
Chaperone Requirements for Biosynthesis of the
Trypanosome Variant Surface Glycoprotein
Mark C. Field1*, Tatiana Sergeenko1, Ya-Nan Wang1,2, Susanne Böhm1, Mark Carrington3
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Abstract

Background: Trypanosoma brucei does not respond transcriptionally to several endoplasmic reticulum (ER) stress
conditions, including tunicamycin or dithiothreitol, indicating the absence of a conventional unfolded protein response.
This suggests divergent mechanisms for quality control (QC) of ER protein folding and export may be present in
trypanosomes. As the variant surface glycoprotein (VSG) represents ,90% of trypanosome plasma membrane protein, it is
possible that VSG has evolved to fold efficiently to minimize ER folding burden.

Methodology/Principal Findings: We demonstrate the presence of a QC system by pharmacological inhibition of the
trypanosome 26S proteasome. This indicates active proteasome-mediated VSG turnover as ,2.5 fold more VSG is recovered
from cell lysates following MG132 inhibition. An in silico scan of the trypanosome genome identified 28 open reading
frames likely to encode polypeptides participating in ER nascent chain maturation. By RNA interference we monitored the
importance of these gene products to proliferation, VSG abundance and cell morphology. 68% of the cohort were required
for normal proliferation, and depletion of most of these factors resulted in increased VSG abundance, suggesting
involvement in ERQC and degradation.

Conclusions/Significance: The retention of genes for, and the involvement of many gene products in, VSG folding indicates
a substantial complexity within the pathways required to perform this role. Counterintuitively, for a super-abundant antigen
VSG is apparently made in excess. The biosynthetic excess VSG appears to be turned over efficiently by the proteasome,
implying that considerable VSG is rejected by the trypanosome ERQC mechanism. Accordingly, the VSG polypeptide is not
well optimized for folding, as only ,30% attains the native state. Finally as much of the core ERQC system is functionally
conserved in trypanosomes, the pathway has an ancient evolutionary origin, and was present in the last common eukaryotic
ancestor.
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Introduction

In higher eukaryotic cells ,20% of proteins are targeted to the

endoplasmic reticulum (ER) to populate endomembrane com-

partments or for secretion [1,2]. This represents a considerable

burden to the ER in terms of overall molecular flux and in

providing a suitable environment for folding nascent chains and

assembling multi-subunit complexes. The ER lumen has a high

Ca2+ concentration and is oxidizing, reflected in the abundance of

Ca2+-dependent chaperones and protein disulphide isomerases

(PDIs) that assist polypeptide folding following translocation into

the ER via Sec61 [3]. Many examples of proteins failing to fold

efficiently are known, and several are associated with pathology.

Classic examples are CFTRDF504 and various a1-antitrypsin

variants [4,5]. Decreased folding competence of these allelic

variants reduces activity, resulting in cystic fibrosis or emphysema,

respectively. Further, accumulation of misfolded protein aggre-

gates may result in amyloid-related disease [6].

Cellular mechanisms for disposal of malfolded proteins and

response to rapid increases in non-native polypeptide abundance

within the ER are well defined in mammalian cells and

Saccharomyces cerevisiae [3,6,7]. Folding within the ER, mediated

by chaperones, PDIs and cycles of glucosylation/deglucosylation

leads to either successful completion and export or, retro-

translocation into the cytosol. The general features of early steps

of N-glycosylation and the glucosylation cycle are highly conserved

amongst higher eukaryotes (Figure 1). There are three ER-

associated degradation (ERAD) pathways; lumenal (L), membrane

(M) and cytosolic (C) [3,8]. Retrotranslocation is accompanied by

ubiquitylation and targeting to the cytoplasmic proteosome for

degradation. All three paths involve a complex consisting of Cdc48

(an AAA ATPase), Ufd1 and Npl4, for extraction of malfolded

proteins from the ER [3,9].

The ERAD-L pathway is the best characterized and includes

BiP, PDIs, calnexin/calreticulin and a group of mannose-binding

proteins (EDEMs) recognizing processed oligomannosidic N-
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glycans. Rejection of a malfolded polypeptide requires mannosi-

dase II action to produce a Man8GlcNAc2 oligosaccharide, which is

recognized by EDEM [10]. ERAD-L also requires Yos9, a

mannose-binding lectin that regulates retrotranslocation and

interacts with BiP and Hrd3. For ERAD-M, lumenal domains

are subjected to a similar quality control and folding pathway as

soluble proteins, while ERAD-C requires additional participation

of cytosolic Hsp70 and Hsp40 chaperones [3]. Increased levels of

unfolded proteins are sensed by IRE1, a trans-membrane ER kinase

[11]. After stimulation IRE1 is cleaved to produce a splicing factor

XBP1 and ultimately results in increased transcription of ERAD

and unfolded protein response (UPR) genes. A second ER

membrane kinase, PERK also mediates increased ERAD/UPR

gene transcription, while a third path is mediated by ATF6a. All

three factors are ordinarily bound by BiP; increased folding burden

is believed to result in BiP releasing IRE1, PERK and ATF6a [12].

Post-ER trafficking is mediated by inclusion of correctly folded

polypeptides into vesicles at the transitional ER (tER) [13]. At least

two distinct pathways are present as vesicle populations enriched

in glycosylphosphatidylinositol (GPI) or TMD cargo can be

isolated, suggesting selection via the membrane anchor [14–17].

Supporting a model for selective anteriograde transport based on

membrane association is the more profound importance to GPI-

anchored than TMD protein transport of Lag1p and CERT,

which participate in glycolipid synthesis [18,19].

Trypanosoma brucei, the African trypanosome, is highly divergent

from yeast and mammals, but the general features of the

trypanosome endomembrane system are conserved [20,21]. Little

is known concerning protein folding factors but it has been reported

that trypanosomes lacks a UPR [22,23]. Further, IRE1 and ATF6a
are absent from T. brucei and the PERK ortholog is located at the

flagellar pocket, suggesting divergent function [24]. The trypano-

some surface is dominated by the ,58kDa variant surface

glycoprotein (VSG), a predominantly a-helical, homodimeric

GPI-anchored antigen expressed at 16107 copies, roughly 90% of

cell surface protein [25]. VSG is highly stable with a T1/2 exceeding

72 hours, corresponding to over ten cell cycles [26]. VSG trafficking

to the surface is normally rapid [27,28] and disruption of secondary

structure leads to decreased surface expression [29,30]. N-

glycosylation is required for stable surface expression while

preventing GPI-anchor addition leads to ER retention [30]. These

features suggest that despite the absence of the UPR, trypanosomes

likely possess ERAD pathways, but the contributions of trypano-

some chaperones are undefined [20]. Significantly, ongoing VSG

biosynthesis is essential as suppression leads to growth arrest [31].

