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Background: The mechanism driving hepatic gene expression of Foxol in the fasted state remains unclear.

Results: Activation of cAMP-PKA pathway induces FoxoI gene expression through CREB and co-activator P300.
Conclusion: P300 mediates Foxol gene expression by binding to Foxol proximal promoter.

Significance: Induction of the Foxol gene by cAMP-PKA via P300 fully activates the gluconeogenic program during fasting to

maintain euglycemia.

FOXOL1 is an important downstream mediator of the insulin
signaling pathway. In the fed state, elevated insulin phosphory-
lates FOXO1 via AKT, leading to its nuclear exclusion and deg-
radation. A reduction in nuclear FOXOL1 levels then leads to
suppression of hepatic glucose production. However, the mech-
anism leading to expression of Foxol gene in the fasted state is
less clear. We found that Foxol mRNA and FOXO1 protein lev-
els of Foxol were increased significantly in the liver of mice after
16 h of fasting. Furthermore, dibutyrl cAMP stimulated the
expression of Foxol at both mRNA and protein level in hepato-
cytes. Because cAMP-PKA regulates hepatic glucose production
through cAMP-response element-binding protein co-activa-
tors, we depleted these co-activators using adenoviral shRNAs.
Interestingly, only depletion of co-activator P300 resulted in the
decrease of Foxol mRNA and FOXOL1 protein levels. In addi-
tion, inhibition of histone acetyltransferase activity of P300 sig-
nificantly decreased hepatic Foxol mRNA and FOXO1 protein
levels in fasted mice, as well as fasting blood glucose levels. By
characterization of Foxol gene promoter, P300 regulates the
Foxol gene expression through the binding to tandem cAMP-
response element sites in the proximal promoter region of Foxo I
gene.

The maintenance of blood glucose levels within a defined
range (70~110 mg/dl, fasting) is critical in protecting organ-
isms against hypoglycemia during fasting and hyperglycemia
during feeding given that glucose is a major energy source for
mammalian cells and is the sole energy source in some mam-
malian tissues and cells such as neurons and erythrocytes.
Hypoglycemia induces damage to tissues and cells and can even
cause cell death (1, 2). However, hyperglycemia also causes seri-
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ous adverse effects to mammals through nonenzymatic glyco-
sylation of many cellular proteins; these adverse effects are evi-
dent in patients with diabetes mellitus who suffer from
microvascular damage to the kidney, retina, and nerves (3, 4). In
response to elevated blood glucose levels in the fed state, pan-
creatic B-cells secrete insulin, which suppresses glucose pro-
duction in the liver and stimulates glucose uptake in muscle and
adipose tissue. In the fasted state, glucagon, epinephrine, and
glucocorticoids increase hepatic glucose production directly or
indirectly through the cAMP-PKA signaling pathway to main-
tain euglycemia (5).

FOXO proteins include FOXO1, 3, 4, and 6 and are members
of the Fox superfamily (6). Mounting evidence suggests that
FOXO proteins play a critical role in metabolism and energy
homeostasis. For example, FOXO members up-regulate gluco-
neogenesis through the activation of Pckl and Gé6pc gene
expression in the liver (7-9), activate pancreatic 3-cell function
(10), and promote differentiation of adipocytes (11). FOXOL1 is
particularly important in inhibition of hepatic gluconeogenesis
by insulin; insulin inhibits FOXO1 activity through the PI3K/
AKT signaling pathway (12, 13). Another layer of FOXOL1 reg-
ulation is via acetylation of the cAMP-response element-bind-
ing protein (CREB)?® co-activators P300 and CBP (14-17).

