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Objective. Low-grade glioma (LGG) mainly threatens the elderly population, with undesirable prognoses. )is study uncovered
the immune cell infiltration (ICI) landscape in LGG. Methods. RNA-seq profiles of LGG were retrieved from TCGA and CGGA
databases. CIBERSORTx and ESTIMATE algorithms were employed to characterize the ICI landscape in LGG tissues. )rough
unsupervised clustering analysis, ICI subtypes were clustered. ICI scores were computed via principal component analysis (PCA).
)e differences in survival, tumor-infiltrating immune cells, stromal scores, immune scores, immune checkpoint genes, immune
activity genes, and tumor mutation burden (TMB) were assessed between high and low ICI score groups. Results. )ree ICI
subtypes were constructed in LGG, with distinct survival outcomes, PD-L1 expression, and infiltration levels of immune cells.
Furthermore, ICI scores were developed. Both in TCGA and CGGA datasets, low ICI scores were indicative of undesirable
outcomes. High ICI scores were significantly correlated to increased infiltration levels of memory B cells, CD8 Tcells, CD4 näıve
Tcells, Tfollicular helper cells, macrophagesM0, and eosinophils, while low ICI scores were characterized by increased infiltration
levels of naı̈ve B cells, plasma cells, CD4 memory resting Tcells, Tregs, resting NK cells, macrophages M2, and activated dendritic
cells. High ICI scores exhibited correlations with lower immune activity genes and immune checkpoint genes. Furthermore, TMB
was distinctly reduced in the high ICI score group. Conclusion. )e ICI scores may serve as a promising prognostic index and
predictive indicator for immunotherapies, extending our understanding of immune microenvironment in LGG.

1. Introduction

Glioma is a common primary intracranial malignancy,
which is classified into four grades according to the 2007
WHO classification of tumors: Grades I and II are LGGs, and
Grades III and IV are high-grade gliomas [1]. Among them,
LGG represents the most common primary brain malig-
nancy [2]. LGG mainly occurs in old people. However, it is
predisposed to younger individuals (average age: 41 years
old), with mean survival time of approximately seven years
[3]. Despite the much progress in neurosurgical resection,
chemotherapy, and radiotherapy, it is ineluctable to expe-
rience resistance and recurrence [4]. Due to biological be-
haviors, this malignancy displays considerable
heterogeneity. Some subjects experience indolent outcomes,

while others develop into high-grade gliomas with unde-
sirable outcomes [5]. Despite the less aggressiveness of LGG,
patients usually have varied survival outcomes [6]. )ere-
fore, discovering precisely novel markers to predict patients’
prognosis is of importance in current studies.

Immunotherapies have exhibited considerable promise
in cancer therapy [7]. Novel immunotherapy has emerged as
a promising therapeutic strategy against LGG [8]. Never-
theless, only some patients respond to immunotherapy [9].
)e efficacy of immunotherapy is partly affected by tumor
microenvironment that contains immune cells as well as
stromal cells. Tumor-infiltrating immune cells may affect
response to immunotherapies and survival outcomes [10].
Uncovering the relationships between tumor and tumor
immune microenvironment is of importance for discovering
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prognostic markers, lowering drug resistance, and exploiting
novel therapeutic strategies [11]. )erefore, it is of signifi-
cance to construct ICI subtypes to differentiate LGG pa-
tients’ prognosis. Herein, this study developed ICI score
system to characterize the ICI landscape in LGG, which may
accurately predict patients’ outcomes as well as respon-
siveness to immunotherapies.

2. Materials and Methods

2.1. LGG Datasets. RNA-seq data and matched clinical in-
formation of LGG patients were retrieved from )e Cancer
Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) da-
tabase. After removing samples with survival time of 0, 506
samples were retained as the training set. Furthermore, 596
LGG subjects were obtained from the Chinese Glioma
Genome Atlas (CGGA; https://www.cgga.org.cn/), and they
were utilized as the validation set. Table 1 lists the clinical
information of the two datasets. Fragments per kilobase of
transcript per million fragments mapped (FPKM) values
were downloaded from TCGA or CGGA database and
transformed into transcripts per kilobase million (TPM)
values.

