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Objective: Skeletal muscle fat content is one of the important contributors to insulin
resistance (IR), but its diagnostic value remains unknown, especially in the Chinese
population. Therefore, we aimed to analyze differences in skeletal muscle fat content and
various functional MRI parameters between diabetic patients and control subjects to
evaluate the early indicators of diabetes. In addition, we aimed to investigate the
associations among skeletal muscle fat content, magnetic resonance parameters of
skeletal muscle function and IR in type 2 diabetic patients and control subjects.

Methods:We enrolled 12 patients (age:29-38 years, BMI: 25-28 kg/m2) who were newly
diagnosed with type 2 diabetes (intravenous plasma glucose concentration≥11.1mmol/l
or fasting blood glucose concentration≥7.0mmol/l) together with 12 control subjects as
the control group (age: 26-33 years, BMI: 21-28 kg/m2). Fasting blood samples were
collected for the measurement of glucose, insulin, 2-hour postprandial blood glucose
(PBG2h), and glycated hemoglobin (HbAlc). The magnetic resonance scan of the lower
extremity and abdomen was performed, which can evaluate visceral fat content as well as
skeletal muscle metabolism and function through transverse relaxation times (T2), fraction
anisotropy (FA) and apparent diffusion coefficient (ADC) values.

Results: We found a significant difference in intermuscular fat (IMAT) between the
diabetes group and the control group (p<0.05), the ratio of IMAT in thigh muscles of
diabetes group was higher than that of control group. In the entire cohort, IMAT was
positively correlated with HOMA-IR, HbAlc, T2, and FA, and the T2 value was correlated
with HOMA-IR, PBG2h and HbAlc (p<0.05). There were also significant differences in T2
and FA values between the diabetes group and the control group (p<0.05). According to
the ROC, assuming 8.85% of IMAT as the cutoff value, the sensitivity and specificity of
IMAT were 100% and 83.3%, respectively. Assuming 39.25ms as the cutoff value, the
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sensitivity and specificity of T2 value were 66.7% and 91.7%, respectively. All the
statistical analyses were adjusted for age, BMI and visceral fat content.

Conclusion: Deposition of IMAT in skeletal muscles seems to be an important
determinant for IR in type 2 diabetes. The skeletal muscle IMAT value greater than
8.85% and the T2 value greater than 39.25ms are suggestive of IR.
Keywords: type 2 diabetes, insulin resistance, skeletal muscle, intermuscular fat, MRI
INTRODUCTION

Human organs that can cause insulin resistance (IR) by fat
deposition mainly include the heart, liver, skeletal muscles and
fat (1) Skeletal muscle fat, which includes subcutaneous adipose
tissue (SAT), subfascial adipose tissue (SFAT), intermuscular
adipose tissue (IMAT), and intramyocellular lipids (IMCL) (2), is
one of the major target tissues of insulin and is important for
glucose and lipid uptake and utilization in the human body.
Unlike visceral fat, muscle fat and muscle metabolism in relation
to the risk of type 2 diabetes has been understudied (3, 4).

Among various fat components of skeletal muscle, IMAT is
widely defined as fat infiltration in muscles. Retrospective studies
suggest that IMAT may be related to IR and that the increased
IMAT may impair muscle blood flow, reduce the ability of
insulin to spread, and increase the local concentration of fatty
acids (5–7). Under conditions of excess lipid supply, lipid
deposition in skeletal muscle is associated with the
development of IR, which may even impair insulin signaling
(8, 9) However, the previous studies measured the skeletal
muscle fat content mainly by DXA, CT or T1-weighted
magnetic resonance imaging (T1WI-MRI), which are not
accurate enough because of the limited resolution and non-
uniformity of the magnetic field (10). The chemical
displacement-based water lipid separation (MR Dixon-Quant)
is more accurate in measuring fat content (11). Dixon technology
is now available for most types of MRI, even for various types of
clinical scanning needs (12). In addition, the technology can
separate the MRI signals of intramuscular fat, thereby overcome
the major limitations of T1WI-MRI (13).