Phosphorylation of FOXO1 by insulin leads to its nuclear
exclusion and degradation in the fed state (12, 13), yet the
mechanism driving Foxol expression in the fasted state
remains unclear. Glucagon activates the cAMP-PKA signaling
pathway, and phosphorylation of CREB at Ser-133 by PKA, in
turn, recruits the CREB co-activators CBP, P300, and CRTC2 to
CRE-containing genes and activates hepatic gluconeogenesis
(18, 19). However, we have reported previously that CBP phos-
phorylation at Ser-436 by insulin in the fed state triggers the
disassembly of the CREB-CBP-CRTC2 complex (18) and inhib-
its hepatic glucose production. Furthermore, phosphorylation
of CRTC2 at Ser-171 by insulin leads to its nuclear exclusion
and degradation (19). Considering these studies, we wanted to
test the hypothesis that elevated fasting glucagon levels increase

3 The abbreviations used are: CREB, cAMP-response element-binding protein;
Bt-cAMP, dibutyrl cAMP; CBP, CREB-binding protein; CRE, CAMP-response
element; HAT, histone acetyltransferase; qPCR, quantitative PCR.
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FIGURE 1.Fasting induces Foxo1 gene expression. a, Foxol mRNA levels compared in the liver of mice sacrificed at fed or fasted (16 h) states (n = 5). Real-time
gPCR was used to measure gene expression (normalized to 36B4 expression levels). Asterisk (*) signifies that groups with same treatment are significantly
different (p < 0.05). Error bars, S.E. b, phosphorylation status of CREB, AKT and total AKT, CREB, and Foxo1 protein levels in the liver from fed and 16-h fasted mice
are shown (n = 5). ¢, fasting led to the early induction of Foxo1 expression. The Foxo1 protein levels in the liver of mice sacrificed are shown at the indicated

fasting time points. Each lane represents sample pooled from two mice.

Foxol gene expression through recruitment of CREB co-acti-
vators. In this study, we have examined the potential role of
CREB co-activators in increasing Foxol gene expression in in
vitro and in vivo experiments that model the fasting state.

EXPERIMENTAL PROCEDURES

Plasmids and Adenoviruses—The expression vectors for
P300 and PKA used here were described previously (20). Mouse
Foxol gene promoter-luciferase reporters were constructed by
cloning the promoter of Foxol (up to —2000 to +1) into the
pGL4 luciferase reporter construct. The BLOCK-iT adenoviral
RNAi expression system (Invitrogen) was used to construct
adenoviral shRNA for CBP, P300, CREB, and scrambled shRNA
as we described previously (18).

Cell Cultures—Equal amounts of plasmids were transfected
using Lipofectamine 2000 (Invitrogen) or adenoviral shRNAs
into mouse hepatoma Hepal—-6 cells. After 48 h of incubation,
cells were exposed to 0.2 mm dibutyrl cAMP for 5 h, 20 um
P300-specific histone acetyltransferase (HAT) inhibitor C646
or its inactive C37 analog (21). The C37 analog differs from
C646 by only one double bond but is completely silent as a P300
inhibitor, serving to control for off-target effects of C646 (22).

Glucose Production Assays—Mouse primary hepatocytes
were cultured in 6-well plates with William’s medium E supple-
mented with ITS (BD Biosciences) and 27.5 nm dexamethasone.
18 h after the planting, primary hepatocytes were treated with
20 um C37 or C646 for 3 h during serum starvation. Then,
medium was replaced with 1 ml of glucose production buffer
consisting of glucose-free DMEM supplemented with 20 mm
sodium lactate and 2 mMm sodium pyruvate or with 0.2 mm
8-bromo-cAMP and 20 um C37 or C646 chemicals, and incu-
bated for another 3 h.