2.2. Inferring Tumor-Infiltrating Immune Cells and Stromal
Cells. CIBERSORTx algorithm (https://cibersortx.stanford.
edu/) was applied to estimate the abundances of immune
cells in each LGG sample based on gene expression profiles
[12]. )e LM22 signatures were employed and permutations
were set as 1,000 times. Meanwhile, immune scores and
stromal scores were determined to infer the fractions of
stromal cells and immune cells in each specimen according
to expression data via ESTIMATE algorithm (https://
sourceforge.net/projects/estimateproject/) [13].

2.3. Unsupervised Clustering Analysis. Consensus clustering
method may provide quantitative evidence for determining
the number andmembership of possible clusters in a dataset.
LGG specimens were clustered utilizing “Consensu-
sClusterPlus” R package (version 1.58.0) [14]. When k� 2 to
9, consensus matrix, consensus cumulative distribution
function (CDF), delta area, and tracking plots were con-
structed to determine the optimal k value. )en, cluster
consensus and item consensus were calculated, respectively.
Clustering results were validated by principal component
analysis (PCA).

2.4. Differential Expression Analysis. Differentially
expressed genes (DEGs) with |fold change (FC)| > 2 and
adjusted p value < 0.05 were screened among ICI subtypes
through applying “limma” R package (version 1.9.6) [13].

2.5. ICI Scores. Unsupervised clustering analysis was applied
for categorizing all subjects based on DEGs. Furthermore,
DEGs that displayed positive and negative correlations to
gene clusters were separately named as ICI gene signatures A
and B. To lower the noise or redundant genes, the Boruta

algorithm was utilized for performing dimension reduction
in the ICI gene signatures A and B. Principal component 1
(PC1) was extracted as the signature score through applying
the PCA. According to previous studies [15, 16], the ICI
score of each subject was calculated as follows: ICI score�Ʃ
PC1A – PC1B.

2.6. Functional Enrichment Analysis. Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of ICI gene signatures A and B were
separately presented via “clusterProfiler” R package (version
2.2.7) [17]. Adjusted p value < 0.05 indicated significant
enrichment.

2.7. Gene Set Enrichment Analysis (GSEA). GSEA, a com-
putational method, may be utilized for determining whether
a set of genes display differential expression in two biological
states [18]. Here, this study employed GSEA to identify
differences in KEGG pathways between high and low ICI
score groups. Gene set permutations were presented 1000
times. ICI score was set as a phenotype label. Enriched
KEGG pathways were screened based on false discovery rate
(FDR)< 0.05.

2.8. Tumor Mutation Burden (TMB). TMB was defined as
the ratio of total count of variants and the total length of
exons [19]. )e differences in TMB between high and low
ICI score groups were compared by the Wilcoxon rank-sum
test. )e correlation coefficient between ICI scores and TMB
was computed via Spearman analysis.

2.9. Screening SmallMoleculeDrugs. DEGs with |FC| > 2 and
adjusted p value < 0.05 were filtered between high and low
ICI score groups utilizing “limma” R package. )e two lists

Table 1: )e clinical characteristics of LGG patients in TCGA and
CGGA datasets.

Characteristics TCGA (n� 506) CGGA (n� 596)
Age
≤50 352 501
>50 154 94
NA 0 1

Gender
Female 226 251
Male 280 345

IDH
Mutant 405 416

Wild-type 94 141
NA 7 39

1p19q
Codel 165 180

Noncodel 337 373
NA 4 43

MGMT
Methylated 416 287

Unmethylated 86 202
NA 4 107
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of upregulated and downregulated genes were analyzed
through the Connectivity Map (CMap; http://portals.
broadinstitute.org/cmap/) database [20]. Small molecular
drugs were filtered based on the enrichment value and
permutation p value. CMap mode-of-action (MoA) analysis
was applied for exploring underlying mechanisms of action.

