
IPRS: Leveraging Gene-Environment
Interaction to Reconstruct Polygenic
Risk Score
Yingdan Tang1†, Dongfang You1†, Honggang Yi1†, Sheng Yang1* and Yang Zhao1,2,3*

1Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China, 2Center of Biomedical Big Data
and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, China, 3Jiangsu Key Lab of Cancer Biomarkers,
Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University,
Nanjing, China

Background: Polygenic risk score (PRS) is widely regarded as a predictor of genetic
susceptibility to disease, applied to individuals to predict the risk of disease occurrence.
When the gene-environment (G×E) interaction is considered, the traditional PRS prediction
model directly uses PRS to interact with the environment without considering the
interactions between each variant and environment, which may lead to prediction
performance and risk stratification of complex diseases are not promising.

Methods: We developed a method called interaction PRS (iPRS), reconstructing PRS by
leveraging G×E interactions. Two extensive simulations evaluated prediction performance,
risk stratification, and calibration performance of the iPRS prediction model, and compared
it with the traditional PRS prediction model. Real data analysis was performed using
existing data from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening
Trial study to predict genetic susceptibility, pack-years of smoking history, and G×E
interactions in patients with lung cancer.

Results: Two extensive simulations indicated iPRS prediction model could improve the
prediction performance of disease risk, the accuracy of risk stratification, and clinical
calibration performance compared with the traditional PRS prediction model, especially
when antagonism accounted for the majority of the interaction. PLCO real data analysis
also suggested that the iPRS predictionmodel was superior to the PRS prediction model in
predictive effect (p = 0.0205).

Conclusion: IPRS prediction model could have a good application prospect in predicting
disease risk, optimizing the screening of high-risk populations, and improving the clinical
benefits of preventive interventions among populations.
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INTRODUCTION

With the rapid development of the genome in recent years,
genome-wide association studies (GWAS) have shown that
complex diseases are polygenic. (Yang et al., 2010; Visscher
et al., 2017; Sullivan and Geschwind, 2019) As more and more
disease susceptibility sites were discovered, more than 15,000
genetic susceptibility loci associated with the disease have been
identified (Buniello et al., 2019), it is possible to use genetic data to
predict and to stratify disease risk (Khera et al., 2018; Wray et al.,
2018; Mavaddat et al., 2019), as well as to screen high-risk
individuals group of diseases. (Lewis and Vassos, 2020) To
synthesize information from multiple loci, Purcell et al. first
proposed polygenic score (PGS) for schizophrenia.
(Consortium et al., 2009) It also refers to polygenic risk score
(PRS), when the interesting trait is binary. (Fritsche et al., 2019;
Owens et al., 2019) PRS aims to quantify the cumulative effect of
multiple genomic variants into a score to predict the genetic
susceptibility of disease. The construction of a typical PRS usually
has two steps: the first is the process of “variants selection” to
determine the sites to be included in the model; The second is
“weight estimation”, the process of obtaining the coefficients or
weights attached to the selected variants. (Hang and Shen, 2019)
Moreover, since the emergence of efficient software [i.e., GCTA
(Yang et al., 2011) and GEMMA (Zhou and Stephens, 2012)], the
best linear unbiased predictor (BLUP) was widely used to define
significant SNP and construct PRS in the human genome.
Accurate construction of PRS can facilitate disease prevention
and intervention at an early stage and can aid in the development
of personalized medicine. (Yang and Zhou, 2020)

Interactions between genes and environmental factors also
contributed to the generation and development of complex
diseases (Torkamani et al., 2018; Wang et al., 2019), and could
explain some proportion of individual differences of complex
diseases. Many studies have reported that environmental factors
modified the effect of PRS. As an example, the study of Shi et al.
showed that hormonal birth control in women decreased the risk
of PRS for Young-onset breast cancer (YOBC). (Shi et al., 2020)

When considering the interaction between genetic risk score and
environment, most studies directly use traditional PRS to interact
with the environment. (Li et al., 2015; Peyrot et al., 2018; Guloksuz
et al., 2019) However, during the construction procedure of
traditional PRS, variants and their corresponding weights are
determined without considering the G×E interactions. Thus, some
SNPs potentially interacted with environmental factors maybe fail to
be identified if they do not have main effects, or their direction of
interaction effect is different from that of the main effect. Meanwhile,
the weights of identified SNPs are the accumulations of main effects
and interaction effects, leading to inaccurate estimation and, risk
predictions. Furthermore, some SNPs in the PRS may interact with
the environment in antagonistic, while some others in synergistic
ways. Therefore, the direct use of PRS to interact with the
environment may make antagonistic interaction and synergistic
interaction cancel each other out.

Here, we propose to construct PRS that consider both the
main effect of the SNP and their interactions with environmental
factors, referring to interaction PRS (iPRS). Simulations were

performed under different model assumptions to evaluate the
performance of the iPRS prediction model. We also performed
real data application in the Prostate, Lung, Colorectal, and
Ovarian (PLCO) Cancer Screening Trial study. We provided
implemented iPRS prediction model (https://github.com/
predictionmodel/IPRS).