Trypanosomatids lack the Glc3Man9GlcNAc2 structure, but do

transfer a Glc1Man9GlcNAc2 oligosaccharide to nascent chains

[32]. Glc1Man9GlcNAc2 is capable of transient deglucosylation/

reglucosylation [20,33]. Interestingly, T. brucei encodes a calreticulin

orthologue, but not calnexin, suggesting simpler glucosylation

quality control (QC) is sufficient (Engster et al., 2007). It is unknown

if there is any selectivity in the generation of ER-derived transport

vesicles but a Lag1 ortholog, multiple copies of p23/24 and three

Rab proteins, Rab1A, Rab1B and Rab2, likely mediating ER to

Golgi transport are present [34].

The extreme level of VSG expression may suggest that

trypanosomes evolved for efficient biosynthesis of this particular

molecule or that VSG is intrinsically efficient at folding and

export. In support of this is the observation that additional surface

molecules adopt a VSG-related fold, including the serum

resistance-associated gene product (SRA), the transferrin receptor

(ESAG6/7) and two families of invariant surface glycoproteins,

Figure 1. ER-associated degradation pathways. A schematic view of ERAD is shown, emphasizing the pathways acting on lumenal (ERAD-L),
membrane (ERAD-M) and cytosolic (ERAD-C) portions of ER proteins. The ER membrane is shown as a gray rectangle into which are embedded a GPI-
anchored glycoprotein (left), a single pass trans-membrane glycoprotein (center) and a polytopic membrane glycoprotein (right). Trans-membrane
domains are represented as black lozenges, and Glc1Man9GlcNAc2 N-glycans by a tri-branched icon; red G = glucose. A lumenal glycoprotein is shown
at top. Cohorts of gene products involved in various stages of folding, quality control, extraction and proteasome delivery are shown in boxes. All
pathways require participation of Cdc28, while lumenal factors responsible for folding and quality control participate only in ERAD-L/M. Extraction
requires ubiquitylation, and is mediated by RING-containing E3 ubiquitin ligases, including Doa10 and the HRD complex. Diagram is based on Hirsch
et al., [3], with simplifications. The present study was restricted to ERAD-L factors, together with trypanosome Yos9. Critically, Yos9 interacts with both
lumenal components (Kar2) and cytoplasmic E3 ligases.
doi:10.1371/journal.pone.0008468.g001
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ISG65 and ISG75 [35,36]. In contrast to VSG, the ISGs are

anchored by a trans-membrane domain and have a T1/2 of 3–

6 hours [37–39]. Despite a copy number of ,16105, the shorter

ISG T1/2 suggests only a ten-fold difference between biosynthesis

of VSG and ISG.

Here we address three questions. Firstly, as VSG is expressed at

extreme levels, has the molecule evolved to fold efficiently?

Secondly, are there discrete chaperone requirements between

VSG and other surface molecules, specifically ISGs? Thirdly, how

similar are the pathways present in trypanosomes to higher

eukaryotes? We find a considerable chaperone requirement for

both VSG folding and cell viability and that VSG is synthesized in

considerable excess above levels required for the cell surface.

Materials and Methods

Ethics Statement
All cell lines for the present work were generated in house.

Genetic modification to, and containment of, trypanosomes was

authorized by the University of Cambridge Biological Safety and

Ethics review panel.

Bioinformatic Analysis and Open Reading Frame (ORF)
Selection

Trypanosoma brucei 927 genome sequence data were searched

at geneDB (http://www.genedb.org) [40]. The database was

screened for ER chaperones and factors involved in ER quality

control using; (i) an extensive list of query sequences corresponding

to proteins identified in higher eukaryotes, comprising known

chaperone and ER quality control families, (ii) a degenerate motif

to identify KDEL/HDEL-related tetrapeptides at the predicted C-

terminus of coding sequences, (iii) keywords to parse database

annotations, and (iv) predictions of ORFs containing signal

sequences and trans-membrane domains. BLAST searches were

performed using the protein scoring matrix BLOSUM45. Initial

returns were further filtered using: annotation information, reverse

BLAST against the original query genome predicted ORF size

being consistent with query, pfam prediction of conserved or

expected domain architecture (where available), synteny with

Leishmania major and T. cruzi, and phylogenetic reconstruction. This

identified 28 ORFs for inclusion. Phylogenetic analysis was

performed using Clustal X for initial alignment, manual editing

in MacClade and then Mr Bayes (V3.2) run locally for 106

generations using the mixed amino acid substitution model [41],

PhyML at http://www.atgc-montpellier.fr/phyml/ with LG

substitution model and 1000 bootstrap replicates [42] and

RAxML at http://phylobench.vital-it.ch/raxml-bb/index.php

with WAG substitution model and 1000 bootstrap replicates [43].

Culturing of Bloodstream form T. brucei
Trypanosoma brucei brucei 427 Lister strain were cultured in HMI-

9 complete medium (HMI-9 supplemented with 10% heat-

inactivated FBS, 100 mg/ml penicillin, 100 mg/ml streptomycin

and 2 mM L-glutamine) [22] at 37uC with 5% CO2 in a humid

atmosphere in non-adherent culture flasks with vented caps. Cells

were maintained at densities between 56104 and 26106 cells/ml.

The single marker tetracyclin-inducible line was used for RNAi

[44]. Plasmid constructs were maintained with G418 and/or

hygromycin B, both at 2.5 mg/ml [22].

Construction of RNA Interference Plasmids
Primers for amplification of RNAi targets were designed using

RNAit [45] (http://trypanofan.path.cam.ac.uk/software/RNAit.

html Table S1). Genomic DNA from Lister 427 cells was used as a

template. RNAi fragments were PCR amplified using Taq DNA

polymerase and cloned into the RNAi expression vector

p2T7TAblu and linearized with Eam1105I. All constructs were

verified by standard sequencing methods.

Transfection of Trypanosomes
36107 cells in log phase growth were harvested by centrifuga-

tion at 800 g for 10 minutes at room temperature and resuspended

in 100ml AMAXA Human T Cell Solution at 4uC (Amaxa Inc.).

10mg of NotI-linearized p2T7 plasmid (in 5ml of water) was added

to an AMAXA cuvette and immediately followed by 100ml cells.

Transfection was performed in an AMAXA Nucleofector II and

cells immediately transferred into a sterile flask prepared with

30ml pre-warmed HMI-9 (37uC) containing G418 at 2.5mg/ml.

Hygromycin was applied to cultures six hours after transfection.

Culture aliquots were distributed to three 24-well plates (undilut-

ed, diluted 10-fold and 100-fold) and then incubated at 37uC, 5%

CO2. Antibiotic-resistant transformants grew to saturation typi-

cally within 5–6 days. Cultures were expanded in flasks and

continuously subcultured in the presence of antibiotics and

analyses performed as soon as possible following. Cells were

maintained in culture for a maximum of two months, and growth

assays used to monitor continued RNAi sensitivity.

Assessment of RNAi Impact on Proliferation
Following transfection and selection cells were counted using a

Z2 Coulter Counter and adjusted to 56104 cells/ml in 20ml of

HMI9. This 20ml culture was the divided into two 10ml cultures.

One was induced with 1mg/ml tetracycline. The cultures were

then counted at the same time each day and subcultured back to

56104 cells/ml (tetracycline was added fresh daily). Cultures

where cell numbers fell below 56104 cells/ml were not

subcultured on that day.