Animal Experiments—All animal protocols were approved
by the Institutional Animal Care and Use Committee of the
Johns Hopkins University. C57BL/6 mice were purchased from
The Jackson Laboratory, and 10-week-old mice were used.
Mice were given C37 or C646 (30 nmol/g) through intraperito-
neal injection and then subjected to fasting. Mice were sacri-
ficed after an 8-h fast. In adenoviral shRNA knockdown exper-
iments, 48 h after mice were injected with the adenovirus
through tail vein, mice were subjected to an 16-h fast before
being sacrificed (23).
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Immunoblotting, Real-time qPCR, and Chromatin Immuno-
precipitation—Immunoblotting was conducted as described
previously (18, 20). Cellular lysates were sonicated for 15 s three
times sequentially and immunoblotted to examine the target
proteins with antibodies against CBP, P300 (Santa Cruz Bio-
technology), CREB, pCREB, and FOXO1 (Cell Signaling) at
concentrations recommended by the manufacturers. Second-
ary antibodies were used at the concentrations of approxi-
mately 1:5000. The primers used for the measurement of mouse
Foxol mRNA in real-time qPCR were as follows: 5'-primer (5'-
ACATTTCGTCCTCGAACCAGCTCA-3') and 3'-primer (5'-
ATTTCAGACAGACTGGGCAGCGTA-3"). The chromatin
immunoprecipitation assay was performed as we described
previously (20); eluted DNA was amplified by real-time PCR
with a 5'-primer (5'-TACCCCACCGCCCCCCACCAA-3’)
and a 3'-primer (5'-GACTGACAGGCTGCGCGGCCA-3’)
specific for the CRE-containing regions in the mouse Foxol
promoter. To examine the specific binding in ChIP assay,
eluted DNA was also amplified with primers targeting Gapdh
promoter, 5’ -primer (5'-ACCTCAACTACATGGTCTACAT-
GTT-3') and 3'-primer (5'-CAAACATGGGGGCATCGG-
CAGAA-3').

Statistical Analyses—Statistical significance was calculated
with Student’s ¢ test and analysis of variance. Significance was
accepted at the level of p < 0.05.

RESULTS

Fasting Resulted in a Marked Increase of Hepatic Foxol
mRNA and FOXOI Protein Levels—Because phosphorylation
of FOXOL1 by activated AKT in the insulin signaling pathway
results in FOXO1 nuclear exclusion and degradation in the fed
state (12, 13), it is conceivable that fasting might increase
FOXOT1 levels due to its important role in stimulating gluco-
neogenesis and maintaining euglycemia (7-9). Indeed, hepatic
Foxol mRNA levels increase approximately 3-fold in the liver of
mice after 16 h of fasting (Fig. 1a). FOXOL1 protein levels were
also markedly increased in the fasted state, which was associ-
ated with an increase in phospho-CREB and a decrease in phos-
pho-AKT (Fig. 1b). In a fasting time course experiment,
FOXOL1 protein levels increased as early as 2 h after the start of
fasting and steadily increased in the fasting period (Fig. 1c).
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FIGURE 2. Activation of CAMP-PKA pathway leads to the expression of Foxo1 gene. a and b, 16 h after the seeding, Hepa1-6 cells were subjected to serum
starvation in FBS-free DMEM for 3 h, then 1 mm Bt-cAMP was added and cells were incubated for 5h before harvesting. b, FoxoT mRNA levels were measured by using
real-time gPCR, and data were normalized to 36B4 expression levels) (n = 3). Asterisk (*) signifies that groups with same treatment are significantly different (p < 0.05).
Error bars, S.D. ¢, Hepa1-6 cells were treated with actinomycin D (2.5 ug/ml) for 30 min in FBS-free DMEM prior to the addition of 1 mm Bt-cAMP (6 h).

Dibutyrl cAMP (Bt-cAMP) Stimulated the Foxol Gene
Expression in Hepatocytes—To test whether the activation
of cAMP-PKA pathway is able to increase the expression of
the Foxol gene, we treated hepatoma Hepal-6 cells with Bt-
cAMP, a nonhydrolyzable cAMP analog that activates the
cAMP-PKA signaling pathway. As shown in Fig. 2, Bt-cAMP
treatment led to increased FOXO1 protein (Fig. 2a) as well
as Foxol mRNA levels (Fig. 2b). Furthermore, the inhibition of
Foxol transcription by actinomycin D blocked induction of
FOXOL1 protein levels by cAMP (Fig. 2c). These data suggest
that the cAMP-PKA pathway activates Foxol gene expression
and that the activation of the gluconeogenic enzyme profile by
glucagon stimulation during fasting is mediating at least in part
by an increase in Foxol gene expression.