2.10. Statistical Analysis. Statistical analysis was achieved via
R language. Kaplan-Meier curves of overall survival (OS)
were presented for LGG patients in different subgroups and
the differences were compared by log-rank test. Spearman
analysis was employed to determine the correlation coeffi-
cients. Kruskal-Wallis test was applied for comparing over
two subgroups, while Wilcoxon test was utilized for com-
paring two subgroups. )e X-tile software was employed for
classifying patients into high and low ICI groups to lower the
computational batch effects. Two-tailed p value < 0.05 in-
dicated statistical significance.

3. Results

3.1. Characterization of ICI Subtypes with Distinct Survival
Outcomes in LGG. Here, the CIBERSORTx and ESTIMATE
algorithms were employed for determining the infiltration
levels of immune cells in LGG tissues. On the basis of 506
LGG specimens plus corresponding ICI profiling, these
subjects were classified into three subtypes through the
“ConsensusClusterPlus” package (Figures 1(a)–1(c)). PCA
results confirmed the distinct classifications into three
subtypes: ICI subtype A (n� 245), ICI subtype B (n� 75),
and ICI subtype C (n� 186; Figure 1(d)).We further clarified
the differences in clinical phenotypes among the three ICI
subtypes, as shown in Figure 1(e). Novel immunotherapies
have brought hope to LGG patients, but not each patient can
respond to such therapies [21]. Since every tumor is dif-
ferent, it is important to investigate how to use the biology
behind tumor cells to successfully treat more cancer patients
[22]. “Cold” tumors with few T cells are generally less
sensitive to immunotherapy [23]. Among the three ICI
subtypes, ICI subtype A displayed the lowest infiltration
levels of Tcells (Figure 1(e)). Moreover, ICI subtype A was in
relation with undesirable survival outcomes (p � 0.007;
Figure 1(f )). )is classification pattern was confirmed in the
CGGA-LGG dataset (Supplementary Figure 1).

3.2. &e Landscape of Tumor Microenvironment Components
in the &ree ICI Subtypes of LGG. )e interactions between
tumor-infiltrating immune cells, immune scores, and stro-
mal scores in tumor microenvironment of LGG tissues were
analyzed in depth. Figure 2(a) depicts the correlation co-
efficients between them in tumor microenvironment. We
found that activated CD4 memory T cells were strongly
positively correlated to plasma cells. Meanwhile, there was a
strongly positive correlation between stromal scores and
immune scores. ICI subtype B was characterized by in-
creased infiltration levels of plasma cells, CD8 T cells, CD4
memory resting T cells, regulatory T cells (Tregs), macro-
phages M0, resting dendritic cells, resting mast cells, and

neutrophils (Figure 2(b)). ICI subtype C had the features of
increased infiltration levels of follicular helper T cells, ac-
tivated NK cells, monocytes, activated mast cells, and eo-
sinophils. Furthermore, ICI subtype A exhibited the
characteristics of elevated macrophage M2 levels, immune
scores, and stromal scores. PD-L1, as an immune inhibitory
receptor ligand, induces T cell dysfunction as well as apo-
ptosis, thereby suppressing inflammatory responses and
promoting tumor immune evasion [24]. Here, the expres-
sion of immune checkpoint PD-L1 was evaluated in each ICI
subtype. Our results showed that ICI subtype A had the
features of an increased PD-L1 expression, while ICI subtype
C had the features of decreased PD-L1 expression
(Figure 2(c)).