RNA Extraction
16108 log phase cells were harvested at 3500 g for 10 minutes

at 4uC and washed with ice-cold PBS and quick frozen in dry ice

for one minute. In cases where severe proliferative defects were

manifest, cells were harvested at the point where the proliferation

defect was beginning to become significant. RNA was purified

using the Qiagen RNeasy kit following the manufacturer’s

instructions. RNA quantity and purity was measured using a

NanoDrop ND-1000 spectrophotometer and software (Thermo-

Fisher).

Quantitative Real-Time Polymerase Chain Reaction
2mg total RNA was diluted to 10ml with diethylpyrocarbonate

(DEPC)-treated water and denatured at 70uC for 5 minutes. 15ml

of a reaction cocktail was added (2.5ml dNTPs (25mM stock), 5ml

56 reverse transcription buffer (Invitrogen), 2ml of 100mM DTT,

0.5ml RNAseOUT (recombinant ribonuclease inhibitor, 40U/ml,

Invitrogen), 2ml oligo dT (T30VN, 10mM stock), 0.5ml Superscript

II Reverse Transcriptase (200U/ml Invitrogen), and 2.5ml DEPC-

treated water) and incubated at 37uC for 1 hour, heat-inactivated

at 90uC for 5 minutes and finally diluted to 200ml with DEPC-

treated water. For qRT-PCR, 5ml of cDNA was used in a 25ml

reaction including IQ-SYBR Green Supermix (BioRad) with

0.4mM gene-specific forward and reverse primers. qRT-PCR

reactions were performed in white thin-wall polypropylene

multiplate 96-well unskirted PCR plates (BioRad) sealed with

microseal ‘B’ adhesive (BioRad). Reactions were performed in a

BioRad MiniOpticon real time PCR detection system and

included an initial denaturation at 95uC for 3 minutes, 40 cycles

Biosynthesis and QC of VSG
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of 95uC for 30 seconds, 58uC for 30 seconds and then 72uC for

6 minutes (with a signal read at the end of each cycle), and a final

melting curve to check fidelity from 60 to 95uC, with a signal read

every 1uC. Gene-specific 20 base pair primers for each gene were

designed using Primer3 (http://primer3.sourceforge.net) specified

to amplify a ,120 bp fragment (+/210 bp) in the last kilobase of

the 39 end of the open reading frame and to avoid the region

targeted by RNAi (Table S2). Primer pairs were validated in silico

using Amplify V3.1.4 (http://engels.genetics.wisc.edu/amplify/)

to minimize the probability of mispriming or formation of primer

dimers and/or secondary structure.

Western Blot Analysis
Cells were harvested at 800 g for 10 minutes and washed twice

in ice-cold 16PBS (Sigma). 16107 cells were heated in 100ml of

66SDS boiling sample buffer [10% (w/v) glycerol, 100mM DTT,

3% (w/v) SDS, 0.01% (w/v) bromophenol blue and 50mM Tris–

HCl (pH 6.8)] for 10 minutes at 95uC. 16106 cells per lane were

loaded and resolved by SDS–PAGE on 12.5% SDS–polyacryl-

amide 10cm gels. Proteins were electrophoretically transferred

onto nitrocellulose membranes (GE Healthcare) at 11V overnight

in 190mM glycine, 25mM Tris-base, 20% (v/v) methanol using a

wet transfer tank (Hoefer Instruments). Non-specific binding was

blocked with Tris-buffered saline with Tween-20 (TBST) (137mM

NaCl, 2.7mM KCl, 25mM Tris base pH 7.4, 0.2% Tween 20)

supplemented with 5% freeze-dried milk for 2 hours at room

temperature. Polyclonal rabbit anti-TbBiP serum (a kind gift of J.

D. Bangs), polyclonal rabbit anti-VSG221 serum, polyclonal

rabbit anti-ISG65 serum, polyclonal rabbit anti-ISG75 serum

were used at 1:10 000, 1:5 000, 1:5 000 and 1:5 000, respectively.

Incubations with commercial secondary anti-IgG rabbit horserad-

ish peroxidase conjugates (Sigma) were performed at 10 000-fold

dilution in TBST milk. Detection was by chemiluminescence with

luminol (Sigma) on BioMaxMR film (Kodak).

Densitometry
All fluorographs were scanned at 16-bit gray scale, and

exposures selected to ensure that film was unsaturated. In most

cases, the exposures in the figures represent overexposed versions

of the same data used in quantification. Quantification and

background subtraction were done with ImageJ (http://rsbweb.

nih.gov/ij/).

Indirect Immunofluorescence
36107 cells were harvested at 800 g at 4uC for 10 minutes and

washed with ice-cold Voorheis’s-modified phosphate-buffered

saline (vPBS; PBS supplemented with 10mM glucose and 46mM

sucrose, pH 7.6). The supernatant was aspirated, 250ml of 6%

parmformaldehyde (in vPBS) and 200ml vPBS were added (,3%

final). Cells were fixed on ice for 10 minutes and applied onto

poly-L-lysine coated glass slides (Sigma), previously sectioned with

an ImmEdge Pen (Vector Laboratories, Inc.), for 30 minutes. For

permeabilization, cells were incubated with 0.1% Triton-X-100 in

PBS for 10 minutes at room temperature and washed three times

for 5 minutes with PBS. Samples were blocked in 20% (v/v) FBS

in PBS at 4uC overnight. Fixed cells were incubated with primary

antibodies for 1 hour at ambient temperature, followed by three

washes of 5 minutes each in PBS. Polyclonal rabbit anti-BiP serum

and polyclonal rabbit anti-VSG221 serum were used at 1:1000.

Secondary antibodies were then applied for 1 hour at ambient

temperature and washed as above (anti-mouse Oregon Green

(Molecular Probes) at 1:1000 and anti-rabbit Cy3 (Sigma) at

1:1000). Samples were air dried, and coverslips were mounted

using Vectashield mounting medium supplemented with 49,69-

diamidino-2-phenylindole (DAPI) (Vector Laboratories, Inc.).

Coverslips were sealed with nail varnish (Max Factor Inc.).

Specimens were examined on a Nikon Eclipse E600 epifluores-

cence microscope fitted with optically matched filter blocks and a

Hamamatsu ORCA charge-coupled device camera. Digital

images were captured using Metamorph software (Universal

Imaging Corp.) on a Dell computer running Windows XP

(Microsoft Inc.), and the raw images processed using Adobe

Photoshop CS4 (Adobe Systems Inc.) on a Macintosh computer

(Apple).

Proteosome Inhibitor Treatment
Lister 427 SMB cells were counted and adjusted to 36105 cells/

ml in 450ml of HMI9. The 450ml culture was split into three

150ml cultures. One of the cultures was treated with 10mg/ml

MG-132 (Calbiochem), the second culture with 20mg/ml MG-132,

and the third a control. 16107 cells were collected from each

culture after 0, 2, and 4 hour of incubation. Immediately after

collection cells were harvested at 800 g for 10 minutes and washed

in ice-cold PBS. Cell pellets were boiled in 100ml of a sample buffer

and 106 cell-equivalents per lane were used for Western blot

analysis.