MATERIALS AND METHODS

PRS Prediction Model
The marginal effect is the conditional effect of one variant
averaging across the different levels of the other variants.
(Williams, 2012) Suppose that the outcome is binary and we
are using the following logistic model to identify the association
between genes and disease,

logitP(yi � 1) � αij + βMGij
Gij + βEij

Ei + βCij
Ci (1)

Where yi is binary disease outcome of the ith sample; Gij is the
number of risk alleles (coded as 0, 1, 2) of the jth variant; βMGij

,
marginal effect, is the effect of the jth SNP conditional to Ei; βEij

is
the environment variable’s effect; βCij

is the effect of other
covariates Ci; αij is an intercept.

PRS for an individual is the summation of risk variants that
have been identified in GWAS. In its simplest and most common
form, PRS is defined as the weighted sums of marginal effects of
SNPs. PRS is shown as follows:

PRSi � ∑
J

j�1
βMGij

Gij (2)

Where βMGij
is the estimated effect size of the jth SNP (usually

obtained from summary statistics) and Gij indicates the genotype
of jth SNP for an individual. In this way, PRS aggregate the
contribution of an individual’s germline genome into a single
number proportional to the risk for a given disease. (Lambert
et al., 2019)

When considering the interaction between PRS and
environmental factors, most studies construct the prediction
model as follows:

logitP(yi � 1) � PRSi + PRSi × Ei + Ei (3)
As we have stated above, using PRS directly to interact with the

environment and build predictive models may lead to potentially
biased results.

IPRS Prediction Model
The G×E interaction model included SNP, environmental factor,
and their interaction term in the model. Especially, when
interactions are included in the model, the average conditional
effect of this variant at different levels of other variants is called
the main effect. (Pandis et al., 2014) The traditional interaction
model is shown as follows:

logitP(yi � 1) � αij + βMGij
Gij + βEij

Ei + βIGij × EGij × Ei + βCij
Ci

(4)
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Where βMGij
is the main effect of the jth SNP; βIGij × E is the

interaction between the jth SNP and environmental variant Ei.
The iPRS is constructed using both SNPs and SNP×E

interactions. The weight of each SNP is the main effect of
each SNP after considering SNP×E interaction in the
regression, and the weight of each SNP×E interaction term is
the interaction between each SNP and the environment as:

IPRSi � ∑
J

j�1
βMGij

Gij +∑
J

j�1
βIGij × EGij × Ei (5)

Where βMGij
is the main effect of the jth SNP of the ith sample;

βIGij × E is the interaction between the jth SNP and environmental
variant Ei; β

I
Gij × EGij × Ei explains the effect of the jth SNP at

different levels of environmental variant. All alleles are all flipped
into risk alleles.

To predict the disease risk, an iPRS predictive model can be
written as follows:

logitP(yi � 1) � IPRSi + Ei (6)

Simulations
We designed two simulations to compare the predictive
performances of the iPRS prediction model to that of the PRS
prediction model in the presence of G×E interactions.

Following the sparse assumption [i.e. clumping and threshold
(CT) and stacked clumping and thresholding (SCT), the most
commonly used method for computing PRS (Privé et al., 2019)],
simulation I assumed that a small number of SNP contributed to a
specific disease and that the effects of them are treated as a fixed
effect. (Privé et al., 2019) First, we simulated 10 SNPs from a Beta
distribution of B (2, MAF), and MAF was generated from a
uniform distribution of U (0.1, 0.5). We hypothesized that these
SNPs were obtained by genome-wide association studies (GWAS)
that statistically associated with some diseases (that is, p value <5
× 10−8), some of whichmay be causal SNPs that actually influence
disease, and some of which may be false positives. The
environmental variant was generated from B (1, 0.5). The
binary phenotype was generated as follows:

logitP(yi � 1) � ∑
10

j�1
βMi SNPi +∑

10

j�1
βI
i SNPi × Ei + βEij

Ei (7)

Where yi is the simulated phenotype (i.e., diseases onset or not)
of the ith sample; SNPi � (SNPi1, SNPi2,/, SNPi10); Ei is the
environmental risk factor. βMi are the main effects of SNPi. We
randomly set six causal risk SNPs whose main effects were not 0,
and the main effects of the remaining SNPs were all 0; βIi are the
interactions of SNP×E interaction terms. We also randomly set
four SNPs from the SNPs with the main effect to have non-zero
interactions with environment variant, the rest of the interactions
were all 0.

We simulated three different scenarios: (I) interactions
between SNPs and the environmental factor are all
antagonistic; (II) interactions between SNPs and the
environmental factor are all synergistic; (III) half of
interactions are antagonistic, and half are synergistic. For each

simulation setting, we generated 1,000 simulated datasets. Each
simulated dataset includes 1,000 cases and 1,000 controls. Details
of simulation I are shown in Supplementary Table S1.

Following the polygenic assumption [i.e., BLUP, through
fitting a genomic relationship matrix to estimate genetic effect
to construct PRS (De Los Campos et al., 2013; Truong et al.,
2020)], simulation II assumed that all variants contribute to the
disease with a small effect size. To make the simulation closer to a
real scenario, we used all SNPs on chromosome 1 from PLCO
Cancer Screening Trial and simulated environmental variable
and phenotype with 14,415 individuals to generate simulation
datasets. After QC, a total of 14,415 individuals and 438,548 SNPs
were included in the simulation. We simulated the causal effects
of SNPs from a normal distribution N(0, h2/m) , where m is the
number of SNPs and (h2/m) is the variance. We set h2 to be 0.3
representing moderate heritability and set m to 1% of all 438,548
SNPs. Meanwhile, we randomly selected 0.1‰ of all SNPs to have
interactions, antagonistic interactions accounted for 70% of all
interactions. The simulation of the environmental factor was the
same as that in simulation I. We repeated the simulation
100 times.

