95% CI=1.22-8.78, p=0.018), and perinephric metastasis
(OR=2.90, 95% CI=1.03-8.17, p=0.044) were found to be independent predictors of
WHO/ISUP grade in CCRCC. Incorporating the above clinic-radiological predictors and
radiomics signature constructed by LASSO, a CT-based radiomics nomogram was
developed, and presented better predictive performance than clinic-radiological model
and radiomics signature model, with an AUC of 0.891 (95% CI=0.832-0.962) and 0.843
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(95% CI=0.718-0.975) in the training and testing sets, respectively. DCA indicated that
the nomogram has potential clinical usefulness.

Conclusion: The CT-based radiomics nomogram is a promising tool to predict WHO/
ISUP grade of CCRCC preoperatively and noninvasively.
Keywords: radiomics nomogram, computed tomography, clear cell renal cell carcinoma, WHO/ISUP grading,
prediction model
INTRODUCTION

Renal cell carcinoma (RCC) represents the most common
malignant neoplasm of the kidney in adults, of which 70–80%
are categorized as clear cell renal cell carcinoma (CCRCC) (1, 2).
With a continuously increasing incidence for decades, CCRCC is
the RCC subtype that accounts for the most metastatic cases and
deaths (3–5).

Compared to early-stage CCRCC, advanced CCRCC is
considered more aggressive and has a worse prognosis (6). The
prognosis of patients with CCRCC is closely related to the tumor
nuclear grade (7). As the most generally adopted grading system,
the World Health Organization/International Society of
Urological Pathology (WHO/ISUP) classification system
categorizes tumors of nuclear grade I and II as low-grade and
of grade III and IV as high- grade. High-grade CCRCC differs
from low-grade CCRCC in malignant biological behaviors that
generate mortal clinical outcomes (8). Therefore, it is crucial for
clinicians to identify the nuclear differentiation degree of
CCRCC because of the important role it plays in formulating a
clinical treatment strategy. However, although percutaneous
biopsy has been criticized for the risks of procedural
complications, potential sampling errors, and mismatch with
pathology outcomes, it is the only preoperative method for
identifying the confirmed grade of CCRCC (9). A noninvasive,
efficient method for identifying the pathological grade of CCRCC
is urgently needed.

Computed tomography (CT) is a common noninvasive
imaging modality for diagnosing tumor staging and assessing
tumor aggressiveness in patients with CCRCC (4). Nonetheless,
CT has limited predictive performance in differentiating
high-grade from low-grade CCRCCs, and the accuracy of
diagnosis based on CT images depends on the experience of
radiologists to a great extent, which is extremely subjective
(10). Radiomics, a promising and emerging technique,
enables the conversion of medical images into enormous
quantities of image-related features which can be analyzed in
model-building algorithms (11–13). To date, radiomics has
successfully been applied in several fields of RCC, including
prediction of the Fuhrman stages and therapy response of
CCRCC and discrimination of RCC’s subtypes (14–16).
However, most studies developed models based on texture
analysis only, which neglected the importance of clinical
risk factors and radiological features that could improve
predictive performance.

The purpose of this study was to develop and validate a radiomics
nomogram that incorporates NP CT radiomics signature, clinical
2

factors, and radiological features to preoperatively differentiate high-
grade CCRCC from low-grade CCRCC.
MATERIALS AND METHODS

Patients
All patients were recruited between May 2013 to May 2019 at the
First Affiliated Hospital of Chongqing Medical University. The
inclusion criteria were as follows: 1) patients underwent partial/
radical nephrectomy and pathologically diagnosed as CCRCC;
2) availability of complete clinical, pathological, and CT image
data. A total of 795 patients met the inclusion criteria were initially
enrolled. We excluded patients whose CCRCC nuclear grades
were determined by the Fuhrman classification system (n=215),
and those received preoperative treatment (n=15). Patients
without portal venous phase CT images or with the images in
poor definition were also excluded (n=195). Finally, 370 patients
were retained and allocated to the training (n=255) and testing
(n=115) sets. The flowchart of recruiting the patient cohort is
shown in Figure 1. Two independent pathologists rechecked the
CCRCC samples of our study population and reported the
histopathological nuclear grade based on the 2016 WHO/ISUP
nuclear grading system. Discordant reports were resolved by a
third senior pathologist. These tumors were divided into low-
grade (grade I and II) and high-grade (grade III and IV). Ethics
approval of the institutional review board of our hospital was
achieved before the conduction of all protocols and the
requirement for obtaining informed consent was waived in this
retrospective study.