Results

Evidence for an Exocytic Quality Control System in
Trypanosomes

VSG is a super-abundant antigen trafficked to the cell surface in

an efficient manner, with kinetics suggesting a minimal period in

the ER [27,46]. We previously suggested the absence of a

trypanosome unfolded protein response (UPR) on account of

transcriptional inflexibility and the requirement for transcription

factor splicing in activating the higher eukaryote pathway [22,47].

However, either defective protein folding or N-glycosylation does

lead to altered VSG trafficking and failure to reach the cell surface

[29,30] and the C-terminal GPI-signal peptide functions as an ER-

retention signal [48,49]. As ERQC is normally associated with

proteasome-mediated turnover, we sought evidence of such a

pathway in trypanosomes.

MG-132 is a proteasomal inhibitor effective against trypano-

somes [50]. Unsurprisingly, cell viability was compromised

following prolonged exposure and analysis was restricted to a

maximum of four hours at which point where cells retained

apparently normal morphology and motility (Figure 2 and data

not shown). Western analysis detected increased levels of VSG

after four hours in lysates from cells treated with 10mg/ml MG-132

(data not shown), while the effect was substantially more

pronounced with 20mg/ml MG-132, where VSG levels were

clearly increased after only two hours and with greater

accumulation at four hours (Figure 2). We also analyzed the cell

lysates for the invariant surface glycoproteins ISG65 and ISG75,

and observed increased levels of both after four hours MG-132

exposure. Blotting with antibody to TbBiP revealed that

expression of the ER marker was not significantly altered. These

data indicate a significant accumulation of both GPI-anchored

and trans-membrane domain proteins following proteasome

inhibition. We addressed this further by analysis VSG location

in MG-132 treated cells and found a substantial accumulation of

VSG in perinuclear sites between the nucleus and kinetoplast,

juxtaposed to the region of the cell containing the Golgi complex.

These structures resembled an aggresome, an aggregate of

polypeptides retrotranslocated from the ER that accumulate when

proteasome activity is inhibited in mammalian cells [51].

Biosynthesis and QC of VSG
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Together this evidence suggests firstly an MG-132-sensitive

turnover pathway for VSG and ISG, i.e. the proteasome, and

secondly, that inhibition leads to accumulation of intracellular

material, associated with the exocytic pathway and/or cytoplasmic

aggresomes. Therefore both high abundance GPI-anchored and

trans-membrane domain proteins are apparently synthesized to

excess and at steady state the excess is degraded via the

proteasome. These observations suggest a retrotranslocation QC

mechanism, similar to higher eukaryotes, is present in trypano-

somes [52].

In Silico Identification of ERAD/ERQC Components in
Trypanosomes

With experimental evidence for ERAD in T. brucei we sought to

identify specific genes potentially involved in VSG biosynthesis

and ERQC by searching the genome for orthologs and paralogs of

genes that participate in protein folding in higher eukaryotes. We

focused on chaperones of the HSP70/DNAj classes, proteins

involved in glucosylation and recognition of N-glycans on nascent

ER polypeptides and selected molecules of the protein disulphide

isomerase (PDI) system (Table 1). We included Sec61, a

component of the ER translocon, as a positive control, and two

proteins, Lag1 and CERT, implicated in specific transport of lipids

and/or GPI-anchored proteins. For reasons of practicality the

target list excludes several PDI/thioredoxin-related and other

factors previously analyzed in other contexts [53,54].

The DNAj family of chaperones are important factors in folding

of nascent polypeptides. At least five mammalian ER lumenal

forms are known (ERdj1-5) plus the mammalian ortholog of

Sec63p, a component of the Sec61 translocon [55]. The

trypanosome genome contains over 50 ORFs encoding potential

DNAj-domain proteins, too many for the planned systematic

analysis. Therefore, we parsed the DNAj ORFs for N-terminal

signal sequences or signal anchors, feature of ERdj proteins from

mammals and S. cerevisiae, reducing the number of candidates to

fifteen. None contained a clear C-terminal [K/H]DEL-motif. We

then performed BLAST with all ERdj family sequences from

mammals and S. cerevisiae. H. sapiens ERdj1 did not return

significant hits, while H. sapiens ERdj2, 3, 4 and 5 and S. cerevisiae

Scj1 did recover sequences containing N-terminal signal sequenc-

es. We analyzed these DNAj candidates by phylogenetic

reconstruction and reverse BLAST against H. sapiens and S.

cerevisiae. Reverse BLAST confirmed assignment as DNAj-family

ORFs, but due to the size and diversity of the DNAj families,

orthologous relationships could not be unequivocally assigned as

cytoplasmic, mitochondrial and ER members of the Hsp/DNAj

family were returned. Phylogenetic reconstruction required

removal of Tb09.211.1550 and ScJem1 due to extreme diver-

gence. The final tree confirmed the weak relationships, with low to

moderate support for a relationship for Tb09.211.3680 and

Tb10.70.5440 to H. sapiens ERdj3 (Figure S1). Data from others

supports assignment of Tb09.211.1550 as T. brucei Sec63 and was

not investigated further [54]. These data suggest lineage-specific

events within evolution of the trypanosome DNAj family,

precluding unequivocal establishment of orthologs. However,

based on these data and the confident prediction of ER targeting

using PSORT II (http://psort.ims.u-tokyo.ac.jp/cgi-bin/runpsort.

pl), we restricted analysis of DNAj proteins to Tb09.211.3680,

Tb10.70.5440, Tb927.3.1430 and Tb11.01.8480 (Table 1).

Five gene products are annotated as HSP70, or HSP70-related

and also possessing a signal sequence in the trypanosome genome.

Two ORFs encode TbBiP (Tb11.02.5450/5500) and the remain-

ing are experimentally uncharacterized; Tb09.160.3090,

Tb09.211.1390 and Tb11.01.3110 (Figure S2). In later genome

assemblies/datasets, Tb11.01.3110 became annotated as lacking a

signal sequence, confirmed with PSORT II. This region of the

genome appears unstable as evidenced by loss of syntenic

relationships between trypanosomes, abnormally sized intergenic

regions and the presence of a short gene fragment (Tb11.01.3100)

in assembly version 4 bearing no relationship to Hsp70, in contrast

to earlier annotation.