Real Data Analysis With PLCO
We also evaluated the iPRS prediction model by real data within
the PLCO Cancer Screening Trial study. The PLCO Cancer
Screening Trial study was a large randomized trial designed
and sponsored by the National Cancer Institute (NCI) to
determine the effects of screening on cancer-related mortality
and secondary endpoints in men and women aged 55–74.
(Gohagan et al., 2000) Previous studies have reported that
smoking is a risk factor for lung cancer, and some studies
have shown that there are interactions between pack-years of
smoking and susceptibility SNPs of lung cancer, and interactions
between some SNPs and lung cancer are antagonistic. (Zhang
et al., 2014) Thus, in this real data analysis, we constructed and
evaluated the iPRS prediction model and traditional PRS
prediction model for lung cancer participants with
susceptibility SNPs of lung cancer and pack-years of smoking.
The process was described below.

For SNP quality control (QC), we focused on our analysis on
autosome SNPs following the standard QC procedure used in
Landi et al’s study. (Landi et al., 2009) Samples were screened and
selected only if they had a minimum 95% successful genotype call
rate. We filtered out SNPs 1) with a minor allele frequency (MAF)
< 0.01, 2) with a Hardy-Weinberg (HWE) test p value <10−6, 3)
with a proportion of missingness (Pm) > 0.05, or 4) that are a
duplicated SNP or related SNP. After these QC steps, we retained
a total of 14,415 individuals and 5,685,769 SNPs for analysis.

We obtained genotype, pack-years of smoking history, and
confirmed lung cancer from PLCO with 14,415 individuals.
Through Logistic regression considering interaction, we obtained
the main effect of all SNPs and the interactions between SNPs and
pack-years of smoking history. In order to include more SNPs with
interaction, we derived the SNPs for the construction of iPRS
prediction model specific for PLCO population from SNPs that p
value of main effect or interaction less than 5 × 10−6 in PLCO study.
After selection, 299 risk variants were kept for the calculation of the
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iPRS prediction model. Janjigian et al’s study showed that lung
cancer patients with ≤15 pack-years histories of smoking had longer
median survival than patients who had smoked >15 pack years.
(Janjigian et al., 2010) So, pack-years of smoking history translated
into binary variant depending on whether they were longer than
15 years. The 14,415 participants included 1,453 cases and 12,962
controls.

We used 5-fold cross-validation to train and evaluate the iPRS
prediction model and traditional PRS prediction model, and
evaluated two prediction models described above in terms of
their prediction accuracy, risk stratification, and calibration
performance. We used the area under the receiver operation
curve (AUC) to compare the prediction performance of the iPRS
prediction model and PRS prediction model and compared the
difference between them with the Delong algorithm (Sun and Xu,
2014). The risk stratification was reflected in the prevalence rates
of different risk populations, and the chi-square test was used to
compare the prevalence of the iPRS prediction model and PRS
prediction model. We used the Brier score and calibration curve
to measure the calibration performance of the iPRS prediction
model and PRS prediction model. (Huang et al., 2020)

All analyses and figures were performed using R, version 3.2.0
(R Foundation for Statistical Computing, Vienna, Austria).
Power calculations were performed using G*Power, version 3.1
(Faul, Erdfelder, Lang, and Buchner) (Faul et al., 2009).

RESULTS

Simulations
In simulation I, the AUC of iPRS prediction model average
improves 6.0% than that of the traditional model in the three
scenarios (Figure 1). As expectation, we found that the average
AUC of iPRS prediction model was 0.72 in scenario 1
(antagonistic interactions), 0.78 in scenario 2 (synergistic
interactions), 0.74 in scenario 3 (half antagonistic interactions
and half synergistic interactions), which were all significantly
higher than that of PRS prediction model (p < 0.0001, p = 0.0044,
p < 0.0001 respectively).

Furthermore, iPRS prediction model improves the accuracy of
risk stratification and is more helpful to screening for high-risk
individuals. According to the study of Dai et al., the top 5%,
medium 90%, and bottom 5% of the predictive value of iPRS
prediction model or PRS prediction model were used to define
high, intermediate, low genetic risk populations, respectively.
(Dai et al., 2019) The accuracy of risk stratification of iPRS
prediction model was better than that of PRS prediction
model. The result showed that the accuracy of risk
stratification of iPRS prediction model was better than that of
PRS prediction model in scenarios 1 and scenarios 3 (p < 0.0001,
p = 0.0069 respectively) (Figure 2). When there was only
synergism (scenario 2), the improvement of risk stratification
of iPRS prediction model was not significant (p = 0.1054).

The iPRS prediction model could improve the calibration
performance and make the predicted risk more likely to be
true observed frequency. In scenario 1 of simulation I, the
Brier score of iPRS prediction model was significantly lower
than that of PRS prediction model, indicating iPRS prediction
model had a smaller mean square error between the actual
outcome and the estimated probabilities than the PRS
prediction model (Figure 3). Moreover, the iPRS prediction
model could also account for more predicted probabilities.
The Brier scores and calibration curves in scenario 2 and
scenario 3 were similar to those from scenario 1. Simulation I
assumed that SNPs having interactions with the environmental
factor all had main effects, the results of additional simulation,
which assumed that part of the SNPs interacting with
environmental factor had no main effects, were similar to
simulation I and presented at Supplementary Figures S2–S5.