CREB Co-activator P300 Regulates Foxol Gene Expression—
Having seen that Bt-cAMP treatment increased Foxol gene
expression (Fig. 2), we investigated the potential involvement of
the CREB co-activators CBP, P300, and CRTC2 in regulating
Foxol gene expression. We employed adenoviral shRNAs to
deplete these co-activators individually in Hepal-6 cells.
Depletion of CBP and CRTC2 did not change the FOXO1 pro-
tein levels compared with cells treated with scrambled shRNA
adenovirus (Fig. 3, @ and b). In contrast, depletion of P300
decreased FOXOL1 protein levels.

We examined further the role of CBP and P300 in the regu-
lation of FOXO1 expression in primary hepatocytes. As shown
in Fig. 3¢, cAMP treatment increased FOXO1 protein levels in
hepatocytes treated with scrambled shRNA adenovirus. Deple-
tion of P300 by adenoviral shRNA blocked the induction of
FOXO1 by Bt-cAMP. In comparison, depletion of CBP did not
affect the overall protein levels of FOXO1. Moreover, depletion
of P300 and CREB also blocked the induction of Foxol mRNA
by Bt-cAMP. Again, depletion of CBP did not significantly
affect Foxol mRNA levels in Hepal- 6 cells (Fig. 3d). The above
data suggest that cAMP-induced Foxol gene expression is
mediated by CREB and P300.

Given the importance of CBP and P300 in regulation of glu-
coneogenic gene expression in the liver, we next assessed the
role of CBP and P300 in regulation of Foxol gene expression in
vivo. We used adenoviral shRNAs to deplete CBP or P300 in the
liver of mice through tail vein injection. Depletion of P300 sig-
nificantly decreased Foxol mRNA levels in the liver of fasted
mice (Fig. 4a), whereas the depletion of CBP had a minimal
effect on Foxol mRNA levels (Fig. 4b).
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The Foxol Promoter Contains CREs—To characterize the
Foxol promoter, a series of mouse Foxol promoter luciferase
constructs were made and tested in Hepal- 6 cells. Fig. 5a is an
illustration of the construct used and the 5'-end point. Reporter
activity is relative to the —2000-bp construct, which was
assigned a value of 1 in the absence of co-transfected PKA
(white bars). PKA co-transfection increased promoter activity
of all constructs, suggesting that a CRE may be located in the
proximal 125 bp of the promoter. After analysis of the —125 bp
region of the Foxol proximal promoter using the TransFac
Database, three putative CREs were identified as shown and
labeled CREL, 2, and 3 (Fig. 5b). To define the role of these CREs
on the Foxol gene in cAMP-PKA induction, these CREs were
individually deleted in the context of a —125-bp promoter con-
struct and tested again in Hepal-6 cells. Deletion of either
CREL1 or CRE2 significantly reduced PKA-stimulated reporter
activity (Fig. 5¢), whereas deletion of CRE3 had no effect on the
promoter activity. By using these constructs, we assessed fur-
ther their effect on reporter activity after co-transfection with
P300 and PKA expression plasmids in Hepal-6 cells. In the
wild type construct, P300 co-transfection markedly increased
promoter activity, whereas deletion of either CRE1 or CRE2 in
the reporter construct negated the P300 effect (Fig. 5d). Dele-
tion of CRE3 had no effect. Because P300 is known to interact
with CREB, these data suggest that P300 may interact with
CREB and bind to CRE1 and CRE2 of the Foxol promoter.

