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Abstract: PET/CT molecular imaging has been imposed in clinical oncological practice over the past
20 years, driven by its two well-grounded foundations: quantification and radiolabeled molecular
probe vectorization. From basic visual interpretation to more sophisticated full kinetic modeling,
PET technology provides a unique opportunity to characterize various biological processes with
different levels of analysis. In clinical practice, many efforts have been made during the last two
decades to standardize image analyses at the international level, but advanced metrics are still under
use in practice. In parallel, the integration of PET imaging with radionuclide therapy, also known as
radiolabeled theranostics, has paved the way towards highly sensitive radionuclide-based precision
medicine, with major breakthroughs emerging in neuroendocrine tumors and prostate cancer. PET
imaging of tumor immunity and beyond is also emerging, emphasizing the unique capabilities of
PET molecular imaging to constantly adapt to emerging oncological challenges. However, these new
horizons face the growing complexity of multidimensional data. In the era of precision medicine,
statistical and computer sciences are currently revolutionizing image-based decision making, paving
the way for more holistic cancer molecular imaging analyses at the whole-body level.
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1. Introduction

Awarded the medical invention of the year by Time Magazine in 2000, PET/CT
molecular imaging has been imposed in clinical oncological practice over the past 20 years,
substantially modifying the management of many cancer subtypes in daily practice [1-3].
Supported by the International Atomic Energy Agency, the Lancet Oncology commission
on medical imaging and nuclear medicine—an international consortium established in 2018
to inventory and promote access to imaging and nuclear medicine for cancer care—has
emphasized the substantial health and cost benefits of scaling up access to imaging and
nuclear medicine for cancer care worldwide [4]. In particular, PET/CT and theranostics
are now recommended imaging modalities for cancer care in tertiary health care centers.

Based on the well-grounded foundations of quantification and radiolabeled molecular
probe vectorization, the goal of this article is to provide a holistic overview of the capabili-
ties, current practice and emerging perspective of PET-molecular imaging for diagnosis,
therapeutic evaluation and prognosis in clinical oncology.
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2. PET Molecular Imaging: A Powerful Quantitative Imaging Tool with Different
Levels of Analysis

PET imaging was mainly developed in the 1970s for brain research purposes. In
the early 2000s, PET/CT hybrid imaging was rapidly imposed worldwide as a critical
oncological imaging tool, paving the way for the molecular imaging-based assessment
of tumors in clinical practice. During the last 20 years, constant technical improvements
have led to a 3- to 5-fold decrease in injected radioactivity in clinical practice, making the
debate on radiation exposure clearly outdated in view of the major benefit obtained in daily
patient care. The recent FDA-cleared and CE-marked deep learning solutions that provide
dose-reduced Al-based FDG PET/CT should optimize patients’ radiation exposure even
more in the future (SubtlePET™ AI [5]). With its very high detection sensitivity properties
(picomolar, 10° higher than standard morphological imaging), PET is a powerful imaging
tool that can be used to quantify various biological processes. By quantification, one must
understand a simple linear relationship between the numerical pixel value N measured
in a region of interest (ROI) of the image and the biological radiotracer concentration
[C] in the related tissue structure: N = k[C]. Importantly, this fundamental property
depends on the control of many technical and physical factors to make an optimized
and accurate link between the patient and its related optimized PET imaging data [6].
Regular quality controls, standardized practical procedures and CT-based attenuation
corrections are among the most important prerequisites. Additionally, one must be aware
of the impact of image reconstruction parameters on the measured PET data. For these
reasons, the European Association of Nuclear Medicine (EANM) launched the EANM
Research GmbH (EARL) initiative in 2006 to promote the standardization of PET practices
(clinical and research) at the international level [7]. In the same way, and because molecular
imaging is impacted by the patient’s physiological condition, several drug intakes, fasting
procedures and delay times between the radiotracer injection and the image acquisition
must be verified. Therefore, numerous international guidelines have been published to
standardize these procedures [8-10]. For example, considering FDG PET imaging, the most
widely used PET radiotracer in clinical oncology, and because tumor glucose metabolism
increases with time [11], a fixed 60-min delay time between radiotracer injection and PET
acquisition has been defined [8]. Additionally, metabolism-modifying drugs such as G-CSF
and physical activity must be avoided, and a 6-h fast before and euglycemia at the time of
image acquisition must be verified [8]. Based on these important technical considerations,
several levels of quantification have been historically developed for PET imaging: from
visual interpretation to full kinetic modeling, the level of information provided to the
clinician is not the same and does not require the same acquisition procedures (Figure 1).
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Figure 1. Main concepts of image acquisition and quantification in PET. The image coverage (PET bed position) depends on

the axial field of view of the PET ring. Two acquisition schemes may be performed: the static mode (top panel), massively

used in current practice, consists of acquiring snapshots of each PET bed position successively (a few minutes per bed

position) at a fixed delay time after radiotracer injection (60 min in oncology), and the dynamic mode (bottom panel),

currently devoted mainly to research purposes, consists of acquiring a PET bed position continuously (from a few minutes

to one hour depending on the mathematical model used). The arterial input function (red curve) and lesion time-activity

curve (green curve) are measured from volumes of interest, fitted to mathematical models to generate parametric maps of

the lesion of biological significance (perfusion, enzymatic activity, metabolic rate of glucose consumption, etc.). While the

static acquisition scheme is fast and user friendly, only visual and SUV-based semiquantitative metrics can be generated.

However, dynamic PET models provide advanced quantitative metrics of sophisticated biological significance and remain

the absolute reference standard for quantification.