In simulation II, the average AUC of iPRS prediction model
was 0.92, while the average AUC of PRS prediction model was
0.85, and the difference between them was statistically significant
(p < 0.0001) (Figure 4A). The accuracy of risk stratification of
iPRS prediction model was significantly better than that of PRS
prediction model (p < 0.0001) (Figure 4B). For calibration result,
compared with traditional PRS prediction model, the calibration
curve of iPRS prediction model was closer to the diagonal line,
indicating that the disease risk of different populations predicted

FIGURE 1 | ROC of iPRS prediction model and PRS prediction model in three scenarios of simulations I with independent SNPs. (A) Scenario 1: SNPs are all risk
factors, the environmental variant is a risk factor, interactions are antagonistic; (B) Scenario 2: SNPs are all risk factors, the environmental variant is a risk factor,
interactions are synergistic; (C) Scenario 3: SNPs are all risk factors, the environmental factor is a risk variant, half of the interactions are antagonistic, and half are
synergistic. The p values were shown that the results of comparing the AUC of iPRS prediction model and traditional PRS prediction model.
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by iPRS prediction model was more consistent with the observed
disease frequency. Furthermore, the calibration curve of iPRS
prediction model was longer than that of PRS prediction model,
indicating that iPRS prediction model explained more predictive
risk than PRS prediction model. Accordingly, the Brier score of
iPRS prediction model was significantly lower than that of
traditional PRS prediction model (Figure 4C).

PLCO Application
For the application, we used 1,453 lung cancer patients and 12,962
individuals without lung cancer and used 299 SNPs associated with
lung cancer risk or interacting with pack-years of smoking history in
the PLCO study. The results of 5-fold cross-validation showed that
iPRS prediction model was significantly superior to traditional PRS
prediction model in terms of prediction performance and risk

population of lung cancer risk. The AUC of iPRS prediction
model was 0.85, significantly greater than that of PRS prediction
model (p = 0.0205) (Figure 5A). For risk stratification, the
prevalence of high-risk population of iPRS prediction model and
PRS prediction model was 76.55%, with almost no difference
between the two models. However, the prevalence of low-risk
population was almost zero, and that of PRS prediction model
was 6.86%. There was significant difference in the prevalence of
different risk populations according to the predictive values of iPRS
prediction model and PRS prediction model (p < 0.0001)
(Figure 5B). The calibration results showed iPRS prediction
model and PRS prediction model both well apply personalized
prediction to be used for prevention or clinical decision-making,
the Brier score of iPRS predictionmodel was slightly lower than PRS
prediction model (Figure 5C). Considering other calibration

FIGURE 2 | Prevalence of high risk, intermediate risk, low risk population according to the predictive value of iPRS prediction model or PRS prediction model in
three scenarios of simulations I with independent sparse SNPs. Samples were defined as high risk, intermediate risk, and low risk populations according to the top 5%,
5%–95%, and the bottom 5% of the predictive value of iPRS prediction model or PRS prediction model. Significant differences in risk categories of the population were
noted. (A) Scenario 1: SNPs are all risk factors, the environmental variant is a risk factor, interactions are antagonistic; (B) Scenario 2: SNPs are all risk factors, the
environmental variant is a risk factor, interactions are synergistic; (C) Scenario 3: SNPs are all risk factors, the environmental factor is a risk variant, half of the interactions
are antagonistic, and half are synergistic.

FIGURE 3 | Calibration Plots and Brier scores of iPRS prediction model and PRS prediction model in three scenarios of simulations I with independent sparse
SNPs. Calibration plots summarize the graphical agreement between observed and predicted risks. In an ideal model, pairs of the observed and predicted risks lie on a
45-degree angle line. Curves falling under the 45-degree angle line indicate that predicted risks overestimate (are higher than) observed risks, while curves falling above
the 45-degree angle line indicate that predicted risks underestimate (are lower than) observed risks. (A) Scenario 1: SNPs are all risk factors, the environmental
variant is a risk factor, interactions are antagonistic; (B) Scenario 2: SNPs are all risk factors, the environmental variant is a risk factor, interactions are synergistic; (C)
Scenario 3: SNPs are all risk factors, the environmental factor is a risk variant, half of the interactions are antagonistic, and half are synergistic. The numbers in square
brackets represent 95%CI of Brier score.
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indicators, the p values for the Spiegelhalter’s z test indicate that iPRS
prediction model and PRS prediction model were all well-calibrated
(P all >0.0500). Results of Cox’s slope and intercept were shown that
the slope and intercept for iPRS predictionmodel were close to 1 and
0, respectively, indicating a proper calibration and a little
overestimation of low risk (Cox’s intercept = −1.0771 × 10−8),
while there was a little underestimation of high risk for PRS
prediction model (Cox’s intercept = −8.2160 × 10−9).
(Supplementary Table S2). The power analyses and computation
time of building the iPRS prediction model compared to the
traditional PRS prediction model were shown in Supplementary
(Supplementary Table S3 and Supplementary Figure S8).

DISCUSSION

In this manuscript, we proposed a novel PRS construction method
and applied it to GWAS analysis scenarios with G×E interactions.

