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Purpose: To assess the accuracy and robustness of the AI algorithm for

detecting referable diabetic retinopathy (RDR), referable macular diseases

(RMD), and glaucoma suspect (GCS) from fundus images in community and

in-hospital screening scenarios.

Methods: We collected two color fundus image datasets, namely, PUMCH

(556 images, 166 subjects, and four camera models) and NSDE (534 images,

134 subjects, and two camera models). The AI algorithm generates the

screening report after taking fundus images. The images were labeled as RDR,

RMD, GCS, or none of the three by 3 licensed ophthalmologists. The resulting

labels were treated as “ground truth” and then were used to compare against

the AI screening reports to validate the sensitivity, specificity, and area under

the receiver operating characteristic curve (AUC) of the AI algorithm.

Results: On the PUMCH dataset, regarding the prediction of RDR, the AI

algorithm achieved overall results of 0.950 ± 0.058, 0.963 ± 0.024, and 0.954

± 0.049 on sensitivity, specificity, and AUC, respectively. For RMD, the overall

results are 0.919± 0.073, 0.929± 0.039, and 0.974± 0.009. For GCS, the overall

results are 0.950 ± 0.059, 0.946 ± 0.016, and 0.976 ± 0.025.

Conclusion: The AI algorithm can work robustly with various fundus camera

models and achieve high accuracies for detecting RDR, RMD, and GCS.

KEYWORDS

glaucoma, macula, diabetic retinopathy, artificial intelligence, eye disease screening

Introduction

Deep learning (DL) has achieved high performance in ophthalmic disease detection

based on fundus images, including diabetic retinopathy, glaucoma suspect, and age-

related macular degeneration (1). However, there is still a gap between academic research

and real-world application. Many DL-based eye disease screening products have suffered

major reverses in practice. The reasons for their failures include the low quality of the

source fundus images, the difference in distribution between the experimental data and

real data, the domain shift caused by different acquisition equipment, and the incapability
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of detecting multiple eye diseases. Recently, the AI screening

algorithm can accurately and robustly detect referable diabetic

retinopathy (RDR), referable macular diseases (RMD), and

glaucoma suspect (GCS) on fundus images in the experimental

environment, which is called AI-100 (2–10). To validate its

performance in real-world fundus screening scenarios, we

collected data in two typical real-world fundus screening

scenarios andmade a comprehensive analysis of its performance

in these two scenarios.

We selected in-hospital screening and community screening

as two typical scenarios. These two scenarios are two extreme

situations of eye disease screening. As for the in-hospital

scenario, most subjects in the hospitals are follow-up visit

patients or suspected patients, thus having a high possibility to

be positive cases. In such a scenario, model sensitivity should be

high enough to avoid omission. In contrast, in the community

screening scenario, there will be a large number of volunteers

but most of them will be healthy. Thus, a high model specificity

is essential to avoid the waste of medical resources. Since there

is always a tradeoff between model sensitivity and specificity,

achieving high performance in both of the scenarios is a huge

challenge for an automatic eye disease screening algorithm.

Therefore, these two scenarios can well–measure the screening

algorithm performance in practice.

Besides the different data distribution, another factor

affecting the model performance in practice is the multiple

diseases. Since some common eye diseases, such as diabetic

retinopathy, macular diseases, and glaucoma, share several

similar symptoms in their early stages, a patient who accepts

diabetic retinopathy screening may actually suffer from macular

diseases. However, most existing automated screening models

can only detect certain specific diseases. This may cause the

neglect of the patients’ real diseases, causing the delay in the

treatment. Thus, in the in-hospital scenario, we collected the

fundus images from a mixture of patients with several different

eye diseases, including diabetic retinopathy, macular diseases,

and glaucoma, which are those most commonly appeared. This

dataset, which contains multiple eye diseases, can well–reflect

the model’s performance on multiple eye diseases.

Another obstacle in the application of DL-based eye disease

detection is domain shift. In practice, different organizations

often use different types of cameras to take fundus images.