2.1. Visual Analysis

This first level of analysis only requires static PET imaging data (the standard of care
in clinical practice): the radiotracer is injected intravenously into the patient, and a few
minutes of PET acquisitions (typically 2 to 5 min per bed position, which is defined by
the PET axial field of view) are started after a fixed delay time from the injection (e.g.,
60 min for ¥F-FDG). The resulting PET imaging data are, thus, an average snapshot of
the entire acquisition time for each PET bed position (Figure 1). Visual analysis considers
any non-physiological radiotracer uptake as abnormal. Although this protocol is very
simple to use, accurate knowledge of radiotracer biodistributions is required (Figure 2).
Additionally, this pattern-based approach is subjective and remains purely qualitative. To
reduce the inter- and intraindividual variabilities, visual grade normalizations to reference
regions have been proposed (cf infra). The diagnostic and prognostic capabilities of PET
visual analyses over conventional imaging are perfectly illustrated in FDG-avid lymphoma
patients [12], with reported management changes up to 45% at initial staging [13] and
improved outcome prediction (both progression and event-free survival) at both early
and end-of-treatment evaluations (for extensive review, please refer to Appendices A1-A3
of [12]). In the same way, other well-grounded illustrative foundations emphasizing the
high suitability of visual-based PET assessments for the diagnosis or management of
oncological patients include malignant melanoma [14], non-lepidic non-small-cell lung
cancer (18F-FDG) [1,15,16], paraganglioma syndromes (18F—FDOPA for SDHC, SDHD and
SDHAF2 gene mutations) [17-19] or, more recently, multiple myeloma [20].
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Figure 2. Normal biodistributions of three widely used PET radiotracers in oncological practice (static PET acquisitions):

I8E_-FDG to assess glucose metabolism, I8F_choline to assess membrane renewal and 13F-FDOPA to assess the metabolism of

L-DOPA. In the three cases, the radiotracer physiological biodistributions have their own characteristics.

2.2. Semi-Quantitative Analyses

To measure the biological aggressiveness of tumors and to monitor the response to
treatment from standard-of-care static PET imaging data with more objective metrics, semi-
quantitative approaches have been increasingly used in clinical studies. The standardized
uptake value (SUV), the most widely used semi-quantitative PET metric that was first used
in the 1980s [21], is a unitless parameter defined by the ratio of the time-decay-corrected
radioactivity concentration measured in a region of interest (Cyarger, in MBq/ mL) to the
radioactivity injected in the body (Ciyjected, in MBq), normalized by the body weight (in

C arge
Ci,,jfctf; /gV\t/eight
area (SUVyg,) or, more recently, lean body mass (SUVy,,, or SUL) instead of body weight,
has been proposed, and SUL is the current preferred metric for response assessment
studies because of its lower dependency on body weight changes [8]. From this general
concept, many SUV-based metrics have been reported since the 1990s, including SUV max
(the maximum pixel activity measured in the region of interest), SUVmpean (the mean of
pixel activities measured in the region of interest) or SUV ,¢qx (the mean of pixel activities

g) or equivalent: SUVbw = x 1 g/mL. SUV normalization to body surface

measured in a volume of 1 cm3 centered on the higher uptake part of the region of interest),
but also target background SUV ratios (SUV;) and composite whole-body scores, such as
metabolic tumor volume (TV = ¥} (Volume, ) for n lesions identified at the whole-body
level) or total lesion glycolysis (TLG = }_§(SUVyeann x Volume,) for n lesions identified
at the whole-body level) (Figure 3). Importantly, all these SUV-based metrics intrinsically
depend on numerous physical and technical factors [22,23], strongly limiting the absolute
comparability at the multicenter level except if using proper standardization procedures [7].
Additionally, the semiautomated segmentation procedures used to generate metabolic
volumes of interest are still mainly based on simple fixed thresholds in clinical practice
(typically 3D isocontour at 41% or 50% of the maximum pixel value) [8], despite their
well-known inaccuracy to delineate heterogeneous tumor lesions. The segmentation task is
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an entire research topic in itself, illustrating the richness of the many possibilities developed
in this field [24]. In general, SUV-based metrics and derivatives have shown their relevance
for early response assessments of treatment or prognosis in various malignancies, such as
gastric cancer [25], rectal cancer [26], lymphoma [27-30], gastrointestinal stromal tumors
(GISTs) [31,32] or multiple myeloma [33,34].

Lesion level semi quantitative analysis Whole-body level semi quantitative analysis

SUV-based MTV, TLG - . A

» .

Figure 3. Semiquantitative PET metrics can be extracted at the lesion level (left panel, '®F-FDG PET scan of a patient with

NSCLC) or at the whole-body level (right panel, ®®Ga-PSMA PET scan of a patient with prostate cancer, courtesy of Jérémie
Calais and Andrei Gafita, Ahmanson Translational Theranostics Division, UCLA, Los Angeles, CA, USA). For whole body
metrics, the sum of each SUV-based metric extracted at the lesion level is used: metabolic tumor volume (MTV) or total
volume (TV) is defined at a fixed SUV threshold (typically 40% or 50% of SUVmay in standard practice), and total lesion
glycolysis (TLG) is defined as MTV X SUVean. MTV and TLG are surrogates of tumor burden at the whole-body level.

2.3. Kinetic Modeling

In fact, visual and semi-quantitative PET metrics derived from static PET images
provide limited information. Using dynamic PET acquisitions provides more sophisticated
metrics, allowing the quantification of advanced metabolic pathways at the cellular level
(Figure 1). From Patlak simplified graphical analysis [35] to full compartmental analyses
(1, 2, 3 or more compartments depending on the estimated biological function: perfusion,
enzymatic activity, receptor binding) [36], PET kinetic modeling is considered the reference
standard for absolute quantification. Compared to standard-of-care PET static measure-
ments, dynamic PET metrics have provided promising results to improve the diagnosis,
response assessment or prognosis of various malignancies [37]. To date, historical draw-
backs have limited its use in clinical practice. In particular, the need for time-consuming
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acquisition schemes (up to one-hour continuous PET acquisition to estimate the full com-
partmental modeling of glucose metabolism [38]), the very limited axial coverage of the
body extent in standard-of-care PET/CT devices and the complexity of image processing
remain major limiting factors. However, the recent FDA clearances of large axial coverage
and total body PET/CT systems [39-41], together with potential time-reduced acquisi-
tion procedures [42,43], improved reconstructions and postprocessing tools, will probably
democratize dynamic whole-body PET in research and clinical practice, boosted by the
growing molecular targeting requirements related to oncological drug development [44].