In addition to skeletal muscle fat content, functional MRI
indicators also have important value in indicating muscle
metabolism. Hence, the relationship between skeletal muscle and
magnetic resonance parameters, and their contribution to the risk of
type 2 diabetes is important for understanding the pathophysiology
of diabetes. Fractional anisotropy (FA) value can detect the water
migration rate and limitation in the tissue, and is used to evaluate the
microstructure of the tissue (14). Apparent diffusion coefficient
(ADC) value can be used to distinguish the difference between
normal and pathological skeletal muscles (15). The transverse
relaxation times (T2) value can replace the routine laboratory test
to quantitatively analyze the skeletal muscle injury (16). However,
the associations between the functional MRI muscle indicators (FA,
ADC and T2 values) and type 2 diabetes have rarely been studied.
The relationships between muscle fat content and functional MRI
muscle indicators are also not well understood.
n.org 2
Therefore, we aimed to investigate the association of diabetic
biomarker with the skeletal muscle fat content and functional
muscle MRI indicators, test the association between muscle fat
content and functional MRI muscle indicator, and explore the
diagnostic value of skeletal muscle fat content and functional
MRI muscle indicators in type 2 diabetes.
MATERIAL AND METHODS

Subjects and Experimental Design
A total of 24 male subjects were recruited from December 2017
to December 2018 for this cross-sectional study. Of them, twelve
newly diagnosed type 2 diabetic patients (intravenous plasma
glucose concentration ≥11.1mmol/l or fasting blood glucose
concentration ≥7.0mmol/l) were recruited from the First
Endocrinology Clinic of Shengjing Hospital, Shenyang, China.
Twelve control young adults were also recruited from the
geographic area of Shenyang, China. The inclusion criteria
were: aged 25 to 40 years; body mass index (BMI) was between
21 to 29 kg/m2; weight was stable within the past 3 months; not
following a special exercise program within the past 3 months;
non-smoking; no acute illness; no history of diabetes and related
family history; no hypertension, cerebrovascular disease,
coronary heart disease, chronic heart failure or high uric
academia; and have no contraindications for magnetic
resonance imaging.

Participants started fasting at 8 pm before the testing day, and
had venous blood samples for the measurement of fasting blood
glucose, fasting insulin, 2-hour postprandial blood glucose
(PBG2h) and glycated hemoglobin (HbAlc) at 7-8 am and 9-
10 am at the test of the day. The lower extremity magnetic
resonance scans were performed at 12 am. Of notes, for the
patients with type 2 diabetes, the magnetic resonance scans of the
lower extremity were performed within the first three weeks
of diagnosis.

The China Medical University Institutional Review Board
approved the study protocols and all subjects provided written
and informed consent for their participation. The current study
is registered under 2019PS443K.

Anthropometric Measurements
Subjects’ height ( ± 0.1cm) and weight ( ± 0.1kg) were measured
using a wall-mounted stadiometer and a digital balance
scale, respectively. These measurements were used to calculate
BMI (kg/m2).
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Laboratory Assays
All the laboratory assays were processed at the Central
Laboratory of Shengjing Hospital of Shenyang, China. Fasting
blood glucose and 2-hour postprandial blood glucose were
measured within 2 hours after centrifugation (glucose oxidase
assay, Olympus 400 automatic biochemical analyzer). HbA1c
was detected on the same day by high performance liquid
chromatography, Bio Rad D-10, Bole company of the United
States. Radioimmunoassay was used to determine fasting plasma
insulin (FINS). The homeostatic model assessment of insulin
resistance (HOMA-IR) was calculated as: fasting blood glucose ×
fasting insulin/22.5.