CT Imaging Parameters
The routine abdominal CT scanning were acquired using a 64-
slice multidetector CT equipment (Discovery 750 HD, GE
Healthcare, Milwaukee, WI). The scanning parameters were
120-140 kVp tube voltage, 220–300 mAs tube current, 64 ×
0.625 mm detector collimation, matrix of 512 × 512, gantry
rotation time of 0.5 s and slice thickness of 5 mm. An iodinated
nonionic contrast agent dosed at 1 mL/kg body weight was
injected into the antecubital vein at 2.5-3.0 mL/s using an electric
power injector. Pre-contrast CT of the abdomen was first
acquired, followed by two post-contrast CT scans obtained in
corticomedullary phase (CMP, 25-28 s after contrast agent was
administrated) and nephrographic phase (NP, 65-70 s after
contrast agent was administrated). Finally, excretory phase was
acquired (EP, 6-8 min after contrast agent was administrated)
(17–19).
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Tumor Segmentation
All NP phase CT images in DICOM format with original
dimensions and resolution were transferred into the ITK-
SNAP software (version 3.8, www.itksnap.org) for three-
dimensional (3-D) segmentation of the region of interests
(ROIs). To ensure the accuracy of the tumor boundaries, the
ROIs were meticulously manually delineated on all slices, by a
radiologist with 10 years of experience in abdominal imaging,
who was blinded to the pathological results (reader 1). To test
feature stability, radiomics features of 30 randomly chosen
patients (from the whole study set) were re-extracted by reader
1 and another radiologist (with 15 years of experience; reader 2).
The intraclass correlation coefficient (ICC) was calculated to
evaluate the consistency and reproducibility of the features.
Features with ICC>0.80 in both intra- and inter-observer
agreement analyses were included in subsequent analysis. To
avoid partial volume effect, the top and bottom layers
were excluded.

Radiomics Feature Extraction
The following image preprocessing steps was performed to
decrease the feature variability prior to radiomics feature
extraction, including gray-level discretization, intensity
normalization and voxel resampling. Then, radiomics features
were extracted from NP CT images via an open-source
PyRadiomics library, and classified into four categories: size
and morphological features, descriptors of the image intensity
histogram, descriptors of the relationships between image voxels
(e.g. gray-level co-occurrence matrix (GLCM), run length matrix
(RLM), size zone matrix (SZM), and neighborhood gray tone
Frontiers in Oncology | www.frontiersin.org 3
difference matrix (NGTDM) derived textures), and higher-order
texture features extracted from filtered images.

Radiomics Signature Construction
Radiomics features with ICCs greater than 0.80 in the agreement
analysis were reserved. Next, three feature selection algorithms
including least absolute shrinkage and selection operator
(LASSO), recursive feature elimination (RFE) and ReliefF were
applied to select the optimized subset of features for radiomics
model construction, respectively, which was used as the input fed
into multivariable logistic regression. Third, the predictive
performance of the three prediction models were compared
and the one with top performance was retained. The selected
radiomics features were used to construct radiomics signature.

Clinic-Radiological Model Building
Clinical parameters such as age, sex, body mass index (BMI),
smoking history, hypertension history, diabetes history, tumor
location, specific clinical symptoms (hematuria and flank pain),
and distant metastasis were retrieved from the electronic
medical record system of our institution. The radiological
features including tumor size, intratumoral necrosis, cystic
degeneration, intratumoral calcification, invasion of the renal
capsule, intratumoral angiogenesis, venous invasion, and
perinephric metastasis were reviewed and reported by two
radiologists with 10 and 15 years of experience in abdominal
imaging who were blinded to the radiological reports and
pathologic details. The diagnostic criteria were summarized in
Table S1. For the construction of the clinic–radiological model,
the univariate regression was firstly applied to analyze the above
FIGURE 1 | Flowchart of recruiting study population and model construction.
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clinic-radiological features, and the statistically significant
features in the univariate regression analysis were then
processed in the multivariate regression model. Finally,
features with a P-value lower than 0.05 were adopted to
establish clinic–radiological model. Two representative
nephrographic phase CT images in which one was low-grade
CCRCC (Figure 2A) and another was high-grade (Figure 2B)
were exhibited in Figure 2.