Two extensive simulations and 5-fold cross-validation of PLCO real
data analysis suggested that iPRS prediction model could improve
the prediction performance of disease risk, the accuracy of risk
stratification, and clinical calibration performance compared with
traditional PRS prediction model. In particular, when the G×E
interactions were mainly antagonistic, the predictive accuracy
significantly increased. For stratification, according to the
predictive value of iPRS prediction model, the prevalence of
high-risk populations was significantly higher than that of
traditional PRS prediction model. If iPRS prediction model can
be applied to disease screening, it can more accurately identify the
population with high risk of disease and implement interventions to
better prevent or recover. Accuracy prediction, stratification can also
reduce costs. Moreover, well-calibration could make the predictive
risk obtained according to iPRS predictionmodel tend to the real risk
and promote the development of precision medicine.

The result of our study raised the concern that whether it is
sufficient to model the interaction between genetic susceptibilities

FIGURE 4 | Analysis of iPRS prediction model in prediction performance, risk stratification, calibration performance for simulation II with real genotypes. (A) AUCs
and ROC curves of iPRS prediction model and PRS prediction model. (B) Prevalence of high risk, intermediate risk, low risk population stratified by the predictive value of
iPRS prediction model or PRS prediction model in simulations II. Samples were defined as high risk, intermediate risk, and low risk populations according to the top 5%,
5%–95%, and the bottom 5% of the predictive value of iPRS prediction model or PRS prediction model. (C) Calibration Plots and Brier scores of iPRS prediction
model or PRS prediction model.

FIGURE 5 | Analysis of iPRS prediction model in prediction performance, risk stratification, calibration performance for lung cancer in the application of PLCO for 5-
fold cross-validation. (A) AUCs and ROC curves of iPRS prediction model and PRS prediction model applied for PLCO dataset. (B) Lung cancer prevalence of high risk,
intermediate risk, low risk population stratified by the predictive value of iPRS prediction model or PRS prediction model in the application of PLCO. Samples were
defined as high risk, intermediate risk, and low risk populations according to the top 5%, 5%–95%, and the bottom 5% of predictive value of iPRS prediction model
or PRS prediction model. (C) Calibration Plots and Brier scores of iPRS prediction model and PRS prediction model for lung cancer in the application of PLCO.
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and environments by using the PRS constructed based solely on
the main effects of SNPs. This article was the first to authors’
knowledge to focus on leveraging gene-environment interactions
to reconstruct polygenic risk score and to validate the effects of
PRS with G×E interactions through simulations and application.
When considering gene-environment interactions, most of the
current papers used PRS to directly interact with the environment
to build the prediction model. (Li et al., 2015; Peyrot et al., 2018;
Guloksuz et al., 2019) As we all know, a genetic variation can
explain very little heritability, so PRS combines genetic
information to estimate a composite score that predicts genetic
susceptibility to disease and does not represent any biological
significance. Similarly, the interaction between PRS and
environment does not have biological significance and cannot
represent the interactions between each SNP and environment.
IPRS includes interactions between each SNP and environment
into the score, respectively. This prevents antagonistic
interactions and synergistic interactions from canceling each
other out. Furthermore, iPRS uses the main effects of SNPs
after considering interaction as the weight of SNPs and the
interaction effects of G×E interactions as the weight of G×E
interactions, so that we can accurately consider the interactions
between each SNP and environment and use their accurate effect
as the weight. According to the above, iPRS could improve the
prediction performance of PRS prediction model. Finally, 5-fold
cross-validation was used to evaluate the performance of the two
models in application, which could not only prevent over-fitting,
but also proved that the iPRS prediction model was extrapolated.

The effectiveness of risk score is typically assessed by
determining whether they can help to stratify populations into
different degrees of risk subgroups to drive clinical or individual
decisions. (Torkamani et al., 2018) Although several studies have
evaluated the risk stratification of PRS, their traditional PRS with
missing heritability problem often led to results that were not
promising. (Weissfeld et al., 2015; Jia et al., 2020; Tasa et al., 2020)
Many explanations for this missing heritability have been
suggested, with the two leading causes being rarer variants and
gene-environment interactions. (Manolio et al., 2009; Zuk et al.,
2012) IPRS incorporates gene-environment interactions into risk
score to better explain missing heritability and make prediction
effects and risk stratification more precise, demonstrating that
GWAS findings could be more accurately used for screening and
individualized prevention of complex diseases.

The primary limitation of the proposed method is that the
G×E interactions are expected to be as antagonistic as possible.
Although the simulation results show that the iPRS prediction
model can improve the prediction effect in all three scenarios, the
improvement of the prediction effect is not statistically significant
when the interaction is synergistic, and it is statistically significant
when the interaction is antagonistic. The second limitation of the
iPRS is similar to it faced by PRS. The requirement is that
individual-level data are available for SNP, environment factor,
and outcome. Although summary data can also be used, most
GWAS studies only obtained the correlation coefficient between
SNPs and outcome, and rarely the correlation coefficient of
interaction. The third limitation was that interaction included
in iPRS prediction model may be difficult to explain, and to

account for genetically determined environmental exposure
triggers the disease or not. Since the interaction between SNPs
in the same gene set and environment may be opposite, andMany
disease-associated SNPs identified to date do not lie in genes
(Fridley and Biernacka, 2011), we did not consider interaction
between gene set and environment, but interaction between each
SNP and environment.