Recruitment of P300 to the Foxol Promoter after PKA
Stimulation—To investigate whether recruitment of CREB and
P300 to CREs was induced by PKA stimulation, we conducted a
ChIP assay. Hepal-— 6 cells were transfected with control or PKA-
containing plasmids to assess the occupancy of CREB and P300 on
Foxol and a negative control Gapdh promoter. Fig. 6a shows the
quantitative PCR for Foxol or the negative control Gapdh pro-
moter of either CREB- or P300-immunopreciptated chromatin.
PKA transfection markedly increased the occupancy of both
CREB and P300 on the Foxol promoter but not on the negative
control Gapdh promoter. These data correlate with the functional
data obtained in the same mouse hepatocyte cultures as shown in
Fig. 5. To probe further whether PKA stimulated the occupancy of
P300 on the proximal Foxol promoter, we overexpressed
HA-tagged P300 together with PKA and used a HA tag-specific
antibody to immunoprecipitate the cross-linked Foxol promoter
ina ChIP assay. The binding of HA-tagged P300 increased >6-fold
in the presence of PKA stimulation (Fig. 6b).
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FIGURE 3. Co-activator P300 mediates the Foxo1 gene expression. a and b, 48 h after the addition of adenoviral shRNAs to deplete CBP, P300, and CRTC2,
Hepal-6 cells were then treated with 0.2 mm Bt-cAMP for 6 h. Immunoblot analyses were conducted to determine the protein levels using indicated
antibodies. ¢, 48 h after adenoviral shRNAs mediated depletion of CBP or P300, primary hepatocytes were subjected to serum starvation for 3 h. After washing
with PBS, 0.2 mm Bt-cAMP was added in glucose production medium. d, in Hepa1-6 cells, 48 h after the addition of adenoviral shRNAs of scrambled, CREB, CBP,
and P300, growth medium was changed to FBS-free DMEM and incubated for 3 h, then 1 mm Bt-cAMP was added and incubated for 5 h before harvesting.
Real-time qPCR was used to measure gene expression (n = 3), and data were normalized to 36B4 expression levels. Each lane represents sample pooled from
three treatments. Asterisk (*) signifies that groups with same treatment are significantly different (p < 0.05). Error bars, S.D.
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FIGURE 4. Depletion of P300 decreased Foxo1 mRNA levels in the liver. FoxoT mRNA levels in the liver of mice with adenoviral shRNAs mediated depletion of P300
(a) or CBP (b), and sacrificed after 16 h fasting (n = 3). Asterisk (*) signifies that groups with the same treatment are significantly different (p < 0.05). Error bars, S.D.

HAT Activity of P300 Is Important for Regulating Foxol Gene elingand an increase in gene transcription (24). To test whether
Expression—P300 contains intrinsic HAT activity, and histone = P300 HAT activity has a role in regulating Foxol gene expres-
acetylation by this co-activator leads to the chromatin remod- sion, adenoviral shRNA was employed to deplete P300 in
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expression plasmids. Reporter activities were measured 48 h after the transfection. b, three CRE site were identified in the proximal promoter region of the
FoxoTl gene. ¢, three CREs were individually deleted in the context of the proximal promoter construct (—125 bp) and tested again. Hepa1-6 cells were
transfected with 20 ng of each construct together with 200 ng of control RSV-cat or PKA expression plasmids. d, 20 ng of the proximal promoter construct and
its mutants and 200 ng of PKA expression plasmid were co-transfected into Hepa1-6 cells together with 400 ng of control pcDNA or P300 expression vector.
Reporter activities were measured 48 h after the transfection. Asterisk (¥) signifies that groups with same treatment are significantly different (p < 0.05). Error
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a. ChIP b. ChiP
Foxo1 Gapdh Foxo1 Gapdh
91 * 8 1 *
B -
7 4
. 7 - OControl J"-’.- .
] 501
06 . 6 PKA g é_
£ 3 97351
O £ 5 s
o * o
o8 [
8 T 4 - =
N o
oG SE;]
S E 31 T2
T s £
£z, m 2
m
)| m (B [ B
0 0
CREBab p300ab CREBab p300ab PKA . 5 : N
HA-P300 . + + +