The images taken using different cameras may show a large

difference, including the image color, saturation, clarity, and so

on (11). Although DL-basedmethods achieve good performance

in eye disease prediction, they are notoriously vulnerable

to domain shifts, i.e., the heterogeneous image distribution

differences coming from different cameras (12–19). As a result,

few DL-based automatic eye disease screening algorithms can

Abbreviations: RDR, referable diabetic retinopathy; RMD, referable

macular diseases; GCS, glaucoma suspect; CI, confidence interval; AUC,

area under the receiver operating characteristic curve

be widely applied in the real world. To validate the robustness

of the AI-100 algorithm, we collected fundus images from four

different cameras in one dataset and from two different cameras

in another dataset. As a result, our test results can well–reflect

whether the screening algorithm can be popularized in the

variable real screening scenarios. The two datasets, namely,

the PUMCH dataset and NSDE dataset, are introduced in the

next section.

From the two datasets mentioned above, we validated

the AI-100 algorithm performance by sensitivity, specificity,

and AUC values across different domains of interest. We

also compared AI-100 with a strong baseline implemented

by ResNet-101 (20), which is one of the most commonly

used network architectures. The experiments show that AI-

100 can accurately and robustly detect referable diabetic

retinopathy (RDR), referable macular diseases (RMD), and

glaucoma suspect (GCS) among fundus images of various

camera models in both scenarios. Such a result indicates that

AI-100 has high application potential in practical eye disease

screening programs.

Materials and methods

Image acquisition

We collected the fundus image datasets from two typical

scenarios, i.e., in-hospital and community screening, to assess

the performance of AI-100. We collected a total of 1,090

images from 300 subjects. To further assess the robustness

of the screening system, images were taken from various

fundus cameras. The studies involving human participants

were reviewed and approved by Peking Union Medical College

Hospital Review Board. The detailed acquisition process of the

datasets is as follows.

The sample size of the study was determined by the

significance level, the power of the test, and the estimated

and target values of sensitivity and specificity. The formula for

calculating the sample size (for each target disease) is as follows:

N =
[

Z1−α

√
P0 (1− P0) + Z1−β

√
PT (1− PT)

]2

(PT − P0)
2

,

where α = 0.05 is the level of significance, 1 − β = 0.8

is the power of the test, P0 is the least acceptable value for

sensitivity (or specificity) of the clinical study, and PT is the

estimated sensitivity (or specificity) set in reference to the

internal validation results.

(a) PUMCH dataset (in-hospital scenario)

We invited the guests from an education club, which was

held by the Department of Ophthalmology at Peking Union

Medical College Hospital (PUMCH) on 15 and 16 December

2018 to participate in this study. These guests included the

patients, the kinsfolk members of the patients, and the potential
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TABLE 1 Technical specifications of di�erent cameras.

Camera Brand Topcon Syseye iCare Canon

Type TRC-NW400 RetiCam 3,100 iCare DRS CR-2 AF

Mode Automatic Automatic Automatic Manual

Fixation Center Center Macular Center

Resolution 1,956× 1.934 2,656× 1,992 2,592× 1,944 5,472× 3,648

Minimum pupil size 3.3mm 2.8mm 3.8mm 3.3 mm

Field of view 45◦ 50◦ 45◦ 45◦

TABLE 2 Distribution of diseases and cameras.

PUMCH NSDE

Topcon Syseye iCare Canon Topcon Syseye

RDR 10/143 3/150 10/142 4/94 0/667 0/579

RMD 56/97 54/99 56/96 36/62 0/667 0/579

GCS 11/142 9/144 12/140 3/95 0/667 0/579

Each cell shows the number of images with a positive/negative disease label.

patients waiting for screening. The patients had glaucoma,

macular, or retinal vascular diseases. The age of participants was

between 25 and 86 years (median 63 years). Four fundus cameras

of different manufacturers were used for image acquisition. All

the participants could freely choose any, some, or all of the four

fundus cameras to screen. We used the Topcon TRC-NW400,

Syseye RetiCam 3,100, iCare iCare DRS, and Canon CR-2 AF

cameras. The detailed specifications of the cameras are shown

in Table 1. All the participants signed written informed consent

for fundus image acquisition and usage for publication. The

study procedures conformed to the tenets of the Declaration of

Helsinki, and the study was approved by the Institutional Ethics

Committee of the Chinese Academy of Medical Sciences, Peking

Union Medical College Hospital (Approval No. S-K1069).