3.3. Identifying ICI Gene Clusters for LGG. )is study
unraveled potential biological features of the three ICI
subtypes. By differential analysis among subtypes, DEGs
were determined. )rough unsupervised clustering analysis,
four ICI gene subtypes were clustered based on these DEGs,
called gene clusters A, B, C, and D (Figures 3(a)–3(c)). 231
DEGs that had positive correlations to ICI gene subtypes
were called ICI gene signatures A, while 236 DEGs were
named as ICI gene signatures B (Supplementary Table 1).
)e heatmap depicted the clinical features and expression
patterns of ICI gene signatures of the four ICI gene clusters
(Figure 3(d)).)e ICI scores were compared among the gene
clusters. We found that gene cluster B was characterized by
decreased ICI scores, while gene cluster D had increased ICI
scores (p< 2.2e − 16; Figure 3(e)).

3.4.BiologicalCharacteristics of ICI-RelevantGeneSignatures.
To uncover the biological characteristics of ICI gene sig-
natures A and B, we presented functional enrichment
analysis. Our results revealed that ICI gene signatures Awere
mainly related to signal transduction-related biological
processes and pathways such as neurotransmitter transport,
synaptic vesicle cycle, vesicle-mediated transport in synapse,
modulation of chemical synaptic transmission, regulation of
transsynaptic signaling, neurotransmitter secretion,
GABAergic synapse, cholinergic synapse, and neuroactive
ligand receptor interaction (Figures 4(a) and 4(b)). Mean-
while, ICI gene signatures B were mainly enriched in im-
mune-related pathways such as leukocyte migration,
leukocyte cell-cell adhesion, leukocyte proliferation, neu-
trophil activation, regulation of lymphocyte proliferation,
regulation of mononuclear cell proliferation, antigen pro-
cessing and presentation, complement and coagulation
cascades, Toll-like receptor signaling pathway, )17 cell
differentiation, )1 and )2 cell differentiation, cytokine-
cytokine receptor interaction, and chemokine signaling
pathway (Figures 4(c) and 4(d)).

3.5. Development of the ICI Score System for LGG. Based on
ICI gene signatures A and B, PCA was presented for
computing ICI score of each LGG patient. All patients in the
TCGA-LGG dataset were separated into high or low ICI
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scores according to the optimal cutoff value. Figure 5(a)
depicts the distribution of ICI scores and survival status for
patients in the four ICI gene clusters. Patients with low ICI
scores exhibited an undesirable prognosis compared to those
with high ICI scores in the TCGA-LGG dataset (p< 0.001;
Figure 5(b)). )e prognostic efficiency of the ICI score
system was confirmed in the CGGA-LGG dataset (p< 0.001;
Figure 5(c)). To uncover the biological implications of ICI
scores, GSEA was presented. High ICI scores were distinctly
correlated to gap junction, neuroactive ligand receptor in-
teraction, and oxidative phosphorylation (Figure 5(d);
Supplementary Table 2). Meanwhile, low ICI scores were in
relation with apoptosis, B cell receptor signaling pathway,
cell adhesion, cytokine-cytokine receptor interaction, JAK

STAT signaling pathway, and Notch signaling pathway
(Figure 5(e); Supplementary Table 3).