3. PET Molecular Imaging: Response Evaluation Criteria in Practice

The use of robust, easy-to-use and reliable interpretation criteria is of particular im-
portance in oncological imaging. In clinical practice, many efforts have been made over
the last two decades to standardize image analyses at an international level. Supported
by historical RECIST morphological-based models, the response criteria are traditionally
defined by four main categories: complete response (CR), partial response (PR), stable
disease (SD) or progressive disease (PD). Although RECIST and its revised versions histori-
cally dominate this field in clinical trials [45], its limitations in predicting survival outcome
or response to treatments and the massive deployment of PET imaging in worldwide
oncological practice have motivated the emergence of PET-based response criteria in many
cancer diseases. Depending of the targeted disease, several PET-based international criteria
have been proposed as described in the next sections.

3.1. Solid Tumors

A general historic of response criteria for solid tumor is provided in Table 1. In 1999,
the European Organization for Research and Treatment of Cancer (EORTC) first introduced
metabolic information from '8F FDG-PET imaging (namely, SUVp,y) into the response
assessment criteria of oncological diseases [46]. In practice, the EORTC criteria remained
in the background of RECIST until 2009 because of the well-known inherent inter-center
variability of the SUVpax PET metric [47]. In 2009, a very large step was made with
the introduction of the PET-Response Criteria in Solid Tumors (PERCIST) [48]. For the
first time, a critical effort has been made to propose a well-defined, reliable and robust
standardized PET methodology in this field (Figure 4). To overcome the limitations of
SUVax, SUVpeak was introduced, together with SUV normalization by lean body mass
(SUL) and a precise explanation of the definition and number of measurable targeted tumor
lesions. Additionally, the percent change in SUL e,k between the two examinations was
set to 30% to integrate the inter-center variabilities. The PERCIST criteria take full interest,
particularly in the assessment of cytostatic chemotherapies, as they can demonstrate
metabolic changes when no anatomical changes are observed. To date, PERCIST has
surpassed RECIST in numerous cancer diseases for the prediction of patient outcome or the
assessment of responses to treatment in many cancer diseases, emphasizing the relevance
of this powerful PET-based evaluation tool. In particular, breast cancer [49], esophageal
cancer [50], Ewing sarcoma [51] and non-small-cell lung cancer (NSCLC) [52,53] have been
investigated for this purpose. With the emergence of immunotherapy, standard imaging
criteria (both morphological and metabolic-based) have rapidly required refinements
to integrate atypical response patterns such as pseudoprogression or hyperprogression
diseases, which can lead to significant misclassification of patients [54]. To mirror the
morphological definition of two new categories of response assessment to treatment in
the dedicated iRECIST update (namely, unconfirmed and confirmed progression diseases),
iPERCIST criteria were recently proposed and tested retrospectively in a study of 28 cases
of NSCLC being treated with nivolumab [55]. Previously, PET/CT Criteria for Early
Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT) have been
assessed prospectively in advanced melanoma under immune checkpoint inhibitors [56].
Combining anatomical and functional imaging data to predict eventual response to ICI
reached 100% sensitivity, 93% specificity and 95% accuracy. However, these findings are



Int. J. Mol. Sci. 2021, 22, 4159 7 of 26

mainly limited by the small number of patients evaluated and require validation in larger
cohorts. More recently, Anwar H. and coworkers proposed the PET Response Evaluation
Criteria for Inmunotherapy (PERCIMT) in 41 melanoma patients [57,58]. Interestingly;,
PERCIMT criteria consider the number of new lesions and their extent during therapy,
which allows better patient stratification compared to standard SUV-based parameters.
The new appearance of >4 metabolically active lesions with functional diameters <1.0 cm
or >3 lesions >1.0 cm in diameter seemed correlated with real progression rather than
pseudoprogression. At the same time, ¥ F-FDG PET imaging offers a unique opportunity
to detect immune-related side effects at the whole-body level, such as thyroiditis, gastritis,
colitis, pneumonitis, sarcoidosis [59] and polymyalgia rheumatica-like syndromes [60].
Interestingly, few studies have reported an association between immune activation [61] or
immune-related side effects assessed by PET and patient response [62,63]. Although these
recent results must be confirmed in larger prospective studies, metabolic-based imaging
appears to be a promising tool in this field.

| Baseline scan Follow-up scan

SULpesi = 10

d [ £\ ‘
e FE
VoY

Figure 4. PERCIST tumor response assessment (breast cancer with N+ extension, I8E.FDG PET). The SULpeak of the
targets at baseline and follow-up, measured semiautomatically from the VOI on static PET images, provided between-scan
differences of ASULpeak = —90% and —67%, respectively, for lesions 1 and 2. According to PERCIST criteria, it is considered
a partial metabolic response (ASULpeqx > —30%).

Table 1. Response evaluation criteria in solid tumors.

Response to Treatment

Criteria CR PR SD PD
Reduction of
>15% reduction Neither >25% increase in
181 = >
EORTC (1999) F-FDG uptake of BE-FDG uptake CR, PR nor PD BE.FDG uptake
to background
Reduction of > 30% reduction Neither

PERCIST (2009) I8F-FDG uptake
to background

in SULpeak CR, PR nor PD >30% increase in SUL peak
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Table 1. Cont.

Response to Treatment

Criteria CR PR SD PD
' >30% reduction in >30% increase in SUL peak
Metabolic . Or new metabolically
. SULpeak Neither . .
PECRIT (2017) disappearance of target; ~30% decrease in TL CR. PR nor PD active lesion
SAD reduction of LN =0 ’ >20% increase in TL diameter
diameter sum .
Or new lesions
Complete resolution of . . >4 new lesions < 10 mm
PERCIMT (2018) all S;gf}g;%éggﬁ:;ﬁr?; CR T;Etils; PD Or >3 new lesions > 10 mm
8F_FDG-avid lesions ’ Or >2 new lesions > 15 mm
>30% '8F-FDG uptake
Or
181
iPERCIST (2019) Complete resolution of ~ >30% decrease in the Neither l\rll e“é F F%Cij%a;gett AL(_LEI;PMDIZ
I8E-FDG uptake target tumor 8F-FDG CR, PR nor PD eed secon a Weens

later (CPMD); if progression is
followed by PMR or SMD, the
bar is reset.