Figure 2. Proteasomal involvement in VSG turnover. Panel A:
Western blot of cell lysates from trypanosomes exposed to 20mM MG-
132 for the indicated times and probed for VSG221, ISG65 and ISG75,
using polyclonal antibodies. ‘‘Con’’ indicates lysates from untreated
cells, while MG132 lanes correspond to hours exposure to the
compound. Lysates represent 16106 cell equivalents. Similar results
were obtained with 10mM MG132, except that accumulation was less
pronounced. The experiment was repeated three times with highly
similar results. Equivalence of loading was monitored by reprobing of
membranes with antibody to TbBiP. Panel B: Immunofluorescence
analysis of trypanosomes either untreated (Con) or exposed to 20 mM
MG123 for 1 and 4 hours. Following culturing cells were fixed,
permeabilized and stained for VSG221 (red) and DNA (DAPI, blue).
Note accumulation of VSG within the cell in the MG132-treated
examples, which likely corresponds to aggresomes.
doi:10.1371/journal.pone.0008468.g002
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Searches for the ERQC/glucosylation system were straightfor-

ward as these gene products are not, in the main, part of extensive

paralogous families. We could confidently identify orthologs for

most queries except calnexin and ER glucosidase I. The latter

confirmed previous studies [56], and detection of glucosyltrans-

ferase I also confirmed an earlier analysis [33]. Interestingly,

despite the absence of a Glc3Man9 precursor glycan from

trypanosomatid nascent polypeptides [32], an ERQC system

based on monitoring of protein-folding via transient reglucosyla-

tion cycles can be reconstructed in silico. Further, this system

includes the PDI-related factors ERp52 and ERp72, which

interact with calnexin/calreticulin; this system, together with the

Ero1/ERp44 complex is fully represented (Table 1). Additionally,

a cluster of ER degradation-associated mannosidase-related

(EDEM) genes were found; Tb927.8.2910, Tb927.8.2920 and

Tb927.8.2930 are extremely similar to each other, while one

ORF, Tb927.8.2940, is truncated at the C-terminus, suggesting

multiple EDEM proteins (Figure S4). We designated these EDEM

orthologues as class I and II respectively, but due to high similarity

it was not possible to target them individually. Further, the EDEM

cluster contains a potential pseudogene and is possibly misassem-

bled. Two RNAi constructs were used to target this ORF cluster,

Table 1. ER chaperones and ER quality control gene products in Trypanosoma brucei.

Accession (geneDB) Annotation Functional assignment T. brucei status1

HSP and DNAj

11.02.5450/55002 BiP Major ER chaperone Orthologue

09.160.30903 Hsp70 Chaperone Paralogue (SS, degenerate HDEL)

09.211.1390 Hsp70 Chaperone Paralogue

11.01.31104 Hsp70 Chaperone Paralogue

927.3.3580 Endoplasmin/GRP94/LPG3 Secretory pathway chaperone Orthologue (SS, degenerate HDEL)

927.3.1430 DNAj Chaperone SS, DNAj domain

11.01.8480 DNAj Chaperone SS, DNAj domain

09.211.3680 DNAj Chaperone SS, DNAj domain

10.70.5440 DNAj Chaperone SS, DNAj domain

09.211.1550 Sec63 Part of DNAj family Divergent orthologue [54]

Glucosylation and lectins

Calnexin Quality control Not found

927.4.5010/927.8.74102 Calreticulin Quality control Orthologue

ER glucosidase I Quality control Not found

10.05.0080 ER glucosidase II Quality control Orthologue

927.8.2910/2920/2930/29405 EDEM Quality control Orthologue

927.3.4630 Glycoprotein glucosyltransferase I Quality control Orthologue

11.01.2470 Yos9 Quality control Orthologue

11.02.1680 ERGIC53 Selective quality control Orthologue

10.20.0130 Vip36 ERGIC53 paralogue Orthologue

Protein disulfide isomerase system

927.7.1300 ERp72-like Cofactor with calnexin, PDI activity Orthologue

10.6k15.2290 ERp57-like Cofactor with calnexin, PDI activity Orthologue

927.8.4890 Ero1 Oxidizes PDI Orthologue

927.7.5790 ERp44-like Complexes with Ero1, oxidoreductase Orthologue

GPI/lipid transport class

927.4.4740 Lag1/Dgt1 ER to Golgi transport of GPI proteins Orthologue

CERT ER to Golgi transport of ceramides Not found

Translocon (control)

11.02.4100 Sec61 Part of ER translocation channel Orthologue

Gene products were identified by searching the trypanosome genome database as described in methods.
1Indicates presence of orthologue that fulfils criteria of reverse blast to higher eukaryote sequence, correct domain and sequence feature retention, or not found, i.e.
fails criteria. Note that not found does not necessarily mean that a gene product with similar function to the higher eukaryote query sequence is not present.
Paralogues indicates multiple distinct genes found, and based on sequence alone orthology cannot be unambiguously established.

2BiP: Tb11.02.5450 and Tb11.02.5500 ORF sequences are identical. Calreticulin: Tb927.4.5010 (chromosome 4) and Tb927.8.7410 (chromosome 8) ORF sequences are
identical.

3Hsp70 (Tb11.01.3110) - no signal peptide; C-terminal ER retention motif is very degenerate (SSSL).
4Hsp70 (Tb09.160.3090) - C-terminal ER retention motif is very degenerate (LKDLK LGE).
5EDEM: cluster of four genes: Tb927.8.2910, 2920 and 2930 are near identical, while Tb927.8.2940 is C-terminally truncated, suggesting two EDEM paralogues;
designated class I and II respectively. Two RNAi constructs were designed, EDEM A and B, which will target both isotypes due to high DNA sequence conservation over
much of the ORF.

doi:10.1371/journal.pone.0008468.t001
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EDEM A and B. Finally, we identified an orthologue for Lag1

(927.4.470), but not for CERT.

Few of the selected gene cohort exhibit differential expression

between bloodstream and procyclic forms [22]. Calreticulin (Tb

927.4.5010) is moderately upregulated in cultured bloodstream

forms compared to trypanosomes grown in rodents, while ERp57

(Tb10.6k15.2290) is downregulated by tunicamycin treatment.

Tb927.7.5790 (ERp44) is increased in the bloodstream form when

compared with insect stages. However, none of these changes is

easily explained as a response to altered environment or stress in

the absence of a coordinated transcriptional shift and there is little

evidence for major transcriptional remodeling of ER chaperones

during development. Overall, in silico analysis indicates a complex,

conserved representation of ER folding and QC gene products

and that dominance of the exocytic pathway by VSG and VSG-

related proteins, i.e. ISGs, has not resulted in major secondary

losses. The absence of calnexin is the major secondary loss of note,

but as the knockout in S. cerevisiae is viable [57] and as there is

considerable redundancy between calnexin and calreticulin, the

functional significance is unclear.

Screening Trypanosome ER Protein Folding
We selected a total of 28 ORFs for analysis (Table 1),

encompassed by 24 distinct RNAi constructs due to identical

sequence present in BiP, calreticulin and EDEM paralogs. We

initially screened for proliferative defects as prevention of VSG

biosynthesis results in growth arrest [31], and folding pathways are

likely central to cell viability (Figure 3). All experiments were

conducted using the Lister 427 328.114 (single marker blood-

stream form (SMB)) cells [44] and proliferation monitored over

four days. We applied criteria that a proliferation defect must

manifest at least a 20% decreased cell number on two consecutive

days. Surprisingly 68% of the RNAi lines exhibited met the

criteria (Tables 2 and 3), higher that the 35% found by an earlier

systematic screen [58]. Several RNAi lines displaying strong

proliferative defects also replicated less well in the uninduced state

(Figure 3), probably from incomplete repression of the RNAi

construct. The high proportion of ORFs required to support

normal morphology and replication was seen across the three

categories of chaperone (Table 2), and suggests a surprising

absence of redundancy within the cohort. Several DNAj and HSP

proteins are clearly nonredundant as individual knockdowns

compromised morphology, VSG biosynthesis and proliferation,

but was specific as only the ERdj genes most similarity to Homo

sapiens ERdj3 generated the VSG phenotype (Figure S1). The

remaining DNAj ORFs in that cohort are divergent and probably

either redundant or play distinct roles.

