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Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the
tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of
which, the transforming growth factor b (TGFb), regulates essentially every cell within the malignant tissue. In this article, we focus
on the actions of TGFb on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of
metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend
on the action of TGFb.

TGFb IN CANCER

Transforming growth factor b (TGFb) is a secreted polypeptide
discovered as a biological activity produced by tumour cells
and capable of inducing oncogenic transformation of non-
cancerous cells in culture (Moses et al, 2016). Today we appreciate
in great detail the mechanisms by which TGFb and its diverse
family members regulate embryonic developmental processes and
why and how they are implicated essentially in many human
diseases (Akhurst and Hata, 2012). The main reason for the
overwhelming implication of TGFb in human disease, including
cancer, is the prominent role that TGFb has on tissue homoeostasis
and the fact that all chronic inflammatory and wounding processes
activate this cytokine from the extracellular matrix (ECM) where it
is deposited at abundant quantities and resides in an inactive form
(Pickup et al, 2013). At the cellular level, TGFb patrols several
biological events either under physiological or pathological
conditions such as the cell cycle and apoptosis, epithelial to
mesenchymal transition (EMT) and ECM regulation (Akhurst and
Hata, 2012). At the tissue and organ level, TGFb regulates the
differentiation and immunological response of B and T lympho-
cytes participating in the inflammatory cascade associated with
cancer progression, and also regulates tissue interactions important
during both embryonic organogenesis and cancer progression
(Pickup et al, 2013).

Abnormalities in the TGFb pathway relate to cancer development
characteristic examples of which are certain hereditary cancer

syndromes and many sporadic malignancies such as brain, breast,
colon, liver, lung, prostate and haematopoetic malignancies. Abnor-
mal TGFb signalling additionally encompasses diverse developmental
disorders, as for example, the craniofacial cleft palate syndrome, and
the autosomal dominant abnormality of the Rendu–Osler–Weber
syndrome; cardiovascular pathologies including atherosclerosis,
hypertension and rare abnormalities of the vasculature such as
aneurysms; connective tissue and bone diseases like the Marfan
syndrome and osteoporosis; muscular and reproductive disorders
(Gordon and Blobe, 2008). In cancer, the homoeostatic action of
TGFb explains why this cytokine acts as a tumour suppressor, by
directing diverse cell types towards cell cycle arrest and apoptosis,
whereas some of the genes encoding for TGFb family ligands,
receptors and Smads (downstream signalling proteins) become
mutated in specific cancer types (Pickup et al, 2013). On the other
hand, excessive amounts of TGFb are expressed in the extracellular
milieu of many tumours, and upon activation, induce sustained
signalling in most types of malignancy analysed including brain,
breast, liver, prostate, haematopoetic and other malignancies (Gordon
and Blobe, 2008). In particular, TGFb disrupts homoeostasis and
enhances tumour progression via its ability to dedifferentiate many
cell types, suppress the development of immune cells and indirectly
allow vascular growth (Padua and Massagué, 2009).

Transforming growth factor b signals via the same key
signalling molecules under pro-tumourigenic and physiological
homoeostatic conditions. However, the signalling outcome of these
pathways may be very different in normal vs malignant cells. The
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main difference between normal and tumour cell signalling relies
in the prevalence of oncogenic molecules in the tumour cells,
which might lead to disrupted cellular behaviour and pathogenic
phenotypic outcome. The central mediators of TGFb signalling
activity involve receptors on the cell surface named type II (TbRII)
and type I (TbRI), which bind the ligand as a heterotetrameric
complex, leading to activation of their intrinsic protein kinase
activity (Akhurst and Hata, 2012). TbRII is the primary ligand-
binding receptor that trans-phosphorylates TbRI, whose kinase
activity becomes released from negative inhibition by chaperones.
This causes the phosphorylation of Smad proteins – namely,
Smad2 and Smad3 – which then assemble with Smad4 into a
heteromeric complex. The latter accumulates on chromatin,
resulting in an integrated action of chromatin-bound Smad
complexes with the other signalling (non-Smad) molecules
summarised below. Immediate early target genes of TGFb-Smad
signalling include the inhibitory Smads, such as Smad7, which
accumulate upon signalling and negatively regulate the pathway at
the level of TbRI degradation, Smad2/Smad3 phosphorylation by
TbRI and at the level of chromatin-bound Smad complexes, which
are transcriptionally blocked by Smad7 (Akhurst and Hata, 2012).

Alternatively, the TbRII–TbRI receptor complex can recruit
other signalling proteins, such as ubiquitin ligases, adaptors to
protein and lipid kinases or small GTPases, which mediate diverse
molecular activities collectively referred to as non-Smad signalling
(Akhurst and Hata, 2012). The Smad and non-Smad signalling
effectors most often coordinately regulate different sets of genes in
a tissue-dependent and pathogenesis stage-dependent manner.

In the following sections, we will focus mostly on the biological
actions of TGFb but also make reference to signalling and
mechanistic details wherever possible, pointing out how TGFb can
contribute to the biology of cancer stem cells (CSCs) and various
stromal cell types in order to facilitate cancer metastasis. Due to
limitations in the length of this article, we deliberately cover few
instrumental cases from the older literature and base most of our
examples on more recent but also few scientific reports.