CR: Complete response, CT: Computed Tomography, ¥F-FDG: '8E-Fluorodeoxyglucose, PD: Progressive Disease, PET: Positron emission
tomography, PR: Partial response, SAD: Short-Axis Diameter, SUL: SUV normalized by lean body mass, TL: Target Lesions, UPMD:
Unconfirmed Progressive Metabolic Disease, CPMD: Confirmed Progressive Metabolic Disease, PMR: Partial Metabolic Response, SMD:

Stable Metabolic Disease.

3.2. Lymphoma

In Hodgkin Lymphoma (HL) and Non-Hodgkin Lymphoma (NHL, mainly Diffuse
large B-cell lymphoma DLBCL), given the natural high avidity of aggressive tumor cells
for F-FDG and the binary metabolic response to treatment, dedicated PET response
evaluation criteria have progressively emerged to currently become the most powerful
imaging tool in this field (Table 2). Considering the extensive evidence-based literature of
the first decade of the 21st century, PET was integrated into the international guidelines
for response assessment of lymphoma in 2007 [64], a revised version of the historical
international working group morphological criteria [65]. Seven years later, the Lugano
criteria refined these guidelines [66], confirming the role of PET as a key imaging modality
in the diagnosis and response assessment of lymphoma. PET imaging was definitively
integrated into the Ann Arbor staging system (Lugano staging classification), and the
PET Deauville 5-point visual grading scale was defined as the main response evaluation
tool (in standard therapeutic schemes, end-treatment scores of 1, 2 or 3 were considered
CR, whereas scores of 4 and 5 were considered non-responses, as illustrated in Figure 5).
Additionally, based on the relevance of PET in this field, bone marrow biopsy is no longer
indicated for the assessment of bone marrow involvement in HL and is only required in
negative PET cases with consequences for patient management in DLBCL. To increase the
reliability of the procedure and improve the prognostic value of PET imaging, interim
SUV-based semiquantitative metrics are currently being extensively investigated [28,67,68].
In particular, a very recent large prospective study with 158 new DLBCL patients reported
higher prognostic value for interim SUV-based metrics (interim ASUVyax = percent change
between baseline PET and PET performed after two cycles of treatment) compared to the
standard visual grading scale evaluation [69]. In particular, only the interim ASUVyax
predicted both PFS and OS. These findings and those of other recent clinical trials highlight
the relevance of using more quantitative PET methods in this field [70,71]. Finally, for solid
tumors, PET imaging criteria were recently adapted to immunotherapy by integrating
indeterminate response features: the lymphoma response to immunomodulatory therapy
criteria (LYRIC) in 2016 [72] and the Response Evaluation Criteria in Lymphoma (RECIL)
in 2017, with more morphological parameter weighting [73].
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Table 2. Response evaluation criteria in lymphoma.

Response to Treatment

Criteria CR PR SD PD
. CT: > 50% CT: neither ) ) )
. CT: reduction of lesions reduction in SPD sufficient change . CT: > 59"/0 increase in SPD of lesions
LUGANO to normal size of up to 6 lesions for PD nor PR . New lesion(s)
2014) PET: normalized ° PET: reduced PET: unchanged . PET: increased 18F-FDG-uptake
18F—FDG—uptake (DS 1-3) 18F-FDG-uptake 18F-FDG-uptake (DS 4-5) or new 18F-FDG-avid lesions
(DS 4-5) (DS 4-5)
Adapted from Lugano to indeterminate
response (IR) categories:
° IR1: > 50% increase in SPD in
12 weeks without clinical
deterioratiqn ) .
LYRIC Same as Lugano e Same as Lugano Same as Lugano ¢ [R2: <50% increase in SPD with new
(2016) lesion(s), or > 50% increase in SPD of
a lesion or set of lesions at any time
during treatment
. IR3: increase in 18F-FDG-uptake
without increase in lesion size
meeting criteria for PD
Partial response
CT: ) . CT: > 30%
° di : complete £ all TL decrease in SLD of ° CT: >20% increase in SLD of TL
1s§1pﬁear3nce ° t}? LD TL, but no CR CT: <10% decrease e  For small lymph nodes <15 mm after
RECIL 3?0 ;:1 mno €s wi e PET:DS4or5 or < 20% increase therapy, a minimum absolute
(2017) . ; Minor response SLD of TL increase of 5 mm and the LD >15 mm
PET: normalized PET: DS !
. Same as PR yet - any . New lesion(s)

18F-FDG-uptake
(DS 1-3)

only > 10% and
<30% SLD
decrease

PET: any DS

CT: Computed Tomography, DS: Deauville score, '®F-FDG: Fluorodeoxyglucose, IR: Indeterminate Response, LD: Long diameter, PD:
Progressive Disease, PET: Positron Emission Tomography, PR: Partial Response, SLD: Sum of Longest Diameters, SPD: Sum of Perpendicular

Diameters, TL: Target Lesions.

| Baseline scan

Follow-up scan

Site n°1

Siten°1:DS=1

Figure 5. Lugano response assessment for lymphoma (DLBCL stage IV Ann Arbor, 8F-FDG PET). Visual grading assessment
at follow-up corresponds to a Deauville score of 1 (DS = 1, no visual uptake). According to the Lugano criteria, it is considered
a complete metabolic response.