(b) National Sight Day Event (NSDE) dataset

(community/population screening scenario)

Employees of Baidu Inc. were invited to voluntarily take

fundus images at the screening event held on National Sight Day

of China in 2020. All participants had signed a written informed

consent before taking fundus images. The participants were aged

between 23 and 45 (median 27). Two fundus cameras (Topcon

TRC-NW400 and Syseye RetiCam 3100, see Table 1) were used

for this event. Images of all participants were taken on both of

the cameras.

Image labeling

For the PUMCH dataset, three ophthalmologists (average

ophthalmological experience of 5 years) read all the images

independently, to label them as RDR, RMD, GCS, or none of

the three (the positive labels are not exclusive) on PC. The

criteria for labeling RDR conformed with the international

grading guidelines (21, 22), and the detailed criteria for labeling

RMD and GCS followed the association standards (23). A

simple majority voting determined the final “ground truth” label

of each image. The resulting labeled dataset consisted of 556

fundus images from 166 subjects. Refer to Table 2 for detailed

distributions of diseases and cameras.

In the NSDE dataset, we had 534 images from 134

participants. Images of all the participants were taken on

both of the cameras. One of the participants was taken with

only one eye on both cameras, resulting in 267 pairs of

images taken of the same eyes on the same day but on

two different cameras. Because the participants were relatively

young (< 30 years old) and none of them had reported

any acute visual impairment, we only referred those with

positive AI screening results to the hospital for a checkup

at the event. The final labels of these images were later

determined by majority voting by the same ophthalmologists

of the PUMCH datasets. The resulting labels were negative for

all participants.

Evaluation criteria

We used three metrics, i.e., sensitivity, specificity, and

AUC, to quantitatively compare the disease prediction

performance of the AI-100 algorithm and the baseline

method. For each of the three diseases, we reported the

metrics for each camera individually. We then reported

the mean and standard deviation of these values across
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different cameras to compare the overall performance

and robustness. In general, a higher mean value indicates

better accuracy, and a smaller standard deviation means

better robustness.

We also investigated the 95% CIs of sensitivity, specificity,

and AUC. For sensitivity and specificity, we used the exact

Clopper-Pearson Cis (24). For the AUC, we used a fast

implementation of an existing algorithm to compute the Cis

(25).We carried out all the statistical analyses using Python (3.6)

with SciPy (1.0.0) and scikit-learn (0.21.3).

Intuitively, a robust model should give close prediction

scores on the images of the same eye even if the images are taken

by two different cameras. As the NSDE dataset had a pairwise

property, we used the mean absolute difference and the Pearson

correlation between the prediction scores on different cameras

of the same eye to evaluate the model robustness. The mean

absolute difference is defined as follows:

MADM =
1

N

N
∑

i=1

∣

∣

∣
predA, Mi − predB,Mi

∣

∣

∣
,

where N is the total number of paired images (in our case,

267), A and B represent the two different cameras, and M

is the model of interest (the baseline model or AI-100). The

Pearson correlation is computed between the vector [predA,Mi ]

and [predB,Mi ], i = 1, 2, . . .N. A smaller mean absolute

difference or a larger Pearson correlation indicates the model

with better robustness.

The baseline model

To validate the performance of AI-100, we compared it

with the ResNet-101 (26) network, which is a commonly used

DL model for eye disease detection. For each of the disease

prediction tasks, we trained a ResNet-101 (26) network over

the AI-100 training dataset. Each disease prediction task is

a binary classification problem, supervised by focal loss. The

Adam optimizer is used for the gradient descent process, and the

learning rates are set to decay from 0.001 to 0.0001. The trained

ResNet-101models were used to predict the three diseases on the

PUMCH and NSDE datasets. These predictions were compared

against the labels given by the ophthalmologists to get the

baseline results.

AI-100 screening algorithm

This sub–section gives a brief introduction to the AI-

100 algorithm. The AI-100 algorithm consists of three major

modules, namely, structural analysis, quality assessment, and

disease prediction (refer to Figure 1). In the structural analysis

module, the optic disc detection and fovea detection submodules

FIGURE 1

Modules and processes in the AI-100 screening system.

first locate the region of interest (ROI) that is relevant to GCS

and RMD, respectively. The quality assessment module decides

whether each ROI (as well as the whole image) is of low quality

based on a comprehensive analysis of the brightness, contrast,

and blurriness. If any of the ROIs is determined as low quality,

the image is disqualified from the study and the system prompts

for a retake. The disease prediction module consists of three self-

designed deep learning models, which are designed to predict

RDR, RMD, and GCS, respectively. The three models share a

similar backbone architecture.