Development of Radiomics Nomogram
To provide the clinician with a quantitative tool to discriminate
high-grade from low-grade CCRCCs, radiomics signature and
clinic-radiological characteristics were combined by
multivariable logistic regression analysis to construct a
radiomics nomogram model as the combined model.

Model Evaluation
5-fold cross validation was used in model training, and the
diagnostic performance of clinic-radiological, radiomics, and
combined models were validated in terms of the receiver
operating characteristic (ROC) curve and area under the curve
(AUC) in a testing set. Sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy were
also calculated. The Delong test was used to compare the AUC
values in different models in both training and testing sets. The
calibration curve analysis was performed to determine the
predictive performance of the nomogram in the testing set,
accompanied with the Hosmer-Lemeshow test. Decision curve
analysis (DCA) was also performed to assess the clinical
significance of the radiomics nomogram by calculating the net
benefits at different threshold probabilities.

Statistical Analysis
Continuous variables are expressed as mean values ± standard
deviations and categorical variables are expressed as counts (n)
and percentages (%). Normally distributed continuous data were
compared using the student’s t-test. The Chi-square test was
used to compare the distribution of categorical data between
groups. The multivariate logistic regression analysis was applied
to determine the independent predictors among all the clinical
Frontiers in Oncology | www.frontiersin.org 4
variables. All statistical analyses were performed using R
software (version 3.5.2). A two-tailed P-value lower than 0.05
was considered statistically significant.
RESULTS

Clinic-Radiological Characteristics
A total of 370 patients were enrolled in our study, with collected
clinical and radiological data. The differences in clinic-
radiological variables between patients with low- and high-
grade CCRCCs in the training and testing sets are summarized
in Table 1. The training set included 255 patients (152 males and
103 females), in which 202 patients were diagnosed with low-
grade CCRCC while 53 were diagnosed with high-grade one.
Patients with high-grade CCRCC were significantly different
from those with low-grade CCRCC in terms of tumor size
(p<0.001), surgical method (p<0.001), intratumoral necrosis
(p<0.001), intratumoral calcification (p=0.027), invasion of the
renal capsule (p<0.001), intratumoral angiogenesis (p<0.001),
venous invasion (p<0.001), and perinephric metastasis (p<0.001).

Clinic-Radiological Model Building
Univariate analysis showed that tumor size, intratumoral
necrosis, intratumoral calcification, invasion of the renal
capsule, intratumoral angiogenesis, venous invasion, and
perinephric metastasis served as the risk factors of WHO/ISUP
grade in CCRCC. After multivariate logistic regression analysis,
intratumoral necrosis (OR=3.00, 95% CI=1.30-6.90, p=0.049),
intratumoral angiogenesis (OR=3.28, 95% CI=1.22-8.78,
p=0.018), and perinephric metastasis (OR=2.90, 95% CI=1.03-
8.17, p=0.044) remained to be independent clinic-radiological
predictors (Table 2).

Radiomics Feature Selection and
Radiomics Model Construction
In total, 1320 radiomics features were extracted from NP CT
images of each CCRCC patients, among which 480 features with
good reproducibility were selected for radiomics model
establishment. Three feature selection algorithms such as
FIGURE 2 | Two representative nephrographic phase CT images. (A) A patient with low-grade CCRCC, there was no specific radiological features in the presented
CT image. (B) A patient with high-grade CCRCC, tumor necrosis, angiogenesis, and perinephric invasion phenomena were observed in the presented CT image.
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LASSO, RFE, and ReliefF were applied and compared for
dimensionality reduction, and the different feature subsets were
fed into logistic regression model for differentiating high-grade
from low-grade CCRCCs, respectively. The classification
performance for different feature selection algorithms was
presented in Table 3. It was observed that 10 optimized
features were selected by the LASSO algorithm to construct the
radiomics model (Figure 3), which outperformed than others
Frontiers in Oncology | www.frontiersin.org 5
constructed by RFE and ReliefF and yielded an AUC value of
0.833 (95% CI=0.751-0.925) and 0.804 (95% CI=0.667-0.958) in
the training and testing sets, respectively. A radiomics signature
was calculated, based on the weighting coefficients of the selected
features, using the formula as follows:

Rad-score = -0.244*T2_original_glrlm_LongRunHighGray
LevelEmphasis+-0.188*ADC_wavelet.LLL_glcm_Correlation+
-0.166*T2_wavelet.HHL_gldm_LargeDependenceHighGray
December 2021 | Volume 11 | Article 712554
)
)

TABLE 1 | Clinic-radiological characteristics of CCRCC patients in the training and testing sets.

Characteristics Training set (n = 255) Testing set (n = 115)

Low-grade High-grade P value Low-grade High-grade P value

Full cohort, n (%) 370 202 (79.22%) 53 (20.78%) – 94 (81.74%) 21 (18.26%) –

Age (Y) 56.93 ± 11.64 60.19 ± 11.14 0.068 58.18 ± 12.46 56.24 ± 16.53 0.55
Sex, n (%) male 118 (58.4%) 34 (64.2%) 0.45 50 (53.2%) 17 (81.0%) 0.02

female 84 (41.6%) 19 (35.8%) 44 (46.8%) 4 (19.0%)
BMI (kg/m²) 24.34 ± 3.50 23.98 ± 4.58 0.54 24.96 ± 5.13 22.80 ± 3.02 0.07
Smoking history, n (%) 61 (30.2%) 22 (41.5%) 0.12 35 (37.2%) 7 (33.3%) 0.74
Hypertension, n (%) 76 (37.6%) 15 (28.3%) 0.21 41 (43.6%) 6 (28.6%) 0.21
Diabetes, n (%) 28 (13.9%) 8 (15.1%) 0.82 19 (20.2%) 4 (19.0%) 0.90
Tumor size (cm) 4.1 ± 1.92 5.89 ± 2.89 <0.001 4.31 ± 2.20 5.87 ± 2.88 0.03
Tumor location, n (%) left 108 (53.5%) 22 (41.5%) 0.12 52 (55.3%) 13 (61.9%) 0.58

right 94 (46.5%) 31 (58.5%) 42 (44.7%) 8 (38.1%)
Surgical Method, n (%) partial 119 (58.9%) 13 (24.5%) <0.001 47 (50.0%) 6 (28.6%) 0.08

radical 83 (41.1%) 40 (75.5%) 47 (50.0%) 15 (71.4%)
Hematuria, n (%) 22 (10.9%) 9 (17.0%) 0.23 11 (11.7%) 6 (28.6%) 0.10
Flank pain, n (%) 26 (12.9%) 9 (17.0%) 0.44 16 (17.0%) 5 (23.8%) 0.47
Distant Metastasis, n (%) 0 (0.0%) 1 (1.9%) 0.21 0 (0.0%) 1 (4.8%) 0.18
Intratumoral Necrosis, n (%) 82 (40.6%) 41 (77.4%) <0.001 36 (38.3%) 15 (71.4%) 0.006
Cystic Degeneration, n (%) 23 (11.4%) 5 (9.4%) 0.69 9 (9.6%) 0 (0.0%) 0.30
Intratumoral Calcification, n (%) 8 (4.0%) 7 (13.2%) 0.027 2 (2.1%) 4 (19.0%) 0.009
Invasion of the Renal Capsule, n (%) 22 (10.9%) 19 (35.8%) <0.001 7 (7.4%) 10 (47.6%) <0.001
Intratumoral Angiogenesis, n (%) 116 (57.4%) 46 (86.8%) <0.001 56 (59.6%) 19 (90.5%) 0.007
Renal vein invasion, n (%) 1 (0.5%) 6 (11.3%) <0.001 0 (0.0%) 1 (4.8%) 0.18
Perinephric Metastasis, n (%) 13 (6.4%) 17 (32.1%) <0.001 4 (4.3%) 7 (33.3%) <0.001
TABLE 2 | Univariate and multivariate logistic regression analysis of the clinic-radiological features in predicting the WHO/ISUP grade of CCRCC.