3.3. Multiple Myeloma

Magnetic resonance imaging (MRI) is considered the gold standard to detect bone
marrow involvement in multiple myeloma due to its very high anatomical resolution and
soft tissue contrast. However, its limited value in assessing the response to treatment and
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the time-consuming whole-body acquisition protocols have promoted the use of '*F-FDG
PET/CT as a fast-whole-body complement imaging modality to manage patients with
MGUS and multiple myeloma. In comparison with MRI, '8F-FDG PET/CT shows faster
normalization of image findings [74]. Recently, the International Myeloma Working Group
has integrated '8F-FDG PET/CT into the diagnostic criteria of multiple myeloma, consid-
ering abnormal bone 8F-FDG uptake as a C.R.A.B feature (C = hypercalcemia; R = renal
failure; A = anemia; and B = bone lesions) [75]. Although clinically promising in this
field, several drawbacks make the interpretation of '®F-FDG PET challenging in multiple
myeloma, especially at the time of initial diagnosis: as a heterogeneous disease, multiple
myeloma can present with variable metabolic uptake, ranging from low to extremely high;
additionally, anemia and G-CSF may stimulate BM uptake, reducing the detectability
of axial targets. All these challenging aspects and pitfalls require extensive experience
and knowledge of the particular aspects of MM. In past years, different interpretation
criteria have been proposed. Some groups have proposed semiquantitative SUV-based
parameters to assess the disease burden [76]. Recently, a consortium of nuclear medicine
experts, hematologists and medical physicists proposed standardized criteria to promote
the use of PET in clinical trials: the Italian myeloma criteria for PET use (IMPeTUs). These
new criteria, combining the Deauville five-point scale and morphological features (site
and number of lytic lesions, Table 3) [77], have provided high reproducibility and can be
considered a basis for harmonizing PET interpretation in multiple myeloma. Although
recent findings showed the prognostic value of these criteria for both OS and DFS [20],
further prospective clinical trials are warranted to confirm the relevance of IMPETUS in
this field.

Table 3. Response evaluation criteria in multiple myeloma.

Lesion Type Site Number of Lesions (x) Grading
Diffuse Bone marrow Deauville scale (five points)
x =1 (no lesions)
Sl.<u11 ) x =2 (1 to 3 lesions) . . .
Focal (F) Spine (SP) . Deauville scale (five points)
. x =3 (4 to 10 lesions)
Extraspinal (ExP) x = 4 (>10 lesions)
x =1 (no lesions)
Lytic (L) x =2 (1 to 3 lesions)

Fracture (Fr)
Paramedullary (PM)

Extramedullary (EM)

x =3 (4 to 10 lesions)
x =4 (>10 lesions)
At least one
At least one
N/EN

Atleast one (Nodal/ExtraNodal) *

Deauville scale (five points)

* For nodal disease (N): C: Cervical, SC: Supraclavicular, M: Mediastinal, Ax: Axillary, Rp: Retroperitoneal, Oth: Other, Mes: Mesenteric, In:
Inguinal. For extranodal disease (EN): Li: Liver, Mus: Muscle, Spl: Spleen, Sk: Skin.

4. PET Molecular Imaging: The Promising Clinical Perspective of Radioligand
Molecular Imaging and Therapy

PET imaging detection is conceptually based on the radionuclide labeling of molecular
probes. Considering several intrinsic chemical limitations of vector-radioligand coupling,
PET molecular imaging provides almost unlimited opportunities to map numerous physio-
logical or pathophysiological targeted processes at the whole-body level, with picomolar
detection sensitivity (Figure 6). In the last decade, the integration of PET imaging with
radionuclide therapy, also known as radiolabeled theranostics, has paved the way towards
highly sensitive radionuclide-based precision medicine. In particular, major breakthroughs
are currently expected in two clinical fields: neuroendocrine tumors (NETs) and prostate
cancer (PCa).
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Figure 6. Principles of vectorized PET molecular imaging. Numerous relevant molecular probes constitute a powerful

arsenal to characterize tumor biological processes in vivo. Vector radiolabeling by diagnostic radionuclides, in particular

PET radionuclides (8* emitters), allows tumor molecular targeted mapping (quantification at the whole-body level for

diagnosis/prognosis and monitoring purposes). For the same vector, switching from diagnostic to therapeutic radiolabeling

(either a or B7), so-called theranostics, allows vectorized internal radiation therapy with precise characterization of the
tumor burden biodistribution. Therapeutic radionuclides have their own properties. With their very short radiation range
of 47-85 um, high energy a-emitters (?2>Ac) provide limited off-targeted irradiations with a high local cytotoxic effect,

regardless of the cycle phase or oxygenation status. Importantly, these emitters require a high degree of target internalization.

Currently, their use is limited by the worldwide production capabilities. Of lower energy and better available in practice,

B~ emitters (\””Lu, °Y) provide better penetration ranges (several mm), which is of particular interest in the case of high

targeted or heterogenous volumes, but induces higher hematological and renal toxicities.

4.1. NETs

According to the Surveillance Research Program of the National Cancer Institute [78],
NETs account for only 0.49% of all malignancies. However, an unexplained increased inci-
dence has been observed over the past decades. The emergence of somatostatin receptor-
based PET diagnostic imaging revolutionized patient care in the late 1980s, for whom
strategy management was very limited [79,80]. A further step was reached with the emer-
gence of PET-based somatostatin receptor-imaging in the 2000s, combining the inherent
higher physical properties of PET systems over conventional scintigraphy (spatial resolu-
tion, sensitivity detection, unbiased quantification), improved kinetics (faster clearance
and tissue penetration with the last generations of targeted radioligands) and chemical
properties (chelation-based, allowing fast and rapid vectorized radioligand switching from
diagnosis with ®Ga to therapy with *°Y, 177Lu or 22° Ac) [81-83]. Based on 2105 patients,
the pooled diagnostic performance of SSR-PET from 22 studies provided a sensitivity
and specificity of 93% (95% CI 91-94%) and 96% (95% CI 95-98%), respectively [84], sur-
passing conventional scintigraphy in this field [85]. Such detection performance led to
the integration of SSR-PET into the international strategy of patient management, from
initial staging to recurrence and palliative care for almost all NETs [86,87] (Figure 7). Re-
cently, the phase III NeuroEndocrine Tumors Therapy clinical trial (NETTER-1) validated
the use of SSR-based radioligand therapy in well-differentiated metastatic NETs of the
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midgut [88]: 177Lu-SSR showed a 79% reduction in risk of progression and an estimated
PFS of 40 months compared to 8.4 months for high-dose octreotide therapy (79% lower
risk of disease progression or death in the 177Lu-Dotatate group). For undifferentiated
high-grade NETs, SSR-based radioligand therapy is still debated [89,90]. Some findings
suggest that aggressive and higher grade 2-3 NETs but still well-differentiated with suf-
ficient expression of somatostatin receptor to be visualized through prognostic SSR-PET
could benefit from SSR-based radioligand therapy [91]. The ongoing NETTER-2 clinical
trial (registered as NCT03972488) should answer this question. Finally, beyond SSR-PET,
standard FDG PET may be used as a complementary tumor burden mapping in the patient
management strategy due to its powerful independent prognostic value [92,93].