We validated ,15% of the RNAi knockdowns by quantitative

RT-PCR using b-tubulin as internal control (Figure 4). All ORFs

demonstrated significant loss of mRNA, between ,60%–80%

decrease, indicating specificity and efficiency. As the validated

RNAi lines also exhibited proliferative defects, it remains possible

that some of the ORFs with normal proliferation are the result of

failure to sufficiently impact mRNA levels. However, given the

high frequency of proliferative defects we chose not to investigate

these further, but rather continue analysis of the positive cohort.

Additionally, both constructs targeting the EDEM cluster

generated very similar phenotypes, providing additional validation

(Table 3, Figures 3 and 5).

Effects of Suppression on VSG and ISG Expression
To directly address effects of RNAi on protein fate, we

performed Western blotting of whole cell lysates prepared from

cells induced for RNAi. We probed for BiP (loading control),

VSG, ISG65 and ISG75 and observed increased VSG immuno-

reactivity in twelve of sixteen lysates, with the effect distributed

across several classes of gene product (Figure 5). These data

suggest that VSG accumulates in these cells. The increase was

validated by normalization against total protein as determined by

Coomassie blue staining of Tb10.70.5440 RNAi cell lysates

(Figure 6). Significantly we found that levels of TbBiP protein

were decreased in the BiP RNAi line (Tb11.02.5450/5550),

confirming knockdown. However, there was no corresponding

increase to detectable VSG in these cells, probably due to the

rapid onset of lethality.

A pronounced effect was observed for only one (Tb09.160.3090)

of three ER-targeted Hsp70 genes, indicating differential effects on

VSG. RNAi against a cytosolic Hsp70, Tb11.01.3110, as expected,

did not alter VSG levels, despite significant and wide-ranging

phenotypic affects (Table 3). In a subset we observed increased

ISG65, specifically Hsp70 (Tb09.160.3090) and two DNAj proteins

(Tb09.211.3680 and Tb10.70.5440). There was a modest increase

in ISG65 in three further RNAi lines, calreticulin (Tb927.4.5010),

ERp57 (Tb10.6k15.2290), and Sec61 (Tb11.02.4100). Finally, the

effects on ISG75 were very minor. These data indicate that not all

factors affecting VSG levels also manifest as accumulation of ISG

polypeptides, suggesting either differential chaperone/QC require-

ments or failure to detect ISG defects due to differential turnover

rates [39]. Further, while there is correlation between defective

proliferation and VSG accumulation, albeit with some exceptions

(e.g. BiP), this does not hold for ISGs. ISG65 expression is

nonessential for in vitro culture (MC, unpublished data), whereas

VSG expression is required for continued viability. Taken together

these observations suggest that VSG biosynthesis has a greater

requirement for ER factors, which could be anticipated for the

major biosynthetic trypanosome ER protein product. Overall these

data identify increased VSG protein level as a common phenotype

following suppression of factors involved in ER-based folding or

QC. Importantly this indicates that VSG is made in significant

excess, fully consistent with the observations from proteasome

inhibition.

Effect of Suppression on Cell Morphology
To monitor intracellular accumulation of VSG and ER

morphology abnormalities, cells were analyzed on day one and

two post induction and stained for VSG and BiP (Figures 7 and

S3). For all Hsp and DNAj factors we observed morphological

abnormalities. Cells were malformed and in some cases puncta

containing BiP together with swollen ER were found. Of the HSP

genes analyzed, Tb09.211.1390 and Tb09.160.3090 were pre-

dicted to be localized to the ER lumen (Figure S2). Knockdown

led to severe proliferative and morphological defects, but

interestingly only Tb09.160.3090 led to distortion of the ER and

accumulation of VSG and ISG. Further, the third HSP70 RNAi

analyzed, Tb11.01.3110, predicted as cytoplasmic and included as

a negative control, also produced proliferative and morphological

defects. Significantly while no effect on VSG levels were observed

there was a very pronounced ER morphological defect, suggesting

potential roles for cytoplasmic chaperones on the trypanosome

ER. For the DNAj cohort, we examined four gene products, two

of which are related to ERdj3, a defined ER chaperone (Figure

S1). RNAi against both of these genes, Tb09.211.3680 and

Tb10.70.5440, generated clear VSG and ISG accumulation,

suggesting non-redundant functions. The remaining genes,

Tb927.3.1430 and Tb11.01.8480, produced no detectable phe-

notype; this may be due to redundancy, the absence of a

significant function in the bloodstream form, a nonessential role or

failure to suppress the gene products sufficiently. These data
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suggest gross defects leading to mislocalization of the major

chaperone together with additional effects manifest throughout the

cell. There was also evidence for accumulation of VSG in several

lines, consistent with failure to complete folding/QC processes.

The presence of multinucleated cells in some knockdowns is also

consistent with the requirement for ongoing biosynthesis and

Figure 3. Influence of RNAi on trypanosome replication. Cells transformed with the p2T7 RNAi plasmid harboring an insert corresponding to
the indicated gene, were analyzed for the effects of RNAi on replication. Cell numbers were determined daily, and cultures diluted as necessary (see
methods). Panel A; HSP class, Panel B; Lectin/glycosidase class, and Panel C; others. Blue lines are data from uninduced cultures and red lines from
induced. A single data set is shown, which is representative of three or more independent analyses on separate clones. Data for Tb927.4.4740 (Lag1)
are not shown. Tb11.02.4100 (Sec61) and Tb11.02.5450 (BiP) are included as positive controls. RNAi clones scored as having normal growth are on a
gray background. Note that in some instances the uninduced cultures appear to grow at slower rate when compared to untransfected (not shown) or
cells harboring an RNAi construct with no apparent replication impact.
doi:10.1371/journal.pone.0008468.g003
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exocytosis of membrane components, including VSG, for

completion of cytokinesis and the cell cycle. However, mitosis

appeared to be comparatively unaffected as DNA replication and

nuclear segregation were essentially normal.

The calreticulin/glucosylation system demonstrated particular

sensitivity to RNAi, and all genes, including the associated factors

ERp57 and ERp44 produced detectable VSG accumulation. We

also observed multinucleated cells, BiP and VSG aggregates or

puncta in calreticulin and glucosyltransferase system knockdowns.