In conclusion, we have proposed a novel PRS construction
method applicable to scenarios considering G×E interactions. This
proposed method reconstructed PRS by leveraging gene-
environment interactions. Compared with the traditional
prediction model, iPRS prediction model has better prediction
performance, risk stratification, calibration model. Therefore, we
expect that iPRS prediction model could have a good application
prospect in optimizing the screening criteria of high-risk populations,
designating individualized screening programs, and improving the
clinical benefits of preventive interventions among populations.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: The data and analyses presented in the current
publication are based on the use of study data downloaded from
the dbGaP website, under phs000093.v1.p1 and phs000336.v2.p2
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000336.v1.p1, https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000093.v2.p2).

AUTHOR CONTRIBUTIONS

YZ and YT conceived the study. YT, DY, and HY contributed to
the development of the methodology. YZ, SY, and YT: Drafting,
review, and revision of the manuscript. All authors read and
approved the final manuscript.

FUNDING

This study was funded by the National Natural Science
Foundation of China (Project Nos. 82173620, 81830100). This
study was also funded by the Priority Academic Program
Development of Jiangsu Higher Education Institution (PAPD).

ACKNOWLEDGMENTS

The authors sincerely thank all the teachers and students who
participated in this study for their guidance and help.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.801397/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8013977

Tang et al. IPRS

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000336.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000336.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000093.v2.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000093.v2.p2
https://www.frontiersin.org/articles/10.3389/fgene.2022.801397/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.801397/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Buniello, A., Macarthur, J. A. L., Cerezo, M., Harris, L.W., Hayhurst, J., Malangone,
C., et al. (2019). The NHGRI-EBI GWAS Catalog of Published Genome-wide
Association Studies, Targeted Arrays and Summary Statistics 2019. Nucleic
Acids Res. 47 (D1), D1005–D1012. doi:10.1093/nar/gky1120

Consortium, I. S., Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M.,
O’Donovan, M. C., et al. (2009). Common Polygenic Variation Contributes
to Risk of Schizophrenia and Bipolar Disorder. Nature 460 (7256), 748–752.
doi:10.1038/nature08185

Dai, J., Lv, J., Zhu, M., Wang, Y., Qin, N., Ma, H., et al. (2019). Identification of Risk
Loci and a Polygenic Risk Score for Lung Cancer: a Large-Scale Prospective
Cohort Study in Chinese Populations. Lancet Respir. Med. 7 (10), 881–891.
doi:10.1016/s2213-2600(19)30144-4

De Los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., and Sorensen,
D. (2013). Prediction of Complex Human Traits Using the Genomic Best Linear
Unbiased Predictor. PLoS Genet. 9 (7), e1003608. doi:10.1371/journal.pgen.
1003608

Faul, F., Erdfelder, E., Buchner, A., and Lang, A.-G. (2009). Statistical Power
Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses.
Behav. Res. Methods 41 (4), 1149–1160. doi:10.3758/brm.41.4.1149

Fridley, B. L., and Biernacka, J. M. (2011). Gene Set Analysis of SNP Data: Benefits,
Challenges, and Future Directions. Eur. J. Hum. Genet. 19 (8), 837–843. doi:10.
1038/ejhg.2011.57

Fritsche, L. G., Beesley, L. J., Vandehaar, P., Peng, R. B., Salvatore, M., Zawistowski,
M., et al. (2019). Exploring Various Polygenic Risk Scores for Skin Cancer in the
Phenomes of the Michigan Genomics Initiative and the UK Biobank with a
Visual Catalog: PRSWeb. PLoS Genet. 15 (6), e1008202. doi:10.1371/journal.
pgen.1008202

Gohagan, J. K., Prorok, P. C., Hayes, R. B., and Kramer, B. S. (2000). The Prostate,
Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial of the National
Cancer Institute: History, Organization, and Status. Control. Clin. Trials 21 (6),
251S–272S. doi:10.1016/s0197-2456(00)00097-0

Guloksuz, S., Pries, L. K., Delespaul, P., Kenis, G., Luykx, J. J., Lin, B. D., et al.
(2019). Examining the Independent and Joint Effects of Molecular Genetic
Liability and Environmental Exposures in Schizophrenia: Results from the
EUGEI Study. World Psychiatry 18 (2), 173–182. doi:10.1002/wps.20629

Hang, D., and Shen, H. B. (2019). Application of Polygenic Risk Scores in Risk
Prediction and Precision Prevention of Complex Diseases: Opportunities and
Challenges. Zhonghua Liu Xing Bing Xue Za Zhi 40 (9), 1027–1030. doi:10.
3760/cma.j.issn.0254-6450.2019.09.001

Huang, Y., Li, W., Macheret, F., Gabriel, R. A., and Ohno-Machado, L. (2020). A
Tutorial on Calibration Measurements and Calibration Models for Clinical
Prediction Models. J. Am. Med. Inform. Assoc. 27 (4), 621–633. doi:10.1093/
jamia/ocz228

Janjigian, Y. Y., Mcdonnell, K., Kris, M. G., Shen, R., Sima, C. S., Bach, P. B., et al.
(2010). Pack-years of Cigarette Smoking as a Prognostic Factor in Patients with
Stage IIIB/IV Nonsmall Cell Lung Cancer. Cancer 116 (3), 670–675. doi:10.
1002/cncr.24813