Characteristics Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Tumor size 1.37 1.20-1.56 <0.001 0.99 0.82-1.19 0.88
Operative Method 4.41 2.22-8.76 <0.001 1.71 0.73-3.99 0.21
Intratumoral Necrosis 5.00 2.48-10.09 <0.001 3.00 1.30-6.90 0.049
Intratumoral Calcification 3.69 1.27-10.70 0.016 2.78 0.78-9.92 0.12
Violation of the Renal Capsule 4.57 2.24-9.35 <0.001 1.22 0.47-3.17 0.68
Intratumoral Angiogenesis 4.87 2.10-11.32 <0.001 3.28 1.22-8.78 0.018
Renal vein invasion 25.66 3.02-218.24 0.003 6.38 0.56-72.68 0.14
Perinephric Metastasis 6.87 3.07-15.36 <0.001 2.90 1.03-8.17 0.044
TABLE 3 | Predictive performance of three feature selection algorithms.

Model LASSO RFE ReliefF

Training Testing Training Testing Training Testing

AUC (95% CI) 0.833 (0.751-0.925) 0.804 (0.667-0.958) 0.784 (0.609-0.925) 0.742 (0.560-0.897) 0.814 (0.703-0.919) 0.771 (0.623-0.940
Accuracy 0.778 (0.678-0.859) 0.783 (0.618-0.902) 0.717 (0.598-0.887) 0.662 (0.513-0.851) 0.742 (0.624-0.920) 0.698 (0.543-0.874
Sensitivity 0.854 0.850 0.801 0.762 0.838 0.823
Specificity 0.691 0.706 0.634 0.598 0.678 0.639
PPV 0.759 0.773 0.646 0.602 0.687 0.632
NPV 0.806 0.803 0.739 0.896 0.774 0.715
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LevelEmphasis+-0.072*ADC_wavelet.LLL_glcm_Cluster
Prominence+-0.069*T2_original_firstorder_90Percentile+-0.26*
ADC_original_glcm_Imc2+0.227*T2_wavelet.LHL_firstorder_
Mean+0.275*T2_wavelet.HHH_glszm_SmallAreaLowGrayLevel
Emphasis+-0.14*ADC_wavelet.LLL_firstorder_Interquartile
Range+-0.305*T2_original_gldm_LargeDependenceHighGray
LevelEmphasis + 0.101.

Radiomics Nomogram Construction
By incorporating three independent clinic-radiological factors
such as intratumoral necrosis, intratumoral angiogenesis, and
perinephric metastasis, a combined model was constructed and
presented as a CT-based radiomics nomogram (Figure 4A).
Using the calibration curve analysis, a good agreement between
the predicted and actual probabilities for predicting the WHO/
ISUP grade of CCRCC in the training and testing sets was
illustrated (Figures 4B, C). The Hosmer-Lemeshow test
yielded a nonsignificant statistical difference (P =0.397
and 0.302).

Comparison Among Different Models
The predictive performance and the ROC curves of the clinic-
radiological, radiomics signature, and nomogram in the training
and testing sets are presented in Table 4 and Figure 5. The
clinic-radiological model yielded an AUC value of 0.809 (95%
CI=0.715-0.897) in the training set and 0.722 (95% CI=0.546-
0.894) in the testing set, while the radiomics signature model
Frontiers in Oncology | www.frontiersin.org 6
obtained an AUC value of 0.833 (95% CI=0.751-0.925) and 0.804
(95% CI=0.667-0.958) in both sets. The nomogram achieved the
best discrimination in the training (AUC, 0.891; 95% CI, 0.832-
0.962) and testing (AUC, 0.843; 95% CI, 0.718-0.975) sets, with
accuracy of 0.822 and 0.811, sensitivity of 0.796 and 0.727, and
specificity of 0.848 and 0.933, respectively. Using the Delong test,
significant differences between the clinic-radiological model and
the CT-based radiomics nomogram with respect to AUC were
demonstrated for the training (p =0.003) and testing (p < 0.001)
sets. The DCA was presented in Figure 6. The radiomics
nomogram demonstrated the higher overall net benefit than
radiomics model, indicating the radiomics nomogram had an
excellent clinical utility in distinguishing high-grade from low-
grade CCRCCs.
DISCUSSION