Magnetic Resonance Imaging and
Image Analyses
MRI scans (sagittal T2W1, coronal T2W1, functional imaging
T2-mapping, DTI, mDixon-Quant sequences) were performed
by Philip Intera Achieva 3.0T scanner to evaluate the cross-
sectional areas of the visceral fat of the abdomen (14 cases,
7 newly diagnosed type 2 diabetic patients and 7 controls) and
the skeletal muscle fat of the thigh, and the magnetic resonance
parameter values (T2 value, FA value, and ADC value) of the
skeletal muscle were measured.

Axial images of the mid-L2 vertebral level in MRI data were
selected for VAT measurements. The location method was also
assisted by the coronal plane in MRI. Then, the relevant single
slice Digital Imaging and Communications in Medicine files
were imported into Mimics Research software version 21.0
(Materialise, Leuven, Belgium) for image segmentation of VAT
(Figure 1). The lower extremity scans were obtained at femoral
neck, proximal to the terminal end of the femur. This site was
chosen because it is the region with the largest skeletal muscle fat,
and there is little variability across persons (17). The scan time
was approximately 20-25 minutes (Table 1). Images of cross-
sectional areas of the muscle and fat tissue were analyzed by
Frontiers in Endocrinology | www.frontiersin.org 3
using Philips Research Imaging Development Environment
(PRIDE) software (version 4.1.V3).

By drawing ROI, the thigh MRI image can be segmented into
bone and soft tissue measures. For this current study, we
measured 1) the percentage of SFAT, IMAT, and SAT in
skeletal muscle; 2) T2 value, FA value and ADC value in
skeletal muscle (Figure 2).

Statistical Analysis
All data were checked for normality using the Shapiro-Wilk’s test.
The measurement data was expressed as mean ± standard deviation
(SD). The magnetic resonance parameters and the fat content of the
skeletal muscle were compared between the diabetes group and the
control group by Binary logistic. Partial variance correlation
analysis was carried out to test the associations between magnetic
resonance parameters (T2, ADC and FA values) and type 2 diabetes
markers (HOMA-IR, PBG2h and HbAlc). Multiple linear
regression models were used to assess the association of IMAT
and SFAT and SAT with type 2 diabetes markers (HOMA-IR,
PBG2h and HbAlc) and magnetic resonance parameters (T2, ADC
and FA values). The missing values of the visceral fat content were
replaced with the average values in each group. All analyses were
adjusted for age, BMI and visceral fat content. The ROC curve was
FIGURE 1 | Representative abdomen MRI images of VAT between diabetes group and control group. Representative abdomen MRI images in a healthy volunteer
(A) and a patient with diabetes (B). Results for the percentage of the VAT were 8.21% for the healthy volunteer and 10.45% for the patient with diabetes. VAT,
visceral fat.
TABLE 1 | Magnetic resonance sequence acquisition parameters.

Scanning
parameter

T1 T2 DTI T2 mapping mDIXON-quant

TR 260 5384 3357 2010 9.1
TE 15 100 84 40/60/80/100 1.33
FOV 400 400 410 414 420
SNR 1.00 1.00 1.00 1.00 1.00
NSA 3 2 2 2 2
Thickness/Pitch 4.0/0.4 4.0/0.4 4.0/5.0 4.0/15 6.0/-3.0
Scan time 2:09 2:10 3:13 2:13 0:09
March 20
21 | Volume 12
TR, time of repetition; TE, time of echo; FOV, field of view; SNR, signal to noise ratio; NSA,
number of signal averaged.
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drawn to analyze the value of the above indicators for the diagnosis
of type 2 diabetes alone. p < 0.05 was considered statistically
significant. All analyses were performed using SPSS 23.0 for
Windows (SPSS Inc., Chicago, IL, USA).
RESULTS

General Characteristics of the Subjects
A total of 24 subjects were included in the study. Subjects in the
diabetes group were older, and had higher levels of HOMA-IR,
HbA1c, and PBG2h compared to the ones in the control group
(p<0.05) (Table 2).
Frontiers in Endocrinology | www.frontiersin.org 4
Comparison of Muscle Magnetic
Resonance Parameters and Muscle Fat
Components Between Diabetic and
Control Subjects
Subjects in the diabetes group had higher levels of IMAT, T2, and
ADC compared to the ones in the control group (p<0.05)
(Table 3).