TGFb SIGNALLING IN CANCER STEM CELLS

Similar to its complex role in cancer progression, TGFb can have a
dual function concerning the biology of CSCs, inhibiting or
sustaining their function. As an example, TGFb has been reported
to suppress breast cancer tumourigenesis via two independent
mechanisms: by reducing the CSC/early progenitor pools or
by promoting the differentiation of a committed but highly
proliferative progenitor subset to a less proliferative and more
differentiated one (Tang et al, 2007). In the presence of TGFb, the
breast CSC population was less abundant and lost its self-renewal
capacity, moreover this cytokine induced the expression of mucin-
1 and cytokeratin-18, luminal markers identifying slowly prolifer-
ating cells and negatively affected the expression of ‘basal genes’,
such as cytokeratin-14 or frizzled-7, normally expressed by more
proliferative cells (Tang et al, 2007). In a study of diffuse-type
gastric carcinoma, TGFb has been described to decrease the
cancer-initiating cell population (side population), leading to a
decrease in tumour formation and tumour size in vivo; this study
pointed out how TGFb acted via the negative regulation of
ABCG2, a transmembrane transporter responsible for the active
efflux of chemotherapeutics, probably conferring a metabolic or
survival impairment to the CSCs, which were then eradicated
(Ehata et al, 2011). The negative effect of TGFb on the side
population of gastric carcinoma can also be ascribed to the negative
regulation on aldehyde dehydrogenase 1 (ALDH1) and REG4
(regenerating islet-derived family, member 4), which leads to
a decrease in the ALDH1þ population, correlating to poor

prognosis in different tumours (Katsuno et al, 2012). The
ALDH1þ population exhibits self-renewal capacity and displays
tumour initiating and tumour progression potential in vivo and
these CSC features are significantly suppressed by TGFb (Katsuno
et al, 2012).

On the other side, several studies underline how TGFb has a
positive role on the CSC population promoting or sustaining
stemness of the pool of CSCs in diverse types of malignancy
including breast cancer (Bruna et al, 2012; Lo et al, 2012; Bhola
et al, 2013), liver cancer (You et al, 2010; Mima et al, 2012), gastric
cancer (Hasegawa et al, 2014), skin cancer (Oshimori et al, 2015),
glioblastoma (Ikushima et al, 2009; Peñuelas et al, 2009) and
leukaemia (Naka et al, 2010). In hepatocellular carcinoma (HCC),
TGFb upregulates the expression of the stem cell marker CD133,
via a Smad-dependent transcriptional mechanism and by promot-
ing CD133 promoter demethylation based on a negative effect on
the DNA methyltransferases DNMT1 and DNMT3b, thus
enhancing the tumourigenic potential of the CD133þ population
in vivo (You et al, 2010). Another marker of HCC stem cells, the
adhesion molecule CD44, potentiates TGFb signalling and
mesenchymal differentiation (Mima et al, 2012). Genetic ablation
of TbRII in mice, followed by chemically induced carcinogenesis of
the bladder also attests to the positive role TGFb signalling has in
the generation of a bladder CSC population that promotes tumour
invasiveness and aggressive behaviour (Liang et al, 2016).

In the brain tumour glioblastoma, TGFb selectively induces self-
renewal of the glioma-initiating cells but not of normal glial
progenitors, via the Smad-dependent induction of leukaemia
inhibitory factor (LIF) and the sequential activation of the
LIF-Janus kinase-STAT pathway (Peñuelas et al, 2009). This
pathway leads to the increase in self-renewal potential (neuro-
sphere formation), prevention of neurosphere differentiation
in vitro and to higher tumour incidence and tumour size in vivo
(Peñuelas et al, 2009). In this pathological scenario, an autocrine
TGFb loop maintains the self-renewal of glioma-initiating cells,
acting on its direct target Sox4, which, in turn, binds to the stem
cell transcription factor Oct4, and together induce expression of
another stemness gene, Sox2 (Ikushima et al, 2009; Ikushima et al,
2011). In particular, the downregulation of Sox4 and Sox2
expression by TGFb inhibitors diminishes stemness features and
induces glioma CSC differentiation in vitro, whereas genetic
attenuation of Sox4 leads to improved survival after intracranial
injection of these glioma CSCs in vivo (Ikushima et al, 2009).

Leukaemia initiating cells (LICs) support the growth and relapse
of chronic myeloid leukaemia; LICs with nuclear localisation of the
transcription factor Foxo3a show decreased Akt kinase phosphor-
ylation and exhibit characteristic enrichment in CSCs in this type
of malignancy, because LIC apoptosis is suppressed and thus
sustained progression of the malignancy is promoted (Naka et al,
2010). These findings propose that TGFb regulates Akt phosphor-
ylation and Foxo3a nuclear localisation, which is required for the
stemness properties of LICs (Naka et al, 2010). Accordingly, a new
therapeutic prospective can be based on the adjuvant administra-
tion of TGFb receptor kinase inhibitor to the established imatinib
treatment used against chronic myeloid leukaemia, in order to
eradicate more effectively the LIC pool (Naka et al, 2010).