FIGURE 6.P300 binds to the proximal promoter region of the Foxo1 gene. g, PKA stimulated the binding of CREB and p300 to CREs in the proximal promoter
of the Foxo1 gene. 48 h after the transfection of PKA expression plasmid, Hepa1-6 cells were fixed with formaldehyde followed by immunoprecipitation with
CREB and P300 antibodies. The DNA in the immunoprecipitates was amplified using primers encompassing 150 bp including the CREs in the promoter of the
mouse Foxol gene (n = 3). b, Hepa1-6 cells were transfected with PKA or together with HA-tagged P300 expression plasmid, followed by the fixation and
immunoprecipitation using anti-HA tag-specific antibody. The binding of HA-tagged P300 was determined by real-time PCR (n = 3). Asterisk (*) signifies that
groups with same treatment are significantly different (p < 0.05). Error bars, S.D.
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FIGURE 7. P300 binds to the proximal promoter region of the Foxo1 gene. g, 48 h after the addition of adenoviral shRNAs, Hepa1-6 cells were grown in
FBS-free DMEM supplemented with 10 um control C37 or HAT inhibitor C646 for 3 h, followed by the addition of 0.2 mm Bt-cAMP and incubated for 6 h. b,
Hepa1-6 cells were transfected with 20 ng of promoter constructs, 400 ng of PKA, and 500 ng of P300 expression plasmids. 24 h later, 20 um C37 or C646 was
added, and cells were incubated for another 24 h. ¢, in primary hepatocytes, 20 um C37 or C646 was added to FBS-free medium during serum starvation. After
washing with PBS, 0.2 mm Bt-cAMP together with 20 um C37 or C646 was added in glucose production medium for another 3 h. d-f, administration of HAT
inhibitor significantly decreased fasting blood glucose levels (d), and hepatic Foxo? mRNA levels (e), as well as the protein levels (f) of mice (n = 3~4). Asterisk
(*) signifies that groups with same treatment are significantly different (p < 0.05). Error bars, S.D.

Hepal-6 cells. Then, cells were treated with Bt-cAMP
and/or the HAT inhibitor C646, which is a P300 HAT-spe-
cific inhibitor (21, 22). C646 treatment decreased FOXO1
protein levels, demonstrating that the HAT activity of P300
is indeed important in Foxol gene expression (Fig. 7a).
Moreover, P300 is also important in regulating basal expres-
sion of the FoxoI gene as shown in the shRNA knockdown of
P300. We next sought to determine the mechanism of HAT
inhibition on Foxol gene expression. Using Foxol luciferase
reporters, we show that the HAT inhibitor C646 significantly
decreased PKA-stimulated reporter activity, whereas a CRE
mutant construct was not affected (Fig. 7b). A control com-
pound C37 without HAT inhibitory properties was without
effect. Moreover, treatment with C646 markedly decreased
both basal and Bt-cAMP-stimulated glucose production in
primary hepatocyte, whereas the Bt-cAMP-stimulated
glucose production was intact after treatment with the con-
trol compound C37 (Fig. 7c). Finally, mice administrated
with C646 through intraperitoneal injection exhibited sig-
nificantly lower fasting blood glucose levels (Fig. 7d) accom-
panied by decreased levels of Foxol mRNA and FOXO1 pro-
tein levels (Fig. 7, e and ).
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DISCUSSION