In this retrospective study, we developed and validated a
radiomics nomogram for noninvasive, and individualized
prediction of WHO/ISUP nuclear grade of CCRCC. The
nomogram incorporates clinic-radiological characteristics and
NP CT radiomics signature, which demonstrated impressive
predictive efficiency (AUC=0.84, 95% CI=0.71-0.97) in
stratifying the WHO/ISUP grading levels of CCRCC patients
with satisfactory reproducibility and reliability.
A B

C

FIGURE 3 | Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression. (A) Tuning parameter (l) selection in the
LASSO model. The optimal value of l= 0.053, with log(l) =-2.937 was selected. (B) LASSO coefficient profiles of the N radiomics features. A coefficient profile plot
was generated versus the selected log (l) value with 5-fold cross validation. (C) The selected radiomics features (with nonzero coefficients) and their coefficients.
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The nuclear grade of CCRCC is correlated with metastatic
potential and affects patient prognosis (4, 7). Therefore, the
preoperative prediction of the nuclear grade is of great
significance for clinical decisions. CT diagnosis is superior to
percutaneous biopsy because of its noninvasiveness; however, it
is inferior in terms of diagnostic accuracy (20, 21). Novel imaging
techniques, such as magnetic resonance imaging (MRI) and
dual-energy spectral CT, are capable to assess the grading level
of CCRCC, however, their predictive performance do not match
that of percutaneous biopsy, and the diagnostic results depend
on the experience of radiologists (22–24). By quantifying tumor
heterogeneity through the spatial arrangement of image voxels
with signal-intensity variations and detecting the imperceptible
Frontiers in Oncology | www.frontiersin.org 7
differences of the intensity distribution in medical images, CT
radiomics can noninvasively predict the pathological grade of
tumors with satisfactory performance (25–27). To our
knowledge, no previous study has predicted the WHO/ISUP
grade of CCRCC using the combination of NP CT-based
radiomics features and clinic-radiological characteristics.

Several studies have demonstrated that machine learning
(ML)-based CT radiomics models can distinguish Fuhrman
grade or WHO/ISUP grade of CCRCC (17, 19, 28–30).
However, most of these studies built ML models based on
radiomics features only, neglecting the importance of clinical
and radiological characteristics (17, 19). The radiomics-derived
data are not a panacea for computerized clinical decision-
A

B C

FIGURE 4 | The CT-based radiomics nomogram and calibration curves of the nomogram. (A) Integrating radiomics signature, intratumoral necrosis, intratumoral
angiogenesis, and perinephric metastasis, the CT-based nomogram was established. Calibration curves of the nomogram in the training (B) and testing (C) sets.
TABLE 4 | Predictive performance of clinic-radiological model, radiomics signature, and radiomics nomogram.

Model Radiomics nomogram Radiomics signature Clinic-radiological model

Training Testing Training Testing Training Testing

AUC (95% CI) 0.891 (0.832-0.962) 0.843 (0.718-0.975) 0.833 (0.751-0.925) 0.804 (0.667-0.958) 0.809 (0.715-0.897) 0.722 (0.546-0.894)
Accuracy 0.822 (0.727-0.895) 0.811 (0.649-0.920) 0.778 (0.678-0.859) 0.783 (0.618-0.902) 0.756 (0.654-0.840) 0.703 (0.530-0.841)
Sensitivity 0.796 0.727 0.854 0.850 0.679 0.636
Specificity 0.848 0.933 0.691 0.706 0.882 0.801
PPV 0.833 0.941 0.759 0.773 0.905 0.824
NPV 0.813 0.709 0.806 0.804 0.625 0.621
D
ecember 2021 | Volume
 11 | Article 712554