Crosstalk between TGFb and other developmental pathways is
also relevant. The cooperation between TGFb and tumour necrosis
factor a (TNFa) positively affects the acquisition of a CSC
phenotype in breast cancer due to the induction of EMT. In
particular, the TGFb-induced EMT-generated breast CSCs have a
claudin-low phenotype – which is normally associated with
mesenchymal features and more aggressive cancer behaviour –
and possess self-renewal potential, increased tumourigenicity
in vivo and resistance to the chemotherapeutic drug oxaliplatin
(Asiedu et al, 2011). Moreover, TGFb cooperates with the WNT
pathway in breast cancer to induce EMT and maintain the
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resulting mesenchymal and stem cell state in an autocrine fashion
(Scheel et al, 2011). Blocking the TGFb-induced WNT pathway in
this model of breast cancer, results in decreased cell migration and
stem cell self-renewal in vitro, lowers tumourigenic potential and
lowers macro and micrometastatic incidence in vivo. A screen for
stemness genes enriched in non-small-cell lung carcinomas that
exhibit high metastatic potential pointed to the importance of
musashi-2, a regulator of protein synthesis (Kudinov et al, 2016).
Attempting to genetically silence musashi-2 in these lung CSCs
depleted the stem cell pool in part by causing induction of
epithelial proteins, such as the junctional claudins, and by
suppressing the translation of mRNAs for TbRI and Smad3 and
of Snail1 and Snail2, transcriptional mediators of EMT (Kudinov
et al, 2016). This model suggests that TGFb signalling promotes
lung adenocarcinoma CSCs and their metastatic potential and
that the TGFb pathway is under the translational control of
musashi-2.

TGFb IN CANCER METASTASIS

Cancer metastasis is a multistep process that engages several cell
types in addition to the primary tumour cell. Here we summarise
evidence presented according to the major cell lineages that
mediate metastatic dissemination. In recent years, different studies
have demonstrated how TGFb is implicated in metastasis (Padua
and Massagué, 2009; Hansen et al, 2014). It has been reported that
TGFb is able to create a tissue microenvironment permissive to the
metastatic dissemination (Pickup et al, 2013), and that TGFb can
contribute to the local invasion, blood-borne metastatic dissemina-
tion and colonisation of distant organs (Calon et al, 2012; Calon
et al, 2014).

TGFb and fibroblasts in the tumour stroma. The origin of
cancer-associated fibroblasts (CAFs) still remains an open ques-
tion, due to the possible multiple origin of these cells and the
differences described in CAF populations within specific tumour
subtypes or even within distinct areas of the same tumour (Cirri
and Chiarugi, 2011). Resident CAFs can originate from the
differentiation of resident fibroblasts via the action of TGFb, and
these CAFs then sustain the proliferative, migratory and invasive
behaviour of cancer cells (Calon et al, 2014). Cancer-associated
fibroblasts can also originate from the trans-differentiation of
pericytes or inflammatory cells via the so-called mesenchymal to
mesenchymal transition, which can be mediated by TGFb, among
other cytokines (Buess et al, 2007; Cirri and Chiarugi, 2011). In
addition, CAFs can be generated from bone marrow-derived
mesenchymal stem cells (BM-MSC), which can be recruited at the
tumour or inflammatory site and be committed to fibroblast
differentiation by the locally released cytokines and growth factors
(Karnoub et al, 2007; Mishra et al, 2008; Quante et al, 2011). At
last, CAFs can derive from endothelial cells via the TGFb1-induced
endothelial mesenchymal transition process, or endEMT; in this
event, the endothelial markers CD31/PECAM are downregulated,
whereas the mesenchymal marker fibroblast-specific protein-1 is
induced and the resulting CAFs localise at the invasive front of the
tumour (Zeisberg et al, 2007).

A hallmark of activated fibroblasts or myofibroblasts is their
ability to synthesise many ECM proteins and build a specialised
cytoskeleton that incorporates the a-smooth muscle actin (aSMA).
Transforming growth factor b once again has a major role in
mediating this terminal differentiation process. The TGFb1 effect
on pulmonary fibroblast to myofibroblast differentiation is
illustrative of this process. Transforming growth factor b drives
pulmonary fibroblasts to acquire an irreversible post-mitotic
phenotype associated with the induction of type I, II, III and IV
collagen expression and secretion, reorganisation of the actin

cytoskeleton, increase in aSMA expression and incorporation of
aSMA into stress fibres, one of the clear hallmarks of the
myofibroblast phenotype. Interestingly enough, the Smad proteins
differentially regulated the TGFb1-induced morphological and
functional changes, in particular Smad2 but not Smad3 affected
aSMA, whereas both Smad2 and Smad3 affected collagen
regulation (Evans et al, 2003).