3.6. &e Roles of ICI Score in Predicting Response to
Immunotherapy. High ICI scores were significantly corre-
lated to increased infiltration levels of memory B cells, CD8
T cells, CD4 näıve T cells, follicular helper T cells, macro-
phages M0, and eosinophils (Figure 6(a)). Meanwhile, low
ICI scores were characterized by increased infiltration levels
of naı̈ve B cells, plasma cells, CD4 memory resting T cells,
Tregs, resting NK cells, macrophages M2, and activated
dendritic cells as well as increased immune scores and
stromal scores. We also assessed the differences in the
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Figure 1: Characterization of ICI subtypes with distinct survival outcomes for LGG in TCGA-LGG dataset. ((a)–(c)) Unsupervised
clustering analysis for classifying three ICI subtypes by the “ConsensusClusterPlus” package. (a) Consensus cumulative distribution
function graph. (b) Delta area plot. (c) Heatmap for consensus matrix when k� 3. (d) PCA plots for the classification patterns of the ICI
subtypes. (e) Heatmap of tumor-infiltrating immune cells in different clinical phenotypes and ICI subtypes. (f ) Kaplan-Meier curves for OS
of LGG patients in the three ICI subtypes.
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expression of immune checkpoint genes and immune ac-
tivity genes between groups. As shown in Figure 6(b), high
ICI scores exhibited correlations with lower immune activity
genes including GZMA, TBX2, TNF, PRF1, IFNG, CXCL9,
and CXCL10 as well as reduced immune checkpoint genes
including LAG3, CD274, IDO1, PDCD1, HAVCR2, and
CTLA4. Furthermore, TMB score was distinctly reduced in
the high ICI score group compared to the low ICI score
group (p � 0.024; Figure 6(c)). Spearman analysis demon-
strated that ICI scores displayed a significant negative
correlation to TMB (r� −0.15, p � 8e − 04; Figure 6(d)).
)ese data indicated that LGG patients with high ICI scores
had lower responses to immunotherapy.

3.7. Potential Small Molecular Drugs Based on ICI Scores.
Small molecular drugs were further predicted by employing the
CMap database. Firstly, we identified 775 downregulated genes
and 366 upregulated genes in high ICI score group compared
to low ICI score group (Figure 7(a); Supplementary Table 4).

)rough the CMap database, underlying small molecular
compounds against LGG such as carbarsone, sulfabenzamide,
and phenazone were predicted based on downregulated and
upregulated genes, listed in Table 2. Furthermore, the potential
mechanisms of action were analyzed via MoA. Dopamine
receptor antagonist and PPAR receptor agonist were the most
shared mechanisms of action (Figure 7(b)).

4. Discussion

LGG displays great heterogeneity at the genetic and mo-
lecular levels, affecting the efficacy of immunotherapies [25].
)e immune microenvironment of LGG is a complex
neuroinflammatory network, involving positive as well as
negative immune regulators [26]. )is study characterized
the ICI landscape and developed ICI score system that may
predict survival outcomes as well as the response to im-
munotherapies, which extended our comprehension about
the immune microenvironment of LGG.
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Figure 2: )e landscape of tumor microenvironment components in the three ICI subtypes of LGG. (a) Correlations between tumor-
infiltrating immune cells, immune scores, and stromal scores in LGG tissues. )e more towards red, the greater the positive correlation
coefficient; the more towards blue, the greater the negative correlation coefficient. (b) Box plots for the infiltration levels of tumor-infiltrating
immune cells in each ICI subtype. (c) Violin plots for the expression of PD-L1 in each ICI subtype. Kruskal-Wallis test, ns: not significant;
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Immunohistochemistry and flow cytometry are two
commonly applied methods to detect tumor-infiltrating
immune cells, depending on a certain biomarker [27–29].

However, because many marker proteins are expressed in
distinct cell types, both are misleading and incomplete [30].
Here, we analyzed the fractions of 22 immune cells, immune
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Figure 3: Construction of ICI gene clusters for LGG. ((a)–(c)) Unsupervised clustering analysis for identifying ICI gene clusters based on
DEGs among ICI subtypes. (d) Heatmap for clinical features and expression patterns of ICI gene signatures in each ICI gene cluster.
(e) Violin plots for the ICI scores in each ICI gene cluster. Kruskal-Wallis test, p< 2.2e − 16.
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scores, and stromal scores in LGG tissues by the CIBER-
SORTx and ESTIMATE algorithms [31]. We found that
there was a strongly positive correlation between stromal
scores and immune scores. Immune cells and stromal cells
are key components in the tumor microenvironment [32],
which exert a critical role in LGG progress and survival
outcomes [33]. Previously, immune scores and stromal
scores exhibited correlations to tumor grade as well as
outcomes in LGG [3]. Here, this study characterized three
ICI subtypes with distinct survival outcomes and infiltra-
tions of immune cells. ICI subtype B was characterized by
increased infiltration levels of plasma cells, CD8 Tcells, CD4
memory resting T cells, Tregs, macrophages M0, resting
dendritic cells, resting mast cells, and neutrophils. ICI
subtype C was featured by increased infiltration levels of
follicular helper T cells, activated NK cells, monocytes, ac-
tivated mast cells, and eosinophils. ICI subtype A exhibited
the characteristics of elevated macrophage M2 levels, im-
mune scores, and stromal scores. PD-L1 expression is a