April 2016

4 cycleg|of PRRT

i

January 2017 November 2017

Figure 7. Theranostics and Peptide Receptor Radionuclide Therapy (PRRT). A patient with a NET diagnosed in 2015
(T3ANOM1, G2, 20% Ki67) who was treated by surgery (distal pancreatectomy, splenectomy and liver resection) and
radiofrequency ablation (liver metastasis). Somatostatin receptor (SSTR) PET imaging performed with ®¥Ga-DOTATOC
before PRRT in April 2016 was positive, showing disseminated liver and bone lesions with intense uptake (Krenning
score = 4) (a). After ””Lu-octreotide, all the foci disappeared (Krenning score = 0) on posttreatment (b) and follow-up 68Ga-
DOTATOC PET (c), illustrating a complete response. Images courtesy of Jérémie Calais and Martin Auerbach (Ahmanson
Translational Theranostics Division, UCLA, Los Angeles, CA, USA).

4.2. PCa

Prostate cancer is the second most frequent malignancy in men worldwide [94]. Be-
cause of the limited value of standard imaging, choline PET (a membrane phospholipid
radiolabeled either with 'C or 18F) was widely used in the 2000s for the early assessment
of biochemically recurrent prostate cancer. Extensive literature has shown choline PET
to be of high relevance for the detection of recurrent lymph nodes or bone metastases
in treated patients, especially with PSA above 2 ng/mL or high PSA velocity /doubling
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time [95-97]. However, poorer detection rates for PSA under 2 ng/mL and low specificity
for treatment-naive patients motivated the development of more specific molecular probes
in this field. In this context, prostate-specific membrane antigen (PSMA), a transmem-
brane protein of unclear biological function that is overexpressed 100- to 10,000-fold in
PCa cells compared to normal tissues [98-100], has gained increasing interest in the last
decade. Given its high sensitivity for the detection of PCa lesions, PSMA radiolabeling is
currently changing the methods for managing early biochemically recurrent PCa and occult
metastatic PCa, for which conventional imaging modalities (MRI and CT) lack sensitivity
and specificity [101]. Except for neuroendocrine PCa [102], PSMA expression increases
with tumor dedifferentiation and in metastatic castration-resistant prostate cancer. A recent
pooled analysis of 5113 patients (43 studies) imaged with ®Ga PSMA PET showed overall
detection rates of 94% at PSA levels above 2.0 ng/mL for biochemically recurrent PCa
treated by radical prostatectomy, with higher detection rates than conventional imaging at
PSA levels under 0.5 ng/mL [103]. Moreover, numerous studies have shown that PSMA
PET radiotracers surpasses the actual concurrence (choline or fluciclovine PET radiotracers)
to detect biochemically recurrent PCa, especially at PSA levels under 1 ng/mL (for reviews,
please refer to [104,105]). Beyond recurrent disease management and given the growing
literature in this field, especially the very good agreement with histology [106,107], PSMA
PET has been rapidly imposed for the primary management of PCa patients [108-110]. In
December 2020, the US Food and Drug administration granted the first clinical approval for
institutional use (University of California, UCLA and USCF) of ®¥Ga PSMA PET (PSMA-11)
for the initial staging and the detection of recurrence in PCa patients based on recent
clinical trial findings [111-114]. This milestone achievement should pave the way to a new
standard of care for patients with PCa. From this perspective, and for simpler availability
and production workflows, several diagnostic F-radiolabeled PSMA PET tracers have
already been integrated into the research pipeline [115-118]. Together with these recent
imaging advances, PSMA radioligand therapy has also emerged in patients with metastatic
castration-resistant PCa (Figure 8). Mainly based on small-molecule inhibitors of PSMA
(PSMA-1&T, PSMA-617), 10 large phase I-IIl PSMA RLT trials are currently ongoing and
are using either 77Lu or 2% Ac radionuclides (for details please refer to [119]). Among
the promising literature findings already published, two prospective clinical trials are
considered a very large step in this field: the LuPSMA trial, a single-arm phase 2 study that
assessed the safety and efficacy of 7" Lu-PSMA-617 in 30 patients with metastatic castration-
resistant PCa [120], and the TheraP multicenter randomized open-label phase 2 trial, which
showed a decrease in PSA levels of at least 50% from baseline for the '”’Lu-PSMA-617
group compared to the cabazitaxel group, along with longer PFS (HR 0.63, p = 0.0028),
lower toxicity events and higher pain improvement [121]. Finally, the very recent first
historical standardized reporting guideline for PET imaging in this field emphasizes the
growing importance of PSMA-based radiotracers in the management of PCa and the strong
motivation of the international nuclear imaging community to accelerate its use in future
clinical trials [122].
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Figure 8. Theranostics and PSMA radionuclide therapy. (a) Example of a patient with PCa with complete response after
treatment with 17/Lu-PSMA-617: all the lesions disappeared on the follow-up *8Ga-PSMA PET at one year, together with
the PSA level. (b) Despite the impressive successes reported with 1”’Lu-PSMA, several problems remain unresolved, as
illustrated in this nonresponder case, with significant progression on the follow-up 68Ga-PSMA PET, together with the
rising curve of PSA after treatment. Images courtesy of Jérémie Calais (Ahmanson Translational Theranostics Division,
UCLA, Los Angeles, CA, USA).