In the context of cancer, early experiments using fibroblast-
specific ablation of TbRII in mice demonstrated that fibroblasts
have homoeostatic roles within a tissue such as prostate or
stomach, as loss of TbRII led to excessive secretion of hepatocyte
growth factor (HGF) and resulting in hyperproliferation of the
epithelial cells in these tissues, supporting tumourigenic progres-
sion (Bhowmick et al, 2004). This experiment was one of the first
that established the key role of stromal cells in controlling
epithelial carcinogenesis via paracrine mechanisms. In the tumour
microenvironment, TGFb is produced by terminally differentiated
CAFs, acting in an autocrine fashion on the same CAFs that have
produced it (stromal TGFb-activation) while the epithelial cancer
cells can also produce TGFb, which acts in a paracrine way on the
fibroblasts (epithelial TGFb-activation) (Calon et al, 2014;
Hawinkels et al, 2014). More specifically, CAFs can produce
TGFb1 via a Smad4-dependent autocrine signalling loop, which
promotes their differentiation to myofibroblasts and supports a
sustained acquired myofibroblast phenotype (Kojima et al, 2010).
In particular, TGFb1 promotes and crosstalks with the autocrine
SDF-1 (stromal cell-derived factor 1)/CXCR-4 chemokine receptor
pathway, and the latter helps to maintain high expression of
TGFb1, thus resulting in a synergistic positive effect on the
myofibroblast functions and on their persistence in invasive breast
cancer specimen (Kojima et al, 2010). Moreover, colorectal cancer
cells secrete TGFb1 and this leads to the hyperactivation of the
TGFb signalling pathway in the CAFs, causing enhanced
expression of target genes such as the ECM modulators
plasminogen activator inhibitor 1, matrix metalloproteases 2 and
9 (MMP-2, MMP-9) and aSMA (Hawinkels et al, 2014). Further
evidence of the positive effect CAFs have on tumour cells has been
described in colon cancer, where, CAFs activate extracellular
TGFb, which causes secretion of interleukin-11 (IL11) by the
CAFs, that in turn triggers GP130/STAT3 signalling in the
colorectal cancer cells (Calon et al, 2012). This mechanism confers
a survival advantage to specific colorectal cancer clones with
metastatic potential, whereas pharmacological blockade of the
TGFb response in the stromal CAFs significantly impairs the
tumour initiation (Calon et al, 2012). Furthermore, TGFb
enhances the attachment and co-migration of colon cancer cells
and CAFs (Figure 1), positively affecting the metastatic burden of
these colon carcinomas to the liver. Beyond this effect, TGFb
increases cancer cell proliferation in the primary tumour and in the
metastasis, and TGFb-treated colon cancer cells more efficiently
bind to endothelial cells, whereas CAFs exposed to TGFb
upregulate proteins involved in cell–cell attachment and cytokines
that can sustain cancer cell survival during dissemination
(Gonzalez-Zubeldia et al, 2015). In a parallel scenario studied in
bladder carcinoma, the urinary bladder CAFs oversecrete TGFb1,
which then causes EMT on the bladder epithelial cells via
transcriptional induction of the long non-coding RNA (lncRNA)
ZEB2NAT (Zhuang et al, 2015). ZEB2NAT positively regulates the
expression of the pro-EMT transcriptional repressor ZEB2, which
establishes the bladder carcinoma EMT and promotes the invasive
behaviour of the tumour cells (Zhuang et al, 2015).

Furthermore, the TGFb effect on CAFs appears to be associated
to their metabolic reprogramming. Transforming growth factor b
activation by epithelial breast cancer cells MDA-MB-231 can
induce differentiation of surrounding fibroblasts into CAFs, which
causes their metabolic shift towards catabolic and glycolytic
pathways – related with the processes of mitophagy and autophagy
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– as well as a decrease in mitochondrial activity and consequent
oxidative stress (Guido et al, 2012). As a result, CAFs generate
metabolites (L-lactate, ketone bodies and glutamine) that sustain
the mitochondrial metabolism and the anabolic growth of the
adjacent cancer cells at the expense of their own metabolic efficacy.
In a parallel study of co-culture between NIH3T3 fibroblasts and
4T1 mouse breast cancer cells, the TGFb-induced autophagy on
the fibroblasts (which resemble CAFs in this in vitro model)
provided survival signals that enhanced the tumourigenic potential
of the cancer cells in xenograft assays (Liu et al, 2016). A screen for
chemical agents that could block the activation of CAFs by TGFb
revealed that cardiac glycosides, such as digoxin, which naturally
regulate contractility of the heart muscle, effectively blocked CAF
activation and cell contractility induced by TGFb (Coleman et al,
2016). According to these views, CAFs serve as metabolic engines
for the benefit of tumour growth and expansion, and inhibition
of CAF function is beneficial for the host organism carrying
the tumour.

Transforming growth factor b not only acts on fibroblasts but
can also have a role in increasing the myofibroblast population via
recruiting and promoting differentiation of mesenchymal stem
cells, thus sustaining the trophic role of myofibroblasts on tumour
growth and supporting cancer cell invasiveness and subsequent
metastatic dissemination. A recent study has pointed out how
TGFb released by prostate cancer cells via exosomes, but not
soluble, secreted TGFb, can trigger the differentiation of BM-MSC
into myofibroblasts (Chowdhury et al, 2015). In particular,
exosomal TGFb shifts the physiological adipogenic differentiation
of BM-MSC towards the more pathological myofibroblast
phenotype. The resulting myofibroblasts exhibit high expression
of aSMA, MMPs, HGF and vascular endothelial growth factor-A
(VEGF-A). The latter provides pro-angiogenic signals by acting on
endothelial cells and experimentally exhibited a tumour promoting
role based on a 3D co-culture model. Furthermore, osteopontin
(OPN), which is normally present in the ECM, can influence TGFb
signalling. In particular, OPN triggers avb3 integrin to induce the

myeloid zinc finger 1 transcription factor causing an increase in
TGFb1 expression, and this allows the differentiation of mesench-
ymal stem cells into myofibroblasts (Weber et al, 2014). In this
scenario, the obtained CAFs enhance the tumour occurrence
in vivo when co-injected with breast cancer MDA-MB-231 cells,
supporting the general concept of a trophic role of CAFs towards
carcinoma cells.