The overall defects were rather similar to the Hsp/DNAj system,

suggesting that this is a phenotype associated with disruption of

ER protein folding. Again, defects in cytokinesis were found,

without an obvious block to S-phase or mitosis. For PDI-associated

gene products we also found a similar phenotype, with the

exception of no obvious morphological defect for ERp72

(Tb927.7.1300). Both ERGIC-53 and VIP36 are oligomannose-

recognizing L-type lectins, and knockdown suggests a role for

VIP36 in VSG biosynthesis, but not ERGIC-53 [59,60]. The

involvement of ERGIC-53 in protein folding is limited in higher

eukaryotes and despite a role in maintaining the structure of the

Golgi complex, most anteriorgrade transport is ERGIC-53

independent [61]. Hence absence of an obvious requirement by

VSG is not unprecedented.

Finally, the Sec61 RNAi phenotype was very severe, with

extremely disrupted cells consistent with Sec61 as a major

component of the ER translocon. Knockdown likely disrupts co-

and post-translational translocation plus retrotranslocation of

ERAD substrates. Remarkably some increase in VSG level was

detected even here (Figure 5). Disruption of ER protein folding

appears to result in a similar phenotype for many factors, including

swollen ER, BiP and/or VSG-positive puncta, but with little

evidence of mitotic defects. While these data indicate a common

morphological end point, and do not allow discrimination between

the different ER pathways, they validate the growth data and

further confirm the need for multiple gene products for VSG

folding.

Discussion

The trypanosome surface is unusual as ,90% of cell surface

protein is GPI-anchored VSG. We wished to determine if the

bloodstream form trypanosome exocytic pathway has become

specialized for specific production of VSG and to consider if VSG

is in some manner adapted for efficient folding, to reduce burden

on the trypanosome ER. Given that there is currently little known

concerning ERQC in trypanosomes, initially we sought evidence

for the presence of proteasome-dependent ER-associated degra-

dation. Inhibition of the proteasome increased VSG levels and

resulted in production of intracellular puncta or aggresomes,

indicating the likely presence of a conventional ERAD pathway

[3,6]. As VSG is GPI-anchored we mainly analyzed gene products

associated with the ERAD-L pathway, but included several

general factors, e.g. Yos9, important for recognition of malfolded

proteins, and proteins involved in selective post-ER transport,

specifically VIP36, ERGIC-53 and Las1. Finally, we used TbBiP

and TbSec61 as positive controls. TbBiP and TbSec61 knock-

down led to rapid and major cellular defects, consistent with

central roles in folding and translocation pathways. While more

detailed dissection of the roles of individual gene products is clearly

a necessity for precise and mechanistic conclusions, several

significant findings emerge from this analysis.

Firstly, there is a considerable burden on the trypanosome ER

for folding and export of VSG. Hence, a paradigm whereby VSG

evolved to fold efficiently appears unlikely, based on the

requirement for both a large cohort of chaperones and evidence

of quality control monitoring. The presence of an ERQC system is

strongly supported by detection of excess VSG synthesis. VSG

accumulation was observed both in multiple knockdowns and

following inhibition of the proteasome. As VSG probably evolved

comparatively recently from non-variable surface antigens,

structural constraints from that earlier role may remain. We

estimate that VSG is synthesized in 2–3 fold excess by Western

analysis. As VSG represents ,10% of cell protein, this excess is of

the order of 20–30% of protein synthetic output of the cell,

assuming no other polypeptides are made to considerable excess.

This requirement places a significant, and previously unappreci-

ated, energetic cost to the parasite. Therefore, VSG is not

streamlined for rapid, chaperone-independent folding. By com-

parison, the CFTR channel is considered very inefficient, with

10% attaining the cell surface, but the data here suggests

remarkably that VSG is only three-fold better.

Secondly, a consensual phenotype emerged when ER function

was perturbed. Morphological defects encompassing both the ER

and cell body, defective cytokinesis and nuclear segregation and

internal accumulation of VSG were frequent. This suggests that

chaperone suppression lead to a slower rate of exit of VSG from

the ER and accumulation of folding intermediates or terminally

misfolded VSG. Further, onset of proliferative defects was rapid

and likely occurring within one or two cell cycles as in many lines

not even a doubling of cell numbers after 24 hours was achieved.

Therefore there is a critical requirement for ongoing synthesis of

many ER chaperones. Significantly the phenotype we obtained

with the chaperone knockdowns is highly similar to that for GPI8,

the trans-amidase responsible for addition of the GPI-anchor to

VSG and other polypeptides [62], which suggests that this is the

Table 2. Summary of phenotypic effects obtained by RNAi of Trypanosoma brucei ER chaperone candidates.

Function Number1 Proliferation2 Morphology2 ER2 Increase in VSG abundance2

Chaperone/HSP 8 63 63 63 38

Calreticulin/redox 11 80 80 80 72

Post-ER lectins 2 50 50 50 50

GPI/sphingolipid 1 0 0 0 0

Total 22 68 68 68 55

Each ORF was subjected to suppression using RNA interference, and the effect on proliferation, cell morphology, ER morphology (ER) and the presence of increased VSG
abundance monitored as described in methods and the text. ORFs are grouped in functional classes, using the same categories as in Table 1.
1Total number of distinct ORFs analysed; number collapsed to one for multiple copies targeted by same construct.
2Data for phenotype are expressed as percent of total number of ORFs tested.
doi:10.1371/journal.pone.0008468.t002
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generic defect obtained when ER function in T. brucei is

significantly compromised.

Thirdly, ISG accumulation was not found in all cases where

VSG accumulated, and usually ISG was less profoundly affected

than VSG. This may be due to the lower biosynthetic levels of

ISGs and/or differential chaperone requirements. Significantly,

ISG accumulation was never observed in the absence of VSG

accumulation. However, the initial screen used proliferation as an

assay, and ISG65 expression is not required for normal

proliferation in culture (MC, unpublished data). More detailed

study is clearly needed to document specific chaperone require-

ments.

Fourthly, the phenotype arising from suppressing ER factors is

distinct from direct VSG knockdown [31]. RNAi directed against

VSG results in discrete cell cycle arrest post-mitosis and around

the time when cytokinesis initiates. To our knowledge this remains

the sole example of such a discrete cell division phenotype in T.

brucei. Why are these two RNAi phenotypes so distinct? A possible

Figure 4. Validation of selected RNAi knockdowns using qRT-PCR.
RNA was extracted from cultures at 24 hours following induction, and the level
of mRNA corresponding to the knockdown target compared to uninduced
controls. Data were normalized against tubulin mRNA. See methods for
experimental details. ORFs are designated by their geneDB accessions.
doi:10.1371/journal.pone.0008468.g004

Figure 5. Expression of major antigens in trypanosomes following RNAi. Western blot analysis of whole cell lysates of cells induced for RNAi
against various ORFs. Typically RNAi was performed for 24–48 hours and cells lysed in Laemmli sample buffer prior to fractionation and transfer to
membrane. Antigens were detected as described in methods and quantitated by densitometry. Data are representative of at least two separate
inductions. Lane images have been manipulated for presentation purposes; all lanes for each RNAi were derived from the same membrane.
doi:10.1371/journal.pone.0008468.g005
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explanation is that the RNAi knockdowns described here affect

more than just VSG itself and hence could result in failure to

produce additional factors required for cell cycle arrest in the

absence of sufficient VSG.