The backbone of the disease prediction module is designed

as a combination of densenet-121 (27) and bilinear pooling.

Detailed architecture is shown in Table 3. This structure

alleviates the gradient disappearance phenomenon during

model training by stacking multiple dense blocks with

connections and strengthens the internal feature reuse of the

model to achieve high accuracy. In addition, to obtain a

more accurate prediction model, AI-100 adopts the following

strategies to improve the model:
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TABLE 3 The network backbone of the AI-100 algorithm.

Layer Output size Architecture

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pooling, stride 2

Dense Block (1) 56 × 56

Transition Layer (1) 56 × 56 1× 1 conv

28 × 28 2× 2 average pool, stride 2

Dense Block (2) 28 × 28

Transition Layer (2) 28 × 28 1× 1 conv

14 × 14 2× 2 average pool, stride 2

Dense Block (3) 14 × 14

Transition Layer (3) 14 × 14 1× 1 conv

7 × 7 2× 2 average pool, stride 2

Dense Block (4) 7 × 7

Classification Layer 1 × 1 7× 7 global average pool

1000D fully− connected , softmax

(a) The input image size is increased from 224 × 224 to 512

× 512, which helps to better preserve the detailed information

of the original image.

(b) The bilinear pooling layer is used to replace the gap layer

in the original densenet-121. As a general technique in the field

of fine-grained image classification, the bilinear pooling layer

can help the model extract the texture information in the image

(such as diabetic retinopathy-related bleeding/specific signs) to

help the model focus on discriminative features.

(c) For diabetic retinopathy detection, the model will output

fine-grained grading results (no diabetic retinopathy/phase

I/phase II/phase III/phase IV or above), and then transform

it into binary/ternary classification results through probability

weighting. When modeling and optimizing the model, AI-100

encodes the classification label by ordinal regression. Compared

to one-hot labels, ordinal regression labels can better model the

semantic relationship between diabetic retinopathy grades, so

that the distance between the labels of similar grades will be

closer, while the distance between labels with a large span will

be relatively larger.

In addition, in order to better distinguish the patients with

the target disease and those with other ophthalmic diseases but

not the target one, AI-100 adds an additional category, named

“abnormal”, in the model to reduce the intra-class divergence of

the model during training. An illustration of how AI-100 works

on fundus images is shown in Figure 2.

The AI-100 system was trained on the dataset with 52,405

samples in total. The training dataset contained 4,865 cases

of RDR, 16,672 cases of RMD, and 3,225 cases of GCS. In

that, 12,923 images were sampled from camera Canon CR-

2 AF, 33,480 images were sampled from camera Kowa VX-

10i, 3,938 images were sampled from camera Zeiss VISUCAM

200, and 2,064 images were sampled from other cameras.

The disc/cup/macula detection module and the three disease

classification modules were, respectively, trained on this dataset.

In the disc/cup/macula detection module, faster-RCNNwas first

trained to locate the optic disc region. Then a segmentation

model was used to extract the optic cup out of the optic disc

region. The macular area of interest (AOI) was calculated based

on the relative position between the fovea and the optic disc.

After the optic disc, optic cup, and macular AOI were detected,

the raw images were cropped to the region of interest and sent

to the three disease classification models, respectively. The three

classificationmodels were then trained in an end-to-endmanner

to predict the probability of the target disease. The standard

cross-entropy loss was adopted for the back-propagation. A

more detailed training process for AI-100 can be found in the

book chapter (10).

The AI-100 system was run locally on a desktop computer

(Intel I5-8,400 and NVIDIA GeForce GTX 1,060), and the

participants received their printed AI screening reports within

30 s after taking the images (including report printing). An

AI screening report suggests if the participant is positive for

RDR, RMD, and GCS or not. We also recorded the prediction

value of each disease internally to construct the ROC curve

later. The results were compared against the labels given by

ophthalmologists to evaluate the performance.