4.3. Other Near-Future Promising Perspectives in Clinical Practice: Immuno-PET and Beyond

Beyond the emerging success of NETs and PCa radioligand targeting, various molec-
ular cancer targets have been developed since the historical use of '®F-FDG in the late
1980s [123], based on the fundamental aerobic glycolytic properties of cancer cells, also
known as the “Warburg effect” [124]. Emphasizing the unique capability of PET molecular
imaging to constantly adapt to emerging oncological challenges, other biological properties
of cancer have been assessed in numerous phase 0-3 trials, including hypoxia, apoptosis
or protein synthesis (for review please refer to [125]). The hallmark capabilities of cancer
are an evolving concept [126], and tumor immunity (tumor cells and the interlinks with
their immune microenvironment) is currently a very hot topic of interest, given the revo-
lution provided by immunotherapy checkpoint inhibitors [127,128]. Despite progressing
results since the first FDA approval in 2011, the response rate to checkpoint inhibitors
remains approximately 13% of eligible patients [129]. Many efforts are currently made
to better identify patients who would be eligible for these new drugs [130,131]. Addi-
tionally, the numerous updates of limited current imaging criteria illustrate the needs of
new tools to better characterize the immune ecosystem of tumors to improve treatment
strategies [132,133]. Immune checkpoint-targeted radiolabeled monoclonal antibodies
(IC-PET) and fibroblast activation protein-targeted radiolabeled inhibitors (FAPi-PET) are
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two serious candidates in this field. In the last five years, several dozen preclinical IC-PET
studies with ®*Cu, 89Zr, 8Ga, 12*1 or !8F radionuclides have been published, but numerous
challenging technical considerations remain to reach optimal IC-PET pharmacokinetics
and biodistribution in practice (size, Fc-mediated functions and charge, radiolabeling
strategy) (Figure 9); for a review, please refer to [134]. Two very recent first-in-human
studies assessed its clinical safety and feasibility [135,136]. The results from the study by
Niemeijer and coworkers showed that for 13 patients with advanced NSCLC (follow-up of
3 months), IC-PET (¥ Zr-nivolumab) findings correlated with immunohistochemistry [136].
In the study by Bensch F and coworkers, who included 25 patients with various cancer sub-
types (bladder, NSCLC, triple negative breast cancers; median follow-up of 21.9 months),
IC-PET (¥Zr-atezolizumab) better correlated with PFS and OS than immunohistochemistry
or RNA-sequencing [135]. These very promising results have promoted the launch of
numerous IC-PET clinical trials focusing on NSCLC, HNSCC, lymphomas, RCC, breast
cancers and melanomas (for a review please refer to [134]). Finally, FAPi-PET has re-
cently emerged as a PET molecule targeting cancer-associated fibroblasts (CAFs) [137-139].
CAFs play critical roles in tumor progression and immunity regulation and represent a
promising therapeutic target [140]. Activated CAFs highly express FAP, a glycoprotein
enzyme with peptidase activity [141]. Combining both PET molecular probes of tumor
cells ("8F-FDG PET) and their surrounding stroma (FAPi PET) provides an open exciting
perspective, as illustrated by recent findings in oncological patients with inconclusive
I8E-FDG PET findings [142], or to optimize the tumor volume delineation for radiotherapy
planning [143]. Together with imaging capabilities, FAP-radioligand therapy is also under
development [144,145], paving the way towards stroma-targeted radiolabeled theranostics.
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Figure 9. Different radioligand formats for in vivo PET imaging. A schematic representation of various radioligand formats

with distinct pharmacokinetic properties that can be used for PET imaging of immune checkpoints: intact IgG antibody;

antibody-derived fragments, including (Fab’)2, Fab, scFv and nanobody; and smaller protein scaffolds (adnectin, affibody,
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domain; CH: heavy-chain constant domain. Image and legend courtesy of Alizée Bouleau/Charles Truillet/Vincent Lebon
(Université Paris Saclay, CEA, CNRS, Inserm, BioMaps) [134].
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5. PET Molecular Imaging: The Perspectives of Statistical and Computer Sciences for
Multidimensional Image-Based Decision Making

In the last 20 years, the concept of tumor heterogeneity—where a tumor mass is
considered a patchwork of distinct genotypic and phenotypic subcellular populations—
has been imposed as a strong factor of treatment resistance [146,147]. In this context,
the unsuitability of standard image-based criteria to accurately assess the response to
nonconventional therapies [148,149], together with the rapid emergence of computer
science in the field of medical imaging, promoted the development of radiomics—the
extraction of high-throughput quantitative metrics from medical images—which is a large-
scale image-based approach derived from OMICS (genomics, transcriptomics, proteomics,
metabolomics, etc.) of which the purpose is to better capture tumor heterogeneity from
standard-of-care medical images to build relevant diagnostic or predictive models [150].
Despite promising FDG PET results in the early 2000s [151,152] and efforts in recent years to
propose “user-friendly” dedicated software for clinical use, radiomics has not yet reached
a sufficient level of relevance in clinical practice [153]. In essence, the standard radiomics
pipeline integrates image acquisition, segmentation and standardization, handcrafted
feature extraction (intensity, shape and texture parameters) and selection through machine
learning-based statistical analyses to build optimized diagnosis and prognosis endpoint
models. One major drawback of such a huge operational processing pipeline remains its
multilevel subjectivity and technical dependencies [154]. A recent systematic review based
on 624 records (41 full-text articles mixing lung, head and neck, esophageal, rectal, cervical
and breast cancers, mainly describing CT and PET findings) specifically addressed the
repeatability and reliability of radiomic features and reported probable high variability at
each main processing step for the majority of second- (shape-based metrics) and third-order
(texture-based metrics) feature classes [155]. Nonetheless, this field of research is maturing
based on years of hindsight. In 2020, the Imaging Biomarkers Standardization Initiative
(IBSI), a task force of 20 research groups, established international standardized frameworks
for radiomics computation and validated the use of 164 PET radiomics features [156].
Another major issue concerns the use of unsuitable statistical procedures in the vast
majority of reported radiomics studies, probably partly explained by two factors: the strong
difficulty of collecting and structuring large homogeneous datasets in “real-life” clinical
practice [157] and the lack of knowledge in machine learning/data mining, a “new” field
of skills to be learned by nuclear medicine practitioners. Again, the practice is maturing.
Harmonization procedures have emerged to facilitate multicenter studies in practice and
remove the so-called “center effect” [158,159]. Additionally, several statistical rules of
thumb have gradually been imposed on the community, improving the development and
validation of predictive models, particularly the use of a sufficient number of patients
per radiomics feature, the dataset partitioning into independent training, validation and
test subsets, the hyperparameter optimization and cross-validation of the algorithms and
the use of objective performance metrics [160-162]. In the era of precision medicine,
multiparametric imaging offers unique opportunities to characterize tumor behavior at
an advanced multidimensional imaging level [163,164]. Interestingly, multiparametric
radiomics has recently been shown to surpass single-modality procedures. In their proof-
of-concept study, Vallieres M. and coworkers demonstrated the superiority of joint FDG PET
and MRI texture features to predict the risk of lung metastases in soft tissue sarcomas [165]:
in a cohort of 51 biopsy-proven sarcomas, first- and second-order radiomics features were
extracted from either FDG PET, MRI (T1- and T2-weighted) or fused PET/MRI baseline
data. Among all the multivariable predictive models tested, the models constructed from
fused PET/MRI data surpassed those generated either from PET or PET + MRI separated
scans (AUC of 0.98 &£ 0.002, sensitivity of 0.955 &£ 0.006, specificity of 0.926 £ 0.004). More
recently, Mu W. and coworkers compared the predictive value of single-modality and fused
FDG PET/CT-based radiomic signatures (baseline scans) to predict the durable clinical
benefit of immune checkpoint inhibitors in advanced NSCLC patients [166]. Trained on
99 patients and validated on two independent cohorts of 47 NSCLC (retrospective) and
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48 NSCLC (prospective) patients, the predictive models, which included features generated
from fused PET/CT data, were improved in all the training and test sets, reaching AUCs of
0.86 (95% CI 0.79-0.94), 0.83 (95% CI 0.71-0.94) and 0.81 (95% CI 0.68-0.92), respectively.