TGFb effect on immune cells in the tumour stroma. One of the
main reasons behind tumour progression is the ineffective immune
response against cancer (immune suppression), or the develop-
ment of immune tolerance towards cancer-associated and cancer-
specific antigens (Yang et al, 2010). It is well established that TGFb
is essential for the regulation of the innate and adaptive immune
system under physiological or pathological conditions (Flavell et al,
2010). In cancer, in particular, it seems that TGFb antagonises the
effective innate and adaptive immunity responses, in order to
promote cancer growth and metastatic dissemination, as depicted
in Figure 1. A most illustrative example has been the complete loss
of cancer growth in mice where TbRII was knocked out in T
lymphocytes, causing resistance to TGFb and generation of
regulatory T cells, which elicit a potent anti-tumoural response
(Gorelik and Flavell, 2001). A recent example that expands on the
previous study and underlines the significance of TGFb effect
on adaptive immunity provides more mechanistic insight. CD8þ T
cells become unresponsive against tumour antigens due to the
upregulation of the transcription factor FOXP1 (Stephen et al,
2014). FOXP1 blocks CD8þ activity due to a direct inhibitory
effect on c-Jun, and upon TGFb stimulation, FOXP1–Smad2/3
complexes accumulate in pre-activated CD8þ T cells, which
results in an inhibitory effect on c-Myc expression and on cell
proliferation. As a result, the tumour suppressive effect of CD8þ T
cells is completely abrogated (Stephen et al, 2014). In addition to
differentiation, TGFb regulates the residence of CD8þ T cells in
epithelial tissues. In the skin, CD8þ T-cell residence depends on
the proper expression of integrin receptor complexes on the surface
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Figure 1. Pleiotropic effects of TGFb in the tumour microenvironment. Representation of a primary tumour with cancer stem cells (CSCs) or
metastasis-initiating cells (light green) and the bulk of the tumour cells (orange). Different cell types surrounding the tumour mass can positively
contribute to tumour progression, invasiveness and metastatic dissemination, acting on the tumour cells but also receiving input from the tumour
cells (bi-directional arrows). Cells that can inhibit tumour progression are linked to the tumour mass with a negative arrow. The contributions of
TGFb and additional cytokines and chemokines are highlighted next to each arrow. As graphic simplification, haematogenous or lymphatic
metastatic dissemination shows solely CSCs co-migrating with stromal cells and platelets. At the secondary site, metastatic colonisation and
growth is shown; whether stromal cells dissociate from the metastasising clonal population or whether they are replaced by new local stromal cells
is currently unknown (?).
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of the epithelial cells, and on the regulated activation of latent
TGFb in the T-cell microenvironment (Mohammed et al, 2016).
This event provides clues about the importance of a regulated
degree of activation of TGFb that can have homoeostatic functions,
whereas upon deregulation of the balance, TGFb can exhibit its
pro-tumourigenic activities. Interestingly, it has been demonstrated
how restricted loss of Smad4-dependent signalling in the T-cell
population alters the physiological communication between
adaptive immunity cells and tissue parenchyma (the epithelial
cells in the latter retaining the normal function of Smad4),
allowing the arousal of spontaneous epithelial cancers in the
gastrointestinal tract, thus further underlining that a productive
adaptive immune response is essential for effective tumour
suppression (Kim et al, 2006).

Beyond T cells, macrophages have important roles in the
tumour stroma. Macrophages can differentiate in two different
lineages: M1 or classically activated, and M2 or alternatively
activated, in response to different microenvironmental cues. The
so-called tumour-associated macrophages (TAM) express a
comparable phenotype to M2 macrophages and TGFb2 can induce
M2 macrophage polarisation, as described in Figure 1, whereas
knock out of TbRII results in less functional M2 macrophages
(Gong et al, 2012). Interestingly, it has recently been described how
M2-TAM can actively produce TGFb, which induces EMT and
acquisition of cancer stem cell features in an in vitro model of
HCC, leading to a worse prognosis in patients (Fan et al, 2014a).
Moreover, TGFb has a similar effect on pro-tumourigenic N2
neutrophils and blocking TGFb signalling switches the cellular
phenotype to the anti-tumourigenic N1 neutrophil population
(Pickup et al, 2013). In addition to this, TGFb has an antagonistic
effect on the activation of antigen-presenting dendritic cells and
impairs the maturation of natural killer cells (Figure 1), thus
inhibiting an effective innate response towards cancer (Pickup
et al, 2013).

Breast cancer cells carrying knockout for TbRII present more
aggressive and highly metastatic behaviour to the lungs of mice
compared with sibling carcinoma cells having wild-type TbRII
(Yang et al, 2008). The invasive periphery of such tumours is
highly enriched in myeloid cells that express the Gr-1 and CD11b
antigens on their surface, and their immunological ablation
decreases the rate of metastatic dissemination. The TbRII knock-
out cancer cells oversecrete chemokines, SDF-1 and CXCL5, which
then attract the myeloid cells to the primary tumour; as a paracrine
response, the myeloid cells oversecrete TGFb1 and activate MMPs
in the microenvironment, which facilitates invasiveness and
dissemination (Yang et al, 2008). In particular, the lung tissue
becomes remodelled in response to the extracellular activity of the
MMPs secreted by the myeloid cells, which appear as groups
intercalated with tumour colonies (Yan et al, 2010). Interestingly,
genetic ablation of TbRII in the myeloid cells suppresses the
metastatic homing of breast cancer cells, emphasising the
importance of this stromal cell type (Meng et al, 2016). Basic
fibroblast growth factor (bFGF) could rescue the bone metastasis
when injected intravenously in the mice with the TbRII knockout
myeloid cells, demonstrating that TGFb signalling in the myeloid
cells controls bFGF secretion, which then acts on the metastatic
carcinoma cells to assist their homing (Meng et al, 2016). Similar
studies with TbRII ablation in the myeloid cells revealed a role for
the chemokine CCL9, which is secreted by the TGFb-responsive
myeloid cells and acts on the carcinoma cells promoting their
survival and facilitating their metastatic homing (Yan et al, 2015).
In agreement with the mouse model, the orthologuous to CCL9
human chemokine CCL23 is highly expressed in the peripheral
blood myeloid cells from patients with aggressive cancer (Yan et al,
2015). The metastatic process is also linked to the action of
platelets. Invading and intravasating breast cancer cells associate
with platelets, which provide a rich source of TGFb, initiating