Results

Performance of disease prediction using
the baseline model on the PUMCH
dataset

Table 4 presents the performance of the baseline model

(ResNet-101) in predicting RDR, RMD, and GCS across four

camera brands on the PUMCH dataset. For most of the tasks,

the baseline model can achieve sensitivity and specificity values

> 0.8. For the prediction of RDR, the baseline model achieves

good AUCs (0.952 and 0.949) on Topcon and Syseye cameras

but relatively poor AUCs (0.818 and 0.822) on iCare and Canon

cameras. For the prediction of RMD, the baselinemodel achieves

high AUCs (0.964, 0.930, and 0.938) on Topcon, Syseye, and

iCare cameras but a relatively low AUC of 0.887 on Canon

cameras. For the prediction of GCS, the baseline model achieves

high AUCs (0.964 and 0.982) on Topcon and Canon cameras

but relatively low AUCs (0.803 and 0.903) on Syseye and iCare

cameras.

Performance of disease prediction using
AI-100 on PUMCH dataset

Table 5 provides the performance of AI-100 in predicting

the three types of diseases across four camera brands. Notably,
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FIGURE 2

Details of disease prediction modules in AI-100.

TABLE 4 Prediction performance of the baseline model on RDR, RMD, and GCS across cameras.

Camera brand Topcon Syseye iCare Canon

RDR Sensitivity 1.000 (0.692, 1.000) 1.000 (0.439, 1.000) 0.700 (0.348, 0.933) 0.500 (0.068, 0.932)

Specificity 0.762 (0.684, 0.829) 0.767 (0.691, 0.832) 0.852 (0.783, 0.906) 0.915 (0.839, 0.963)

AUC 0.952 (0.902, 1.000) 0.949 (0.902, 0.996) 0.818 (0.646, 0.989) 0.822 (0.601, 1.000)

RMD Sensitivity 0.821 (0.696, 0.911) 0.870 (0.751, 0.946) 0.857 (0.738, 0.936) 0.861 (0.705, 0.953)

Specificity 0.928 (0.857,0.971) 0.758 (0.661, 0.838) 0.865 (0.780,0.926) 0.758 (0.633, 0.858)

AUC 0.964 (0.937, 0.992) 0.930 (0.886, 0.973) 0.938 (0.901, 0.975) 0.887 (0.819, 0.955)

GCS Sensitivity 0.909 (0.587, 0.998) 0.556 (0.212, 0.863) 0.833 (0.516, 0.979) 1.000 (0.292, 1.000)

Specificity 0.866 (0.799, 0.918) 0.861 (0.794, 0.913) 0.843 (0.772, 0.899) 0.842 (0.753, 0.909)

AUC 0.964 (0.927, 1.000) 0.803 (0.633, 0.974) 0.903 (0.788, 1.000) 0.982 (0.952, 1.000)

The numbers in the parentheses are lower and upper bounds of the respective 95% CIs.

the sensitivity and specificity values are higher than 0.85 and the

AUC values are > 0.9 for all the tasks across all camera models.

Performance and robustness comparison
between the baseline model and AI-100

To compare both the performance and robustness, we

compute the mean values and standard deviations of sensitivity,

specificity, and AUCs over different cameras, for RDR, RMD,

and GCS prediction, respectively. The results are shown

in Table 6. A higher mean value denotes better overall

performance, and a lower standard deviation denotes better

robustness to cameras. In terms of performance, AI-100 is better

than the baseline model in predicting all three diseases. In terms

of robustness, AI-100 outperforms the baseline model on all

items except for the sensitivity of RMD and the specificity of

GCS prediction.

Performance and robustness comparison
on NSDE dataset

Since the NSDE dataset does not have positive

labels, we report only the specificity across two cameras

for performance comparison (Table 7). For robustness
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TABLE 5 Prediction performance of AI-100 on RDR, RMD, and GCS across cameras.

Camera brand Topcon Syseye iCare Canon

RDR Sensitivity 0.900 (0.555, 0.998) 1.000 (0.292, 1.000) 0.900 (0.555, 0.998) 1.000 (0.398, 1.000)

Specificity 0.930 (0.875, 0.966) 0.967 (0.924, 0.989) 0.986 (0.950, 0.998) 0.968 (0.910,0.993)

AUC 0.919 (0.781, 1.000) 1.000 (0.999, 1.000) 0.906 (0.721, 1.000) 0.992 (0.976, 1.000)

RMD Sensitivity 0.982 (0.905, 1.000) 0.852 (0.729, 0.934) 0.982 (0.905, 1.000) 0.861 (0.705, 0.953)