By capturing the pooled radiomic signatures of tumors across different imaging modal-
ities, multiparametric radiomics changes the dimensionality of analyses: the extracted
features no longer represent intervoxel relationships in a modality of interest but the multi-
dimensional tumor behavior, driven by the properties of each modality. Such a paradigm
shift will probably be enhanced with fully integrated PET/MRI systems, which have been
clinically available since the beginning of the 2010s [167]. In this way, rather than using
standard-of-care qualitative or semiquantitative PET, CT or MRI images, one could move
towards more quantitative multiparametric analyses in future practice [168]. Moreover,
fully automated and miniaturized production systems for PET radiotracer use in a “dose-
on-demand” mode could stimulate multi-PET probe patient imaging in future clinical
practice (iMiGiNE project, PMB-Alcen/SIGMAPHI/CEA).

To face the growing complexity of this arsenal of multidimensional data, the use
of deep learning—a branch of machine learning using neural networks (convolutional
neural networks (CNNs) in image processing)—appears to be a promising way to assist
practitioners in the future. Because CNNs learn characteristics directly from raw images,
feature extraction and prediction tasks can be performed jointly in an embedded process,
bypassing classical handcrafted segmentation, feature selection or classification multilevel
steps [169,170]. Moreover, two recent studies nicely illustrate the potential gain at the whole-
body level of automated CNN-based detection and classification tasks in PET/CT. From
629 FDG PET/CT data (302 lung cancer and 327 lymphoma) retrospectively labeled by two
nuclear medicine physicians, Sibille L. et al. trained, validated and tested a CNN research
prototype (PET Assisted Reporting System PARS, Siemens Healthineers) to automatically
detect and classify abnormalities (anatomic location, suspicious or nonsuspicious), reaching
a classification AUC of 0.988 (95% CI 0.982-0.994) [171]. In their study, including almost
3500 FDG PET/CT data points from patients with various malignancies/benign diseases,
Kawauchi K. et al. successfully classified PET data into three predefined classes (benign,
malignant, equivocal), and their CNN reached accuracies of 99.4, 99.4 and 87.5% at the
patient level [172]. Beyond evident improvements in the entire image processing workflow,
numerous technical challenges will have to be faced before clinical validation. As an
example, the recent external validation of the PET Assisted Reporting System (PARS,
Siemens Healthineers) [171] on two French cohorts (cohort 1: 119 cases of DLBCL; cohort 2:
430 miscellaneous cancers) showed discrepancies between the reference manual and CNN-
based procedures (cohort 1: median Dice score = 0.65; ICCtyry = 0.68; cohort 2: median
Dice score = 0.48; ICCtyty = 0.61) [173]. For multidimensional image-based decision
making, the level of image dimensionality (how many modalities? how many parameters?
what level of quantification?) and the optimal way to integrate this multidimensionality in
the depths of CNNs [174] will also require many research investigations. Regardless, deep
learning-based multidimensional quantification can pave the way for more operational
and holistic cancer molecular imaging analyses at the whole-body level (Figure 10).
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Figure 10. General overview of the potential of molecular-based multimodal imaging in the era of precision medicine:
(1) Molecular probes are defined based on cancer hallmark knowledge. (2) Miniaturized automated PET radioligand
production facilities could allow very fast and easy PET probe radiolabeling in future clinical practice, stimulating multi-
probe PET imaging of oncological patients. (3) Static and/or dynamic multimodal PET-based acquisition procedures
generate multidimensional image-based metrics at baseline and during follow-up. (4) Applications of statistical and
computer sciences would facilitate the extraction and dimensionality reduction of all this information to make optimized
image-based decision models (5) The panel 2 subpart of the prototypal “Dose-on-Demand” automated radiotracer facility is
courtesy of Ludovic Le Meunier (PMB-Alcen, iMiGiNE project, PMB-Alcen/SIGMAPHI/CEA).

6. Conclusions

PET molecular imaging is a powerful imaging modality for quantifying tumor pro-
cesses. After 20 years of clinical use around the world, PET/CT has proven its unique value
for the diagnosis and therapeutic evaluation of many cancers. This maturity now allows us
to consider a move towards more sophisticated levels of analyses in future clinical practice,
boosted by the development of PET-based multimodal imaging, multiprobe radiolabeling
and multidimensional data mining. A more holistic image-based representation of onco-
logical processes becomes conceivable at the whole-body level, making PET molecular
imaging a tool of choice in precision medicine for the next few years.
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