critical marker for predicting response to immune check-
point inhibitor therapy [34]. We found that three ICI
subtypes showed correlations to PD-L1 expression, indi-
cating that subjects in the three subtypes could be differ-
entiated to the response to immunotherapy.

)is study constructed four ICI gene subtypes. Gene
cluster B displayed the features of decreased ICI scores, while
gene cluster D had the features of increased ICI scores. We
further uncovered the biological characteristics of ICI gene
signatures A and B. ICI gene signatures A were mainly
related to signal transduction. Malfunction of signal
transduction may induce LGG initiation [35]. Moreover, ICI
gene signatures B were primarily enriched in immune-re-
lated pathways such as Toll-like receptor pathway, chemo-
kine pathway, B cell receptor pathway, and )1, )2, and
)17 cell differentiation. ICI score system was developed for
prediction of LGG patients’ prognosis. Our results showed
that patients with low ICI scores exhibited undesirable
clinical outcomes, which were confirmed in the CGGA-LGG
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dataset. )us, this score system could be utilized for pre-
dicting LGG patients’ prognosis. We further probed into the
biological features based on ICI scores. High ICI scores
displayed correlations to gap junction, neuroactive ligand
receptor interaction, and oxidative phosphorylation. Fur-
thermore, low ICI scores were significantly related to apo-
ptosis, B cell receptor signaling pathway, cell adhesion,
cytokine-cytokine receptor interaction, JAK STAT signaling
pathway, and Notch signaling pathway. )e above pathways
may contribute to LGG progression. For example, IFN-c
may activate JAK/STAT pathway by binding to receptor,
thereby inducing PD-L1 expression on tumor cells [24].

Several tumor-suppressive factors containing cytokines like
TGF-β and IL-10 have been discovered in LGG [36].

Immunotherapies have emerged as promising therapeutic
strategies in LGG. Tumor-infiltrating immune cells affect re-
sponsiveness to such therapies as well as outcomes. )us, we
further characterized the infiltration levels of tumor-infiltrating
immune cells in high and low ICI score LGG samples. High ICI
scores exhibited correlations to increased infiltration levels of
memory B cells, CD8 Tcells, CD4 näıve Tcells, follicular helper
Tcells, macrophages M0, and eosinophils, while low ICI scores
were in relation with increased infiltration levels of näıve
B cells, plasma cells, CD4memory resting Tcells, Tregs, resting
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Figure 6: Assessment of the roles of ICI score in predicting response to immunotherapy. (a))e correlations between ICI scores and tumor-
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NK cells, macrophages M2, and activated dendritic cells.
Furthermore, LGG with low ICI scores had increased immune
scores as well as stromal scores. )ese data reflected the het-
erogeneity of tumor immune microenvironment between high
and low ICI score LGG tissues. Immunotherapies with
blockage of immune checkpoints have displayed clinical effi-
cacy in LGG [37]. Here, high ICI scores were characterized by
decreased immune activity genes including GZMA, TBX2,
TNF, PRF1, IFNG, CXCL9, and CXCL10 as well as reduced
immune checkpoint genes including LAG3, CD274, IDO1,
PDCD1, HAVCR2, and CTLA4. TMB has been an indepen-
dent prognostic index for glioma and increased TMB indicates
poorer survival outcomes [38]. Furthermore, TMBmay predict
the response to immune checkpoint inhibitors in advanced
cancers [39]. In the high ICI score group, there was a reduced
TMB score compared to the low ICI score group. Also, ICI
score displayed a negative correlation to TMB score. Hence,
LGG patients with high ICI scores might have less response to
immunotherapies. Based on DEGs between high and low ICI
scores, we predicted several small molecular drugs against LGG
such as carbarsone, sulfabenzamide, and phenazone. More
experiments should be presented to verify the effects of these
compounds on treating LGG in future studies.