Correlation Between Muscle Magnetic
Resonance Parameters and Type 2
Diabetes Markers
Among the three selected magnetic resonance parameters (T2,
FA, and ADC), muscle T2 value and FA value were associated
with HOMA-IR, PBG2h and HbAlc (p<0.05). ADC value was
associated with PBG2h (p<0.05) (Table 4).

Associations Between Thigh Fat
Composition and Muscle Magnetic
Resonance Parameters and Type 2
Diabetes Markers
In the models including IMAT, SFAT and SAT, IMAT was
significantly associated with type 2 diabetes markers (HOMA-IR,
PBG2h and HbAlc) and magnetic resonance parameters (T2,
ADC and FA values) (p<0.05), and SFAT was significantly
FIGURE 2 | Selection and measurement of mDixon-Quant sequence, T2mapping and DTI sequence ROI. Regions of interest for SAT (A), SFAT (B), IMAT (C), and
the positions of the ROI on the rectus femoris, the biceps femoris and the lateral femoral muscle in T2 sequence (D).
TABLE 2 | General characteristics.

Diabetes group Control group p-value

N 12 12 —

Age (years) 34.33 ± 3.98 28.92 ± 3.52 0.002
BMI (kg/m2) 26.73 ± 1.98 24.78 ± 3.27 0.091
HOMA-IR 5.74 ± 3.28 1.83 ± 0.75 0.003
HbAlc (mg/dl) 6.67 ± 1.35 5.20 ± 0.21 0.001
PBG2h (mg/dl) 11.11 ± 2.58 4.960.91 <0.001
Visceral fat (%) 8.36 ± 2.37 6.86 ± 3.58 0.238
BMI, body mass index; HOMA-IR, homeostatic model assessment of insulin resistance;
HbAlc, glycosylated hemoglobin; PBG2h, 2-hour postprandial blood glucose.
March 2021 | Volume 12 | Article 536018
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associated with HOMA-IR (p<0.05). However, SAT was not
associated with type 2 diabetes markers (HOMA-IR, PBG2h
and HbAlc) and magnetic resonance parameters (T2, ADC and
FA values) (p>0.05) (Table 5).

The Diagnostic Value of IMAT, FA, and T2
Values for Type 2 Diabetes
Figure 2 presents the ROC curve of type 2 diabetes based on T2,
FA and IMAT, which showed significant associations with
HOMA-IR, PBG2h and HbAlc values of type 2 diabetes. The
selection of the cutoff value was based on the maximization of the
Youden’s index. The cut-off value of IMAT was 8.85%, its
sensitivity to type 2 diabetes was 100%, specificity was 83.3%.
Frontiers in Endocrinology | www.frontiersin.org 5
The cutoff value of T2 value was 39.25ms, and its diagnostic
sensitivity was 66.7% and specificity was 91.7%. The cutoff value
of FA value was 0.58, and its diagnostic sensitivity was 41.7% and
specificity was 91.8%. The area under the ROC (AUROC) for the
diagnosis of type 2 diabetes by IMAT, T2 and FA values were
0.917, 0.840 and 0.774, respectively. Among these indicators,
IMAT appeared to be the best predictor, followed by T2 and FA
(Figure 3).
DISCUSSION

In this study, we show that IMAT is associated with IR among
young adults, independent of age, BMI and visceral fat content.
However, SAT, which makes up the highest proportion of muscle
fat, is not associated with IR. The T2 and FA values are also
positively correlated with IR, which provides new evidence for
the relationship between the muscle magnetic resonance index
and IR. In addition, IMAT discriminates type 2 diabetic patients
from control subjects with a sensitivity of 100%, and a specificity
of 83.3%.