breast epithelial EMT (Labelle et al, 2011). The interaction between
platelets and breast cancer cells initiates upon unknown signalling
pathways that mediate activation of the nuclear factor kB, which
synergises with TGFb signalling to elicit robust EMT, tumour cell
migration and intravasation leading to lung metastasis. In addition,
the tumour-associated platelets release chemokines CXCL5 and
CXCL7, which recruit granulocytes (Labelle et al, 2011). The
granulocytes sustain the metastatic colonisation via their enhanced
MMP activity, and they co-migrate with the cancer cells through
the lung capillaries.

Unexpectedly, the concept of TGFb-mediated immune suppres-
sion can also be exploited therapeutically, as demonstrated in
therapy trials of the brain tumour glioblastoma using oncolytic
Herpes simplex viral particles (Han et al, 2015). Pre-treatment of
the tumour-bearing animal with a single dose of TGFb prior to the
administration of the oncolytic virus was able to effectively
suppress resident natural killer and microglial cells so that the
virus could elicit more robust cytotoxicity and limit tumour growth
by prolonging life expectancy (Han et al, 2015).

TGFb in metastatic dissemination. Transforming growth factor
b generally has a positive role in cancer dissemination and
metastasis due to the shift of the TGFb response from growth
arrest to invasion and metastatic dissemination in the primary
tumour (Roberts and Wakefield, 2003; Pickup et al, 2013). In
addition, TGFb can enhance metastasis by positively affecting
neoangiogenesis and lymphangiogenesis, by promoting aggrega-
tion of cancer cells and CAFs, transendothelial migration of
metastatic cell clones, by inducing microRNAs and lncRNAs with
pro-metastatic effects and by acting on the tumour microenviron-
ment in order to allow a permissive milieu to dissemination (Padua
and Massagué, 2009; Peñuelas et al, 2009), as described in Figure 1.

Seminal studies aiming at identifying genes that control the
metastatic behaviour of breast cancer cells that selectively colonise
the bone identified a cohort of secreted factors that collectively
contribute to bone destruction and generation of a permissive
microenvironment for the establishment of metastatic cancer
(Kang et al, 2003). The metastatic cells secrete polypeptides such as
IL11, which mobilises osteoclasts to start damaging the bone, and
connective tissue growth factor, which promotes local angiogen-
esis. The abundance of these two cytokines in the metastatic
microenvironment is further boosted by the local release of TGFb
from rich bone depots, leading to an enhanced loop of cytokine–
bone destruction–TGFb and back to cytokine release (Kang et al,
2003). Unexpectedly, the release of TGFb from its storage in
normal bone, during osteolysis promoted by the metastatic breast
cancer cells, is also responsible for the deterioration of the
associated muscle that eventually leads to cachexia (Waning et al,
2015). Transforming growth factor b acting on muscle cells
induces expression of the NADPH oxidase Nox4, which oxidises
signalling proteins in the muscle, including the ryanodine receptor
and the calcium release channel, both playing critical roles in
maintaining physiological calcium levels for the function of the
muscle. The resulting deterioration in calcium availability weakens
the force-generating capacity of the muscle and initiates cachexia
(Waning et al, 2015).

More intriguing is the mechanism by which TGFb acting in the
primary breast tumour induces angiopoietin-like 4, which is
retained by the metastatic cancer cells and facilitates their
extravasation specifically to the lung (Padua et al, 2008).
Angiopoietin-like 4 released from metastatic cells disrupts
endothelial cell–cell adhesions in lung capillaries, promoting
delivery of the tumour cells to the distant tissue. This is an
example whereby the action of TGFb in the primary tumour,
conditions the cancer cells with capacities for manipulation of the
microenvironment at the target metastatic site. Transforming
growth factor b can also promote the formation of a pro-metastatic
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extracellular environment and can actively influence the interac-
tion between cancer cells with ECM and stromal cells. It has been
recently reported how TGFb can induce the expression of the
metalloprotease ADAM17, which promotes the release of the
adhesion protein ALCAM from metastatic prostate cells in vivo
and in vitro (Hansen et al, 2014). ALCAM shedding appears to be
required for the effective prostate cancer metastasis to the bone and
positively correlates with the tumour burden in subcutaneous and
orthotopic in vivo models. Moreover, the tumour-shed ALCAM
mediates TGFb-induced migration and bone metastasis without
affecting primary tumour growth; persistent ALCAM shedding in
the metastatic bone microenvironment also promotes the survival
and proliferation of metastatic cells (Hansen et al, 2014).
An alternative pro-metastatic mechanism induced by TGFb
signalling in prostate carcinomas involves one of the most highly
sensitive target genes of the TGFb pathway, one encoding for the
plasma membrane protein PMEPA1 (Fournier et al, 2015). The
regulatory function of PMEPA1 involves interaction with Smad
proteins and ubiquitin ligases, causing a relative decrease in TGFb
signalling. Interestingly, upon prostate cancer metastasis, PMEPA1
expression is downregulated by as yet uncharacterised mechan-
isms, causing a release of TGFb/Smad signalling from the negative
control of PMEPA1 and promoting the homing of metastatic cells
to bone (Fournier et al, 2015).