However, several limitations should be pointed out. First
of all, our conclusion was acquired in public databases.)us,
it is indispensable to verify it through experiments. )e
clinical significance of ICI score in predicting prognosis and
immunotherapy in LGG should be confirmed in the future.
Despite these limitations, our study provides clues for the
ICI landscape in LGG for aiding immunotherapy.

5. Conclusion

Collectively, this study characterized the ICI landscape in
LGG by the CIBERSORTx and ESTIMATE algorithms.
)rough unsupervised clustering analysis, we established
three ICI subtypes and four ICI gene clusters. PCA was

applied to develop ICI score system for LGG. Patients with
high ICI scores exhibited favorable clinical outcomes but
lower sensitivity to immunotherapies. Despite this, this
scoring system should be validated in larger LGG cohorts.
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Table 2: Potential small molecular drugs based on ICI scores through the CMap database.

Rank CMap name Mean n Enrichment p Specificity Percent nonnull
1 Carbarsone 0.345 4 0.863 0.00048 0 50
2 Sulfabenzamide 0.312 4 0.8 0.00302 0.0072 50
3 Phenazone −0.359 3 −0.838 0.00853 0.0173 66
4 Prestwick-675 −0.468 4 −0.743 0.00869 0.0928 75
5 Epitiostanol −0.386 4 −0.712 0.0141 0.0432 50
6 Cinoxacin −0.5 4 −0.701 0.01675 0.0197 75
7 Econazole 0.508 4 0.7 0.01677 0.1282 75
8 Betulin 0.456 3 0.771 0.02396 0.0127 66
9 Mevalolactone −0.443 3 −0.77 0.02504 0.0514 66
10 Depudecin 0.391 2 0.887 0.0263 0.0188 50
11 Antazoline −0.433 4 −0.658 0.03127 0.0315 75

12
16,16-

Dimethylprostaglandin
E2

−0.388 3 −0.749 0.03219 0.0276 66

13 Naftidrofuryl −0.3 4 −0.653 0.03428 0.0065 50
14 Metixene −0.273 4 −0.65 0.03555 0.0615 50
15 Zidovudine 0.281 4 0.644 0.03873 0.0245 50
16 Metergoline 0.336 4 0.638 0.04205 0.1726 50
17 Harmaline −0.268 4 −0.636 0.04255 0.0353 50
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Supplementary Materials

Supplementary Table 1: the list of ICI gene signatures A and
B. Supplementary Table 2: GSEA results in high ICI score
group. Supplementary Table 3: GSEA results in low ICI score
group. Supplementary Table 4: DEGs between high and low
ICI score groups. Supplementary Figure 1: validation of the
three ICI subtypes for LGG in the CGGA-LGG dataset.
(A–C) Unsupervised clustering analysis for validating the
classifications of three ICI subtypes. (A) Consensus cu-
mulative distribution function graph. (B) Delta area plot. (C)
Heatmap for consensus matrix when k� 3. (D) Heatmap of
tumor-infiltrating immune cells in different clinical phe-
notypes and ICI subtypes. (E) PCA plots for confirming the
classification patterns of the ICI subtypes. (F) Kaplan-Meier
curves for OS of LGG patients in the three ICI subtypes.
(Supplementary Materials)
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