The mechanism underlying the relationship between skeletal
muscle fat and IR is still not clear. Previous studies have shown
that IMAT may be related to multiple metabolic factors (18–21),
this association is often attributed to the close relationship
between IMAT and BMI, Some studies also suggested that due
TABLE 4 | Correlation between muscle magnetic resonance parameters and
type 2 diabetes markers (N = 24).

HOMA-IR HbAlc (mg/dl) PBG2h (mg/dl)

p-value p-value p-value

T2 (ms) <0.001 <0.001 0.020
ADC (10^-3mm2/s) 0.071 0.052 0.045
FA 0.005 0.001 0.001
All estimates were adjusted for age, BMI and visceral fat content. T2, transverse relaxation
times; FA, fractional anisotropy; ADC, apparent diffusion coefficient; HOMA-IR,
homeostatic model assessment of insulin resistance; HbAlc, glycosylated hemoglobin;
PBG2h, 2-hour postprandial blood glucose.
TABLE 3 | Comparison of muscle magnetic resonance parameters and muscle fat components in diabetes group (N = 12) and control group (N = 12).

Diabetes group Control group OR 95%Cl p-value

IMAT (%) 10.08 ± 1.37 7.06 ± 2.02 3.27 1.14-9.35 0.03
SFAT (%) 3.69 ± 0.60 3.51 ± 0.79 1.07 0.16-7.44 0.94
SCAT (%) 20.13 ± 6.43 25.19 ± 6.56 0.94 0.77-1.13 0.50
Total fat (%) 33.91 ± 6.35 35.78 ± 7.24 1.02 0.82-1.26 0.86
FA 0.56 ± 0.05 0.51 ± 0.04 2.38 0.89-6.41 0.09
T2 (ms) 40.67 ± 3.75 37.25 ± 1.94 1.75 1.00-3.05 0.05
ADC (10^-3mm2/s) 1.20 ± 0.97 0.96 ± 0.26 1.12 1.01-1.23 0.02
March
 2021 | Volume 12 | Article
All estimates were adjusted for age, BMI and visceral fat content. IMAT, Intermuscular Fat; SFAT, subfascial adipose tissue; SAT, subcutaneous adipose tissue; T2, transverse relaxation
times; FA, fractional anisotropy; ADC, apparent diffusion coefficient; OR, odds ratio; Cl, confidence interval.
TABLE 5 | Association between thigh fat composition and muscle magnetic resonance parameters and type 2 diabetes markers (N = 24).

Model HOMA-1R HbAlc (mg/dl) PBG2h (mg/dl) T2 (ms) FA

b p-value b p-value b p-value b p-value b p-value

1 IMAT 1.025 <0.001 0.587 <0.001 1.190 0.001 1.464 <0.001 0.019 0.002
2 SFAT 1.082 0.018 0.441 0.275 1.100 0.416 2.207 0.123 0.027 0.216
3 SAT -0.087 0.060 -0.096 0.058 -0.232 0.070 -0.335 0.244 -0.002 0.391
4 IMAT 0.511 <0.001 0.614 <0.001 1.213 0.004 1.390 0.001 0.018 0.008

SFAT 0.527 0.046 -0.255 0.454 -0.216 0.849 0.699 0.520 0.008 0.680
5 IMAT 0.573 <0.001 0.581 <0.001 1.096 0.010 1.607 <0.001 0.021 0.005

SAT 0.004 0.891 -0.004 0.924 -0.058 0.629 0.089 0.444 0.001 0.487
6 IMAT 0.485 <0.001 0.623 <0.001 1.106 0.020 1.528 0.002 0.020 0.014