Fifthly, we never observed significant changes to the levels of

TbBiP, except when TbBiP itself was targeted. This is further

evidence against a conventional unfolded protein response in

trypanosomes [22]. Despite the absence of an UPR, both in silico

and functional data indicate a complex ERQC system in

trypanosomes, requiring participation of many higher eukaryote

orthologs. This analysis extends an earlier comparative genomics

study which identified ERQC genes in a range of taxa, suggested

an ancient origin for these systems and hinted that trypanosomes

likely possess an ERQC pathway [56]. Significant divergence in

these pathways is apparent between taxa however. For example, in

Arabidpsis thaliana there is both an ERQC system and conservation

of transcriptional pathways mediating the UPR [63–66]. By

contrast multiple ERAD components are apparently targeted to a

non-ER compartment, the apicoplast, in Plasmodium falciparum

[67]. Divergence in the early N-glycosylation pathway in

trypanosomes also indicates evolution of unusual or unique ER-

based mechanisms within this lineage [68].

Sixthly and finally, the appearance of a phenotype for such a

large cohort of chaperones indicates both a requirement for these

factors and, from evidence for increased VSG levels in many cases,

a direct role in VSG ERQC. Therefore, we conclude that, despite

dominance of the exocytic pathway by VSG and VSG-related

proteins, there is little evidence for simplification in the

trypanosome chaperone requirement, and T. brucei retains a

sophisticated, flexible and complex folding environment within the

ER. The trypanosome exocytic pathway has not become

Figure 6. Validation of Western blot analysis. Cell lysates from
induced and uninduced cultures harboring the Tb10.70.5440 (DNAj) RNAi
construct were fractionated by SDS-PAGE. Duplicate samples were
separated for Coomassie and Western analysis. Left panel: Western blot
quantitation using ECL and densitometry from X-ray film for various
antigens in cells uninduced and induced for Tb10.70.5440 RNAi (closed and
open bars respectively). Data are normalised to total protein as determined
from the right hand panel. Note data are from a separate experiment to
Figure 5, and are highly comparable. Right panel; Coomassie stained SDS-
PAGE analysis of trypanosome lysates. Numbers indicate molecular weights
of co-electrophoresed standards, and U and I indicate uninduced and
induced for Tb10.70.5440 RNAi respectively. The entire region of the gel
between 17 and 150 kDa was scanned for densitometric normalisation. A
separate experiment conducted on Tb09.11.3680, a second DNAj-related
ORF, demonstrated highly similar results, except that ISG65 was also
significantly increased (Figure 5 and data not shown).
doi:10.1371/journal.pone.0008468.g006

Figure 7. Morphological consequences of RNAi for ER folding factors. Panel A: Cells induced for RNAi stained for BiP (green) and DNA (DAPI, blue).
Corresponding phase contrast and merged images are also shown. SMB is the parental line, stained for BiP as negative control. Panel B: As for panel A, but
costaining for VSG221 (green). RNAi targets are designated by abbreviated gene name. Selected images are shown; the full dataset is provided as zip archive.
doi:10.1371/journal.pone.0008468.g007
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specialized for specific production of VSG and nor is VSG

adapted for efficient folding

Supporting Information

Figure S1 Phylogenetic reconstruction of part of the DNAj

family. Sequences for representative members of the DNAj family

were retrieved from the NCBI nr database to represent the major

Opistokhonta (animals and fungi) ER chaperone families plus Sec63

(H. sapiens, black, S. cerevisiae, blue). Searches of the T. brucei genome

database using BLAST using the higher eukaryote sequences

returned as most significant the four sequences shown here in by

geneDB accession number (red) as well as Tb09.211.1550 (data not

shown). All other sequences were rejected based on sigificantly

lower expect values, excessive or very small predicted polypeptide

size or reverse BLAST failure (frequently demonstrating orthology

to mitochondrial DNAj proteins). Sequences were aligned in

Clustal, manually edited in MacClade and subjected to phyloge-

netic analysis. Initial rounds demonstrated that Tb09.211.1550 was

highly divergent and was removed. Further rounds of reconstruc-

tion resulted in the tree shown. Values at the internodes are

bootstrap/bootstrap/posterior probability for RaXML, PhyML

and Mr Bayes reconstructions. Data suggest that Tb09.211.3680

and Tb10.70.5440 are orthologs of ERdj3. The remaining two

sequences are either trypanosome-specific or orthologs to DNAj

proteins not included in the present analysis.

Found at: doi:10.1371/journal.pone.0008468.s001 (2.54 MB TIF)

Figure S2 Phylogenetic reconstruction of part of the trypano-

some Hsp70 family. Sequences for representative members of the

trypanosome Hsp70 family were retrieved from geneDB. Se-

quences were aligned in Clustal, manually edited in MacClade

and subjected to phylogenetic analysis. Gene products in red were

analysed. Values at the internodes are bootstrap/bootstrap/

posterior probability for RaXML, PhyML and Mr Bayes

reconstructions. Annotations based on BLAST similarity to

sequences at NCBI nr database and PSORT II are also provided.

Note that most of these annotations should be considered

tentative.

Found at: doi:10.1371/journal.pone.0008468.s002 (3.19 MB TIF)

Figure S3 Immunoflurescence microscopy data archive. Data

are shown for cells at one or two days post induction for RNAi for

the indicated open reading frame. Cells were fixed, stained for

either BiP or VSG (green) and counterstained for DNA using

DAPI. Example images are binned according to frequency of the

morphology observed. Frequent; .70%, common; 10–25%,

rare; ,5%. In all instances several hundred cells were analysed

per gene product and representative images are shown for each

category and time. Inductions were performed at least twice for

each gene product with similar results. Data are available to

download from http://homepage.mac.com/mfield/lab/PDFs/

Field%20et%20al%202010%20supp%20data.pdf.

Found at: doi:10.1371/journal.pone.0008468.s003 (268.15 MB

ZIP)

Figure S4 Clustal aligmnents for predicted amino acid and DNA

sequences of EDEM ORFs from T. brucei. Sequences corresponding

to geneDB accessions Tb927.8.2910, Tb927.8.2920, Tb927.8.2930

and Tb927.8.2940 were aligned with Clustal X using default

parameters.

Found at: doi:10.1371/journal.pone.0008468.s004 (0.06 MB

DOC)

Table S1 Primers for p2T7 RNAi constructs. Primer sequences

are given 59 to 39, and the corresponding gene is designated by the

geneDB accession number, except for VSG MITat1.2 where the

NCBI accession is given.

Found at: doi:10.1371/journal.pone.0008468.s005 (6.53 MB TIF)

Table S2 Primers for qRT-PCR transcription analysis. Primer

sequences are given 59 to 39, and the corresponding gene is

designated by the geneDB accession number.

Found at: doi:10.1371/journal.pone.0008468.s006 (6.53 MB TIF)
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