Jia, G., Lu, Y., Wen,W., Long, J., Liu, Y., Tao, R., et al. (2020). Evaluating the Utility
of Polygenic Risk Scores in Identifying High-Risk Individuals for Eight
Common Cancers. JNCI Cancer Spectr. 4 (3), pkaa021. doi:10.1093/jncics/
pkaa021

Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., et al.
(2018). Genome-wide Polygenic Scores for Common Diseases Identify
Individuals with Risk Equivalent to Monogenic Mutations. Nat. Genet. 50
(9), 1219–1224. doi:10.1038/s41588-018-0183-z

Lambert, S. A., Abraham, G., and Inouye, M. (2019). Towards Clinical Utility of
Polygenic Risk Scores. Hum. Mol. Genet. 28 (R2), R133–R142. doi:10.1093/
hmg/ddz187

Landi, M. T., Chatterjee, N., Yu, K., Goldin, L. R., Goldstein, A. M., Rotunno, M.,
et al. (2009). A Genome-wide Association Study of Lung Cancer Identifies a
Region of Chromosome 5p15 Associated with Risk for Adenocarcinoma. Am.
J. Hum. Genet. 85 (5), 679–691. doi:10.1016/j.ajhg.2009.09.012

Lewis, C. M., and Vassos, E. (2020). Polygenic Risk Scores: from Research Tools to
Clinical Instruments. Genome Med. 12, 44–11. doi:10.1186/s13073-020-
00742-5

Li, J., Holm, J., Bergh, J., Eriksson, M., Darabi, H., Lindström, L. S., et al. (2015).
Breast Cancer Genetic Risk Profile Is Differentially Associated with Interval and
Screen-Detected Breast Cancers. Ann. Oncol. 26 (3), 517–522. doi:10.1093/
annonc/mdu565

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D.
J., et al. (2009). Finding the Missing Heritability of Complex Diseases. Nature
461 (7265), 747–753. doi:10.1038/nature08494

Mavaddat, N., Michailidou, K., Dennis, J., Lush, M., Fachal, L., Lee, A., et al. (2019).
Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer
Subtypes. Am. J. Hum. Genet. 104 (1), 21–34. doi:10.1016/j.ajhg.2018.11.002

Owens, D. K., Owens, D. K., Davidson, K. W., Krist, A. H., Barry, M. J., Cabana, M.,
et al. (2019). Risk Assessment, Genetic Counseling, and Genetic Testing for
BRCA-Related Cancer: US Preventive Services Task Force Recommendation
Statement. Jama 322 (7), 652–665. doi:10.1001/jama.2019.10987

Pandis, N., Walsh, T., Polychronopoulou, A., Katsaros, C., and Eliades, T. (2014).
Factorial Designs: an Overview with Applications to Orthodontic Clinical
Trials. Eur. J. Orthod. 36 (3), 314–320. doi:10.1093/ejo/cjt054

Peyrot, W. J., Van Der Auwera, S., Milaneschi, Y., Dolan, C. V., Madden, P. A. F.,
Sullivan, P. F., et al. (2018). Does Childhood Trauma Moderate Polygenic Risk for
Depression? A Meta-Analysis of 5765 Subjects from the Psychiatric Genomics
Consortium. Biol. Psychiatry 84 (2), 138–147. doi:10.1016/j.biopsych.2017.09.009

Privé, F., Vilhjálmsson, B. J., Aschard, H., and Blum, M. G. B. (2019). Making the
Most of Clumping and Thresholding for Polygenic Scores. Am. J. Hum. Genet.
105 (6), 1213–1221. doi:10.1016/j.ajhg.2019.11.001

Shi, M., O’Brien, K. M., and Weinberg, C. R. (2020). Interactions between a
Polygenic Risk Score and Non-genetic Risk Factors in Young-Onset Breast
Cancer. Sci. Rep. 10 (1), 3242–3247. doi:10.1038/s41598-020-60032-3

Sullivan, P. F., and Geschwind, D. H. (2019). Defining the Genetic, Genomic,
Cellular, and Diagnostic Architectures of Psychiatric Disorders. Cell 177 (1),
162–183. doi:10.1016/j.cell.2019.01.015

Sun, X., andXu,W. (2014). Fast Implementation ofDeLong’s Algorithm for Comparing
the Areas under Correlated Receiver Operating Characteristic Curves. IEEE Signal.
Process. Lett. 21 (11), 1389–1393. doi:10.1109/lsp.2014.2337313

Tasa, T., Puustusmaa, M., Tonisson, N., Kolk, B., and Padrik, P. (2020). Precision
Colorectal Cancer Screening with Polygenic Risk Score[J]. medRxiv.