SFAT 0.563 0.047 -0.269 0.465 -0.063 0.958 0.501 0.664 0.001 0.827
SAT -0.013 0.640 0.005 0.901 -0.056 0.665 0.073 0.554 0.005 0.559
Multivariate linear regression analysis was used; All estimates were adjusted for age, BMI and visceral fat content. Type 2 diabetes markers (HOMA-IR, PBG2h and HbAlc) and magnetic
resonance parameters (T2, ADC and FA values) were dependent variables. IMAT, SFAT and SAT were independent variables of model 1-3, respectively. The independent variables of
model 4-5 were paired by IMAT, SFAT, and SAT. The independent variables of model 6 included IMAT, SFAT and SAT. IMAT, intermuscular adipose tissue; SFAT, subfascial adipose
tissue; SAT, subcutaneous adipose tissue; HOMA-IR, homeostatic model assessment of insulin resistance; HbAlc, glycosylated hemoglobin; PBG2h, 2-hour postprandial blood glucose;
T2, transverse relaxation times; FA, fractional anisotropy.
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to the adjacent anatomical structure of skeletal muscle and
IMAT, IMAT may affect the direct contact between fat and
muscle cells through the secreted adipokines or locally affect
the muscles through the shared micro-vessels (22, 23). The
infiltration of IMAT in skeletal muscle may also increase the
local inflammation of muscle fibers, which may lead to increased
oxidative stress in the muscles. This could result in decreased
insulin-stimulated tyrosine phosphorylation and decreased
activity of downstream signaling molecules, which in turn
causes insulin resistance (24, 25). Recent research indicates
that IMAT may regulate muscle insulin sensitivity by secreting
inflammatory cytokines and extracellular matrix proteins, as well
as increasing the concentration of free fatty acids (FFA) in the
body (26). Our study found that IMAT was statistically different
between type 2 diabetic patients and control subjects. There was
no significant difference in SFAT or SAT between the two
groups. Moreover, we showed that IMAT was associated with
higher HOMA-IR, HbA1c, and PBG2h. Our findings are
consistent with the results of Goodpaster et al. (18, 27). They
evaluated the adipose tissue of thighs in 65 Americans by CT and
DXA and suggested that IMAT and SFAT might be markers of
IR in type 2 diabetes. Another study found that high levels of
thigh subcutaneous adipose tissue and low levels of thigh IMAT
might maintain good insul in metabol ism in ear ly
postmenopausal American women (19). In addition, Kim et al.
(20) reported that among 75 middle-aged and older adults,
IMAT might have a negative influence on fasting glucose
concentration. These findings collectively indicate that IMAT
may increase metabolic risk in IR and type 2 diabetes. In
summary, we speculate that IMAT may increase in the skeletal
muscle of Chinese male patients with type 2 diabetes, which
could affect the muscle mass and muscle function.

There are a few studies regarding the correlation between
skeletal muscle MR parameters and IR, as well as type 2 diabetes
(28, 29), and whether it can be used as an index to predict or
diagnoses type 2 diabetes still remains unclear. Their findings
indicate that fasting hyperinsulinemia (insulin resistance) and
Frontiers in Endocrinology | www.frontiersin.org 6
dyslipidemia have independent and additional contributions to
increased tissue magnetic resonance T2 values, and T2 values
should be early screened for metabolic dysfunction to prevent
diabetes and cardiovascular disease (30). Others have shown that
biomarkers associated with water T2 can provide evidence for
the pathophysiology of metabolic syndrome and early metabolic
disorders prior to the occurrence of type 2 diabetes and
cardiovascular disease (31). DTI sequence and its parameters
(ADC and FA values) can be used to evaluate the difference of
fibrous tissue in diseased and control muscle tissues, and as one
of the commonly used methods. It can also provide an in-depth
understanding of muscle dynamics, which may apply the
analysis and research of muscle tissue metabolism (32, 33).
Among muscle fat components, IMAT has a positive
correlation with T2 and FA values, which indicates that IMAT
may affect muscle metabolism and participate in the process of
early IR in type 2 diabetes.