Moreover, TGFb and the TGFb co-receptor family member
Endoglin can promote tumour angiogenesis, thus positively
affecting metastatic dissemination (Pardali and ten Dijke, 2009).
Transforming growth factor b can directly activate endothelial cell
proliferation and migration, promotes the capillary formation
in vitro and neoangiogenesis in vivo (Pardali and ten Dijke, 2009).
Moreover, this cytokine can induce the expression of VEGF, the
major growth factor promoting vascularisation, and this can be
promoted by hypoxia, a frequent condition in the microenviron-
ment of growing tumours (Pardali and ten Dijke, 2009).
Furthermore, TGFb can recruit inflammatory cells that secrete
pro-angiogenic factors and it can promote the synthesis of MMP,
integrins and plasminogen activators, which have an important
role in the initiation and progression of angiogenesis (Pardali and
ten Dijke, 2009).

The importance of TGFb for the sprouting of lymphatic vessels
and of the lymphatic network in the skin has also been reported,
and furthermore, how inhibition of the TGFb pathway allows the
lymphatic microvascular endothelial cells to migrate, proliferate
and form functional lymphatic vessels in response to the growth
factor VEGF-C, an important promoter of lymphangiogenesis
(Oka et al, 2008; James et al, 2013). These findings suggest an
inhibitory role of TGFb on lymphangiogenesis in this particular
context. Intriguingly, the transcription factor SIX1 has been
described to enhance the Smad-dependent TGFb signalling and
this results in the transcriptional induction of the growth factor
VEGF-C, and promotion of lymphatic metastatic dissemination,
thus pointing out the mechanism by which TGFb impacts on this
physiological process (James et al, 2013; Liu et al, 2014). In
addition, metastasis of breast cancer cells that undergo EMT
through the lymphatic system also involves upregulation of the
chemokine CCL21, which is secreted by lymphatic endothelial cells
responding to TGFb (Pang et al, 2016). CCL21 signals by binding
to its receptor CCR7, whose expression is also upregulated by
TGFb on the surface of the breast carcinoma cells that exhibit EMT
(Pang et al, 2016). This mechanism attracts the metastatic cells to
the lymphatic vessels for intravasation and subsequent dissemina-
tion to local lymph nodes.

Modern techniques, such as intravital microscopy, allow
detection of a switch in TGFb signalling during metastasis. It has
been elegantly described how TGFb differentially regulates cell
migration, affecting the type of systemic dissemination of tumour
cells: cancer cells exhibiting high levels of TGFb activity are highly

motile and can intravasate as single cells, whereas cells with lower
TGFb activity are characterised by cohesive and collective move-
ment, which allows their lymphatic dissemination (Giampieri et al,
2010). Moreover, it has been underlined that only cells with high
TGFb levels are poorly differentiated and are actually able to
migrate, whereas TGFb signalling cannot cause the same effect in
highly differentiated cells. Reasonably, it is important for TGFb
signalling to be switched off at the secondary tumour site in order
to enable proliferation of the metastatic cells (Giampieri et al,
2010). Three dimensional co-culture studies also demonstrated
that mesenchymal stem cells that secrete TGFb promote a
characteristic directional migration of breast carcinoma cells,
which exhibit elongated morphology and develop strong traction
between them, factors that facilitate tumour cell invasiveness
(McAndrews et al, 2015).

Transforming growth factor b is classically associated with the
induction of EMT and with migratory and invasive cell properties,
which allows the local and systemic dissemination of selected
clones of primary tumour cells in order to establish metastasis at a
distant organ. As an example, in HCC, the tyrosine kinase receptor
Axl induces and modulates the autocrine TGFb pathway and this
positively correlates with HCC invasion, transendothelial invasion
and metastatic dissemination in vivo (Reichl et al, 2015). Such a
role of Axl downstream of TGFb has also been observed in breast
carcinoma (Li et al, 2015) and supports the double-positive loop
whereby tumour progression may be promoted by the Axl-TGFb-
Axl double axis, a prominent target for new therapeutic
intervention. Intriguingly, TGFb signalling also induces expression
of Axl in the pancreas and the skin under non-cancerous,
homoeostatic conditions (Bauer et al, 2012).

In breast cancer, the nuclear factor NR4A1 activates TGFb/
Smad signalling by increasing the half-life of TbRI on the plasma
membrane, and by inducing Smad7 degradation via an AXIN2-
RNF12/ARKADIA ubiquitylation machinery in cancer cells and in
CAFs (Zhou et al, 2014). This results in the acquisition of TGFb-
induced EMT features and in the increase of cell migration,
invasion and metastasis in vitro and in vivo. Interestingly, NR4A1
appears to integrate signals from different pathways as follows: it
mediates the IL1b and TNFa actions on EMT and cancer cell
migration in vivo; and it promotes TGFb signalling, emphasising
the cooperative role of these cytokines in malignancy.