Torkamani, A., Wineinger, N. E., and Topol, E. J. (2018). The Personal and Clinical
Utility of Polygenic Risk Scores. Nat. Rev. Genet. 19 (9), 581–590. doi:10.1038/
s41576-018-0018-x

Truong, B., Zhou, X., Shin, J., Li, J., van der Werf, J. H. J., Le, T. D., et al. (2020).
Efficient Polygenic Risk Scores for Biobank Scale Data by Exploiting
Phenotypes from Inferred Relatives. Nat. Commun. 11 (1), 1–11. doi:10.
1038/s41467-020-16829-x

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A.,
et al. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation.
Am. J. Hum. Genet. 101 (1), 5–22. doi:10.1016/j.ajhg.2017.06.005

Wang, H., Zhang, F., Zeng, J.,Wu, Y., Kemper, K. E., Xue, A., et al. (2019). Genotype-by-
environment Interactions Inferred fromGenetic Effects on Phenotypic Variability in
the UK Biobank. Sci. Adv. 5 (8), eaaw3538. doi:10.1126/sciadv.aaw3538

Weissfeld, J. L., Lin, Y., Lin, H.-M., Kurland, B. F., Wilson, D. O., Fuhrman, C. R.,
et al. (2015). Lung Cancer Risk Prediction Using Common SNPs Located in
GWAS-Identified Susceptibility Regions. J. Thorac. Oncol. 10 (11), 1538–1545.
doi:10.1097/jto.0000000000000666

Williams, R. (2012). Using the Margins Command to Estimate and Interpret
Adjusted Predictions and Marginal Effects. Stata J. 12 (2), 308–331. doi:10.
1177/1536867x1201200209

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui,
A., et al. (2018). Genome-wide Association Analyses Identify 44 Risk Variants
and Refine the Genetic Architecture of Major Depression. Nat. Genet. 50 (5),
668–681. doi:10.1038/s41588-018-0090-3

Yang, J., Benyamin, B., Mcevoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R.,
et al. (2010). Common SNPs Explain a Large Proportion of the Heritability for
Human Height. Nat. Genet. 42 (7), 565–569. doi:10.1038/ng.608

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: A Tool for
Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 88 (1), 76–82.
doi:10.1016/j.ajhg.2010.11.011

Yang, S., and Zhou, X. (2020). Accurate and Scalable Construction of Polygenic
Scores in Large Biobank Data Sets. Am. J. Hum. Genet. 106 (5), 679–693. doi:10.
1016/j.ajhg.2020.03.013

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8013978

Tang et al. IPRS

https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1038/nature08185
https://doi.org/10.1016/s2213-2600(19)30144-4
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.3758/brm.41.4.1149
https://doi.org/10.1038/ejhg.2011.57
https://doi.org/10.1038/ejhg.2011.57
https://doi.org/10.1371/journal.pgen.1008202
https://doi.org/10.1371/journal.pgen.1008202
https://doi.org/10.1016/s0197-2456(00)00097-0
https://doi.org/10.1002/wps.20629
https://doi.org/10.3760/cma.j.issn.0254-6450.2019.09.001
https://doi.org/10.3760/cma.j.issn.0254-6450.2019.09.001
https://doi.org/10.1093/jamia/ocz228
https://doi.org/10.1093/jamia/ocz228
https://doi.org/10.1002/cncr.24813
https://doi.org/10.1002/cncr.24813
https://doi.org/10.1093/jncics/pkaa021
https://doi.org/10.1093/jncics/pkaa021
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1093/hmg/ddz187
https://doi.org/10.1093/hmg/ddz187
https://doi.org/10.1016/j.ajhg.2009.09.012
https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/10.1093/annonc/mdu565
https://doi.org/10.1093/annonc/mdu565
https://doi.org/10.1038/nature08494
https://doi.org/10.1016/j.ajhg.2018.11.002
https://doi.org/10.1001/jama.2019.10987
https://doi.org/10.1093/ejo/cjt054
https://doi.org/10.1016/j.biopsych.2017.09.009
https://doi.org/10.1016/j.ajhg.2019.11.001
https://doi.org/10.1038/s41598-020-60032-3
https://doi.org/10.1016/j.cell.2019.01.015
https://doi.org/10.1109/lsp.2014.2337313
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1038/s41467-020-16829-x
https://doi.org/10.1038/s41467-020-16829-x
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1126/sciadv.aaw3538
https://doi.org/10.1097/jto.0000000000000666
https://doi.org/10.1177/1536867x1201200209
https://doi.org/10.1177/1536867x1201200209
https://doi.org/10.1038/s41588-018-0090-3
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2020.03.013
https://doi.org/10.1016/j.ajhg.2020.03.013
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang, R., Chu, M., Zhao, Y., Wu, C., Guo, H., Shi, Y., et al. (2014). A Genome-
wide Gene-Environment Interaction Analysis for Tobacco Smoke and Lung
Cancer Susceptibility. Carcinogenesis 35 (7), 1528–1535. doi:10.1093/carcin/
bgu076

Zhou, X., and Stephens, M. (2012). Genome-wide Efficient Mixed-Model Analysis
for Association Studies. Nat. Genet. 44 (7), 821–824. doi:10.1038/ng.2310

Zuk, O., Hechter, E., Sunyaev, S. R., and Lander, E. S. (2012). The Mystery of
Missing Heritability: Genetic Interactions Create Phantom Heritability. Proc.
Natl. Acad. Sci. 109 (4), 1193–1198. doi:10.1073/pnas.1119675109

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Tang, You, Yi, Yang and Zhao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8013979

Tang et al. IPRS

https://doi.org/10.1093/carcin/bgu076
https://doi.org/10.1093/carcin/bgu076
https://doi.org/10.1038/ng.2310
https://doi.org/10.1073/pnas.1119675109
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	IPRS: Leveraging Gene-Environment Interaction to Reconstruct Polygenic Risk Score
	Introduction
	Materials and Methods
	PRS Prediction Model
	IPRS Prediction Model
	Simulations
	Real Data Analysis With PLCO

	Results
	Simulations
	PLCO Application

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