In recent years, various types of diabetes prediction models
have been proposed (34–37), but none of those have been
constructed or validated in skeletal muscle fat content or
magnetic resonance parameters in the Chinese population.
Moreover, our model was based on MR mDIXON-quant
quantitative technique, and IMAT and T2 value that may affect
the incidence of the disease were included in the regression
model. Our results showed that among the equal magnetic
resonance parameters, T2 and FA values were associated with
increased HOMA-IR and HbA1c. It is indicated that T2 can
detect abnormalities in skeletal muscle signals in newly
diagnosed diabetic patients. IMAT discriminated type 2
diabetic patients from control subjects with the sensitivity of
100% and the specificity of 83.3% when setting the cutoff value of
IMAT as 8.85%. Muscle T2 value might also be used to detect
early skeletal muscle changes in type 2 diabetes patients,
assuming 39.25ms as the cutoff value, the sensitivity and
specificity were 66.7% and 91.7% respectively. In our study, the
IMAT and SFAT levels of one control subject were higher than
the cut-off value, but the HOMA-IR, PBG2h and HbAlc values
FIGURE 3 | ROC plot of each type of indicator for diagnosis of type 2 diabetes. IMAT, intermuscular adipose tissue; FA, fractional anisotropy; T2, transverse
relaxation times.
March 2021 | Volume 12 | Article 536018

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Yu et al. Muscle Fat in Diabetes
were normal. During 2-year follow up period, his fasting insulin
and fasting blood glucose were found to have exceeded the
normal value. After clinical consultation, treatment options
including medication and exercise therapy were developed for
this subject.

At current stage, various weight loss guidelines rarely
consider specific organs (e.g., for skeletal muscle and pancreas)
(38, 39). MR imaging provides a unique, non-radiative and non-
invasive diagnostic platform that can directly quantify the
physiological and biochemical variables of skeletal muscle (40).
Using more accurate MR analysis to analyze the content of
IMAT and the measurement of muscle magnetic resonance
signals may provide clinicians with more specific strategies for
treating skeletal muscle fat infiltration, and even predict the long-
term risk of type 2 diabetes in obese patients.

The employment of MR mDIXON-quant quantitative
technique to quantify IMAT is a strength of this study. This
technique is able to directly measure IMAT and more sensitive
than computed tomography (CT), which indirectly measures
IMAT (41). Type 2 diabetes has many confounding factors such
as medications, but the patients in our study were all newly
diagnosed with type 2 diabetes and not on medications, which is
another strength.

There are several limitations in our study. First, our sample
size is modest, and we did not calculate our sample size before
conducting this study. However, as a post hoc analysis, we found
that the average IMAT was 10.08% with an SD of 1.37 in the
diabetes group, and the average was 7.06% with an SD of 2.02 in
the control group. Based on our data, this study had a power of
98.24% to detect the difference in IMAT between the diabetes
group and the control group at 5% significance level with a total
of 24 samples equally allocated between the two groups. In other
words, despite the modest sample size, we were still able to
identify the significant differences between the two groups.
Second, this study is cross-sectional, and no causal relationship
can be derived. Prospective follow-up studies with an adequate
sample size are needed to validate our findings. Third, because
the mDIXON-quant technique scan image used was susceptible
to motion artifacts, and image post-processing only by manually
delineating ROI to measure the content of various fat
components in muscles, there could be measurement errors.
Fourth, the missing values of the visceral fat content, when used
as a confounding factor in the statistical analyses, might cause
biased results. Fifth, our participants are all Chinese males, such
that the findings cannot be generalized to other populations.
Last, MRI scanning is costly, and not widely used yet. To the best
of our knowledge, the relationship between the fat components
of muscles and the prevalence of type 2 diabetes is understudied
(42). Thus, at this stage, mDIXON-Quant, a robust noninvasive
quantitative method available, would be well suited for the
Frontiers in Endocrinology | www.frontiersin.org 7
accurate measurement of the content of IMAT and muscle
magnetic resonance signals in this regard.

In conclusion, IMAT in skeletal muscles is associated with IR,
and T2 value can detect the metabolic irregularity of skeletal
muscle in Chinese male patients with newly diagnosed type 2
diabetes. The skeletal muscle IMAT value greater than 8.85% and
the T2 value greater than 39.25ms are suggestive of type 2
diabetes in Chinese males.
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