Blood glucose levels are finely regulated by the opposing
actions of the insulin and glucagon signaling pathways. In the
fed and postprandial states, the uptake of glucose from the gas-
trointestinal tract causes elevation in blood glucose levels,
which in turn, triggers the secretion of insulin from pancreatic
B-cells. Insulin stimulates glucose utilization in the muscle and
adipose tissue and suppresses endogenous glucose production
in the liver, so that glucose eventually returns to baseline levels.
The molecular mechanism for the suppression of hepatic glu-
cose production by insulin is complicated and likely involves a
number of transcriptional factors and co-activators, and several
mechanisms have been reported. One mechanism involves
phosphorylation of FOXO1 by insulin through PI3K-AKT,
which excludes FOXO1 from nucleus and promotes cytoplas-
mic ubiquitinylation and degradation (25, 26). Another mech-
anism suggests that CRTC2 may undergo a similar exclusion
from the nucleus after phosphorylation of Ser-171 by the insu-
lin (19). Our laboratory has proposed a third mechanism to
ensure a sufficient control of hepatic gluconeogenesis, where
insulin regulates the composition of CREB co-activator com-
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plex. Phosphorylation of CBP at Ser-436 by insulin leads to the
disassembly of the CREB-CBP-CRTC2 complex (18).

In the fasting state, glucagon activates phosphorylation of
CREB at Ser-133 through a cAMP-PKA pathway, which leads
to recruitment of the co-activators CBP, P300, and CRTC2 to
CRE-containing genes such as Pckl and G6pc. The increased
expression of gluconeogenic genes is thought to be a major way
in which glucagon increases hepatic gluconeogenesis (18, 19);
and accordingly, FOXO1 induces Pckl and G6pc gene expres-
sion (8, 9). In light of this information, we reasoned that gluca-
gon might increase Foxol gene expression in the fasted state
through CREB co-activators. In this way, FOXO1 would further
enhance gluconeogenesis. We found that depletion of CREB
and P300 abolished the induction of Foxol mRNA by cAMP
(Fig. 3d); however, depletion of CBP and CRTC2 had no effect
on Foxol mRNA and FOXO1 protein induction by cAMP (Fig.
3, a—d). These data suggest that CREB-P300 mediates the
Foxol induction, revealing a unique role for P300 in regulating
Foxol gene expression (Fig. 8). This notion was further substan-
tiated by data obtained after depletion of hepatic CBP and P300
in the fasted mice, in which only the depletion of p300 resulted
in asignificant decrease in Foxol mRNA (Fig. 4). P300 has HAT
activity, and in accordance with a previous report, the inhibi-
tion of HAT activity of CBP and/or P300 significantly decreased
fasting blood glucose levels (Fig. 7¢) (8). These effects might be
mediated, in part, through the suppression of Foxol gene
expression, because P300 is known to regulate Foxol gene
expression (14-16). Indeed, administration of a P300 HAT-
specific inhibitor C646 decreased reporter activity (Fig. 7b) and
lowered the fasting blood glucose levels together with decreas-
ing Foxol mRNA and FOXO1 protein levels (Fig. 7, e and f).
Although we report here that the HAT activity of P300 is
important for the transcription of Foxol gene, the specific
acetylation target may involve lysines on histones or other pro-
teins. For example, the HAT activity of P300 might acetylate
FOXOL1 protein and affect its protein stability because deacety-
lation of FOXO by sirtuin 1 reduces levels of mammalian
FOXO transcriptional factors (27-29). Of note, some investi-
gators suggest that the acetylation of FOXO1 facilitates FOXO1
phosphorylation by insulin, which should reduce FOXO1 levels
by promoting its nuclear exclusion (17, 30).
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In summary, we demonstrate that the P300 specifically acti-
vates Foxol gene expression at the transcriptional level. Previ-
ous reports have shown that insulin signaling terminates
nuclear FOXOL1 action by phosphorylating the protein, which
promotes its nuclear exclusion and degradation. This is the first
report to our knowledge, however, to show that co-activator
P300 mediates a large increase in FOXO1 protein levels during
fasting state and suggests that FOXO1 might have a much
greater role in regulating gluconeogenesis in the fasting state.
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