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xv et al. Radiomics Predicting Pathology Nuclear Grade
support systems. Our study summarized the imperceptible
distinctions of CCRCC patients’ clinic-radiological characteristics
and CT radiomics features and analyzed them using a nomogram.
In terms of clinical information, we chose to investigate several
indicators that can be independent predictors for WHO/ISUP
grade. Regarding radiological data, we concentrated on features
such as necrosis, tumor microvessels, early metastasis, and tiny
calcification, which may indicate a poor prognosis, and display
different density and texture on CT images. Previous reports
have shown that CCRCC is a highly angiogenic and vascularized
tumor (31). In addition, the differences in enhancement patterns
Frontiers in Oncology | www.frontiersin.org 8
between low- and high-grade CCRCCs have been proved to
correlate to the hemodynamics and microvessel density (MVD)
of individual RCC lesions (32, 33). Ficarra et al. (34) validated
that intratumoral necrosis as a prognostic factor is useful in the
clinical management of CCRCC patients, which is recommended
by the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN)
scoring system (35). Our results were consistent with former
researches, as intratumoral necrosis (OR=3.00, 95% CI=1.30-
6.90, p=0.049), intratumoral angiogenesis (OR=3.28, 95%
CI=1.22-8.78, p=0.018), and perinephric metastasis (OR=2.90,
95% CI=1.03-8.17, p=0.044) were proved to be independent
factors of high-grade CCRCC and were used to establish a clinic-
radiological model.

Contrast-enhanced CT examination revealed different
information as time progressed. To the best of our knowledge,
features extracted from full-phase or CMP combined with NP
images are the most common objects of the ML-based radiomics
model to predict the Fuhrman or WHO/ISUP grade of CCRCC
(19, 28, 36, 37). Huhdanpaa et al. (38) found that absolute
enhancement and residual enhancement in the NP phase are
both more heterogeneous for low-grade tumors. As a result, even
though the predictive performance of based NP CT-based model
may decline compared with that using the full-phase CT images,
the effectiveness of nomogram based on NP CT images alone has
been explored first for predicting the WHO/ISUP grade of
CCRCC. Surprisingly, the prediction model we built reached a
relatively superior performance compared to the relevant studies
(AUC=0.843, 95%CI, 0.718-0.975; accuracy=0.811, sensitivity=0.727,
and specificity=0.933), and this could be attributed to the
comparatively large sample size and aggregation of a variety of
features in our study.

To explore clinical use, further incorporating the radiomics
signature, intratumoral necrosis, intratumoral angiogenesis, and
perinephric metastasis, an easy-to-use CT-based radiomics
nomogram was constructed, which could preoperatively distinguish
high-grade from low-grade CCRCCs and facilitate personalized
treatment decisions. With AUCs of 0.891 (95% CI, 0.832-0.962)
A B

FIGURE 5 | The ROC curves (AUC) of the three models in the training (A) and testing sets (B).
FIGURE 6 | Decision curve analysis (DCA) for the radiomics nomogram and
radiomics model. The DCA indicated that more net benefits within the most of
thresholds probabilities were achieved using the radiomics nomogram.
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and 0.843 (95% CI, 0.718-0.975) in the training and testing set,
respectively, the nomogram achieved an improved predictive
performance compared with the radiomics model or clinic-
radiological model alone. Moreover, DCA was performed to assess
the overall net benefit of the nomogram. As a result, more net
benefits within the most of thresholds probabilities were achieved
using the radiomics nomogram, indicating that using the nomogram
may obtain a better clinical outcome in formulating therapy
strategies. Therefore, the CT-based radiomics nomogram can be
regarded as a promising assistive tool to preoperatively differentiate
high-grade from low-grade CCRCCs.

This study is limited to several conditions. First, as a single-
center retrospective study, it might be subject to inherent biases
and unknown confounders that make it less generalizable to
other institutions. Second, the exact tumor region deviates from
manual tumor segmentation in some tiny areas, which may
result in absence of necessary features in the tumor edge; as such,
an automated segmentation tool with accurate tumor
identification ability is highly anticipated. Third, manual tumor
segmentation was time-consuming, and automatic segmentation
methods should be developed in the future.

In conclusion, this study proposed and validated a CT-based
radiomics nomogram that integrating with clinic-radiological
predictors and radiomics signature, which demonstrated an
excellent predictive ability in differentiating high-grade from
low-grade CCRCCs. As a non-invasive, preoperative method,
the radiomics nomogram may facilitate patient stratification and
clinical decision making for the patients with CCRCC.
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