Non-coding RNAs in metastatic dissemination. TGFb can also
have a positive role on metastatic dissemination via the induction
of lncRNAs, as it has been described for lncRNA-ATB (Yuan et al,
2014). LncRNA-ATB upregulates the homeobox and zinc finger
transcription factors ZEB1 and ZEB2 due to a competitive effect on
the microRNA (miR)-200 family, which base pairs with the
lncRNA-ATB, thus permitting ZEB1/ZEB2 synthesis and resulting
in EMT and invasion of HCC cells. In this respect, lncRNA-ATB
functionally mimics the action of ZEB2NAT, which operates in
CAFs (Zhuang et al, 2015), as described earlier. LncRNA-ATB also
binds the IL11 mRNA promoting an IL11-STAT3 signalling loop
responsible for dissemination of HCC cells. This effect is
independent from the miR-200 inhibition and contributes to an
increased colonisation and metastasis occurrence in the lungs.
Bladder cancer metastasis is as well promoted in part due to the
TGFb-induced upregulation of the lncRNA Malat1 (Fan et al,
2014b). Upon TGFb stimulation Malat1 associates with the
Polycomb corepressor subunit Suz12, and this induces an EMT
phenotype in bladder cancer, concerning in particular the
repression of E-cadherin, and promoting migration and invasion
in vivo (Fan et al, 2014b). Malat1 and its protein partner Suz12
appear to be crucial for this process, as their silencing abrogates
the migratory and invasive properties promoted by TGFb.

Similar mechanisms involve microRNAs, such as the oncogenic
miR-155, which negatively regulates the expression of the
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transcription factor C/EBPb, a differentiation factor for the
mammary epithelium (Johansson et al, 2013). As a consequence,
breast cancer cells become insensitive to the TGFb growth
inhibitory effects and acquire EMT features, promoting their
invasion and dissemination to the lungs of tumour-bearing mice
(Johansson et al, 2013). In particular, when miR-155 silences
C/EBPb in the cancer cells, autocrine production of TGFb1 or
downstream phosphorylation of Smad3 is not perturbed, confirm-
ing that the in vivo effects are due to a switch in TGFb response,
and not due to ineffective TGFb signalling. In a distinct
mechanism, TGFb signalling is enhanced in pancreatic adenocar-
cinomas in part because of the downregulation of the miR-323-3p
(Wang et al, 2016). The miR-323-3p downregulates expression of
Smad2 and Smad3 and relatively high expression of this
microRNA maintains a controlled, low activity of TGFb signalling
that serves homoeostatic functions. An epigenetic mechanism
affecting Smad2 and Smad3 expression operates in lung adeno-
carcinomas (Tang et al, 2015). High TGFb signalling promoting
EMT and invasive, metastatic growth is achieved by high
expression of Smad2 and Smad3, which is coordinately regulated
by the cytoplasmic protein profilin-2. Tumour cells overexpress
profilin-2, which sequesters the histone deacetylase HDAC1 in the
cytoplasm, thus releasing the transcriptional control from Smad2
and Smad3, which also become overexpressed (Tang et al, 2015).
Whether this mechanism in lung carcinomas involves non-coding
RNAs remains to be examined.

Conversely, microRNAs can be positive regulators of TGFb
signalling by targeting the negative feedback mechanism of this
pathway that is mediated by Smad7. Such an example is the
miR-1269, which downregulates Smad7 and the transcription
factor HoxD10 in colorectal cancers (Bu et al, 2015). By negatively
affecting Smad7 expression, miR-1269 promotes TGFb signalling
and colorectal carcinoma metastasis to the liver, whereas TGFb
itself transcriptionally induces expression of the miR-1269,
forming a feed-forward signalling loop that counteracts the
classical negative feedback loop of Smad7 in the context of tumour
metastasis (Bu et al, 2015).

CONCLUSION

TGFb signalling is disregulated in different types of cancers, thus
affecting the overall progression to malignancy. For this reason
TGFb has been considered a valuable target in oncology. Current
approaches with TGFb inhibitors, such as the low molecular
weight TbRI kinase inhibitor LY2109761, revealed an acquired
chemoresistance in cancer patients (Akhurst and Hata, 2012).
However, a careful clinical study where the dose of the improved
TbRI inhibitor LY2157299 was tested in glioma patients revealed
strong beneficial effects and complete lack of cardiotoxic side
effects revealing the promise of anti-TGFb therapy (Rodon et al,
2015). Despite this recent progress, another way to obtain effective
therapeutic treatment could be to apply personalised medicine
based on the genetic background of the individual, which can
define the TGFb response; this approach is viewed as particularly
challenging considering the intricacy of this pathway (Akhurst and
Hata, 2012), but it may soon gain applicability in the oncology
clinic. Another effective approach could consist in finding
biomarkers related to TGFb signalling – as for example USP15
in glioblastoma – which can be used to discriminate patient
populations into those that are responsive and non-responsive to
TGFb, in order to apply targeted therapeutic approaches only to
the responsive cohort (Eichhorn et al, 2012). Similarly, a strategy
that can be potentially useful to stratify colorectal cancer patients
according to their prognosis has been recently suggested (Calon
et al, 2015). This relies in a gene signature that is induced by TGFb

specifically in the colorectal tumour stroma (i.e. mainly the CAFs),
rather than in the epithelial tumour, and such an approach might
prove invaluable for the future use of TGFb signalling inhibitors,
so that the inhibitors selectively interfere with the crosstalk
between cancer cells and the tumour stroma. All such cases
convincingly raise the TGFb pathway as a promising therapeutic
target against all types of tumours, although deeper insight into the
means for achieving personalised therapeutic benefits has to
be gained.
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