Specificity 0.907 (0.831,0.957) 0.970 (0.914,0.994) 0.885 (0.804, 0.941) 0.952 (0.865, 0.990)

AUC 0.978 (0.956, 1.000) 0.966 (0.939, 0.993) 0.985 (0.972, 0.999) 0.968 (0.937, 1.000)

GCS Sensitivity 0.909 (0.587, 0.998) 0.889 (0.518, 0.997) 1.000 (0.735, 1.000) 1.000 (0.292, 1.000)

Specificity 0.944 (0.892, 0.975) 0.924 (0.867, 0.961) 0.957 (0.909, 0.984) 0.958 (0.896, 0.988)

AUC 0.941 (0.826, 1.000) 0.973 (0.932, 1.000) 0.996 (0.989, 1.000) 0.993 (0.976, 1.000)

The numbers in the parentheses are lower and upper bounds of the respective 95% CIs.

TABLE 6 Mean and standard deviation of performance values for

AI-100 and the baseline model, respectively.

AI-100 Baseline

RDR sensitivity 0.950± 0.058 0.800± 0.245

specificity 0.963± 0.024 0.824± 0.073

AUC 0.954± 0.049 0.885± 0.075

RMD sensitivity 0.919± 0.073 0.852± 0.022

specificity 0.929± 0.039 0.827± 0.084

AUC 0.974± 0.009 0.930± 0.032

GCS sensitivity 0.950± 0.059 0.825± 0.192

specificity 0.946± 0.016 0.853± 0.012

AUC 0.976± 0.025 0.913± 0.081

comparison, the mean absolute difference and the

Pearson correlation are shown in Table 8. Given the

267 data points, all the differences between the two

values in each row of Table 8 are significant (p-values

< 0.0001).

Performance on PUMCH-NSDE mixed
dataset

Since the NSDE dataset does not have positive labels,

the model sensitivity in this scenario has not been well–

validated. Thus, we supply a PUMCH-NSDE mixed dataset

to validate the model’s performance more comprehensively.

The mixed dataset resulted from the stratified sampling of

PUMCH and NSDE datasets with a division of age 40, which

ensures the median age of the patients is 40 (close to the

current census median age). The results are shown in Table 9.

The AI-100 still shows high performance on the PUMCH-

NSDE mixed dataset, which verifies its capability in the

community scenario.

Discussion

Themain purpose of the study is to validate the practicability

of the AI-100 automated eye disease screening algorithm.

Toward that end, we tested the performance of AI-100 in

two typical eye disease screening scenarios. The robustness

was also tested by taking images from various cameras. The

results show that AI-100 can detect RDR, RMD, and GCS

with high sensitivity and specificity and low variance among

different cameras.

We highlight that this study is prospective since the images

are taken from where the AI-100 is fixed and deployed. In

general, in retrospective studies, the training image and the

testing image are randomly sampled from a unified patient

cohort, thus the training set and the testing set will likely have

the same distribution. As a result, the model’s robustness and

generalization ability cannot be well-reflected.

The AI-100 shows an overall better performance than the

baseline model in all four camera brands, three diseases, and

two population groups. The fluctuations of AI-100 performance

on different camera models are generally smaller than the

baseline model, according to the standard deviation comparison

in Table 6. In the PUMCH dataset, the AUC standard deviation

of AI-100 among cameras is 0.049, 0.009, and 0.025 for RDR,

RMD, and GCS, respectively, while the corresponding results of

the baseline method are 0.075, 0.032, and 0.081.

Although AI-100 gives a robust performance in terms of

AUC, it still exhibits some levels of fluctuations in terms of

sensitivity and specificity. For example, the sensitivity of the

AI-100 prediction RMD has a standard deviation of 0.073,

suggesting that a customized decision threshold according

to a specific camera model may help to achieve a better

performance balance.

In the PUMCH dataset, the participants have already visited

the department of ophthalmology, thus there is a fair number

of positive patients. We notice that some camera models have

very few positive cases (e.g., the brand Syseye has only three
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TABLE 7 Specificity values of AI-100 and baseline models on Topcon and Syseye with NSDE data.

Model Baseline AI-100 Baseline AI-100

Camera Topcon Topcon Syseye Syseye

RDR Specificity 0.944 (0.909, 0.968) 0.981 (0.957, 0.994) 0.918 (0.878,0.948) 0.963 (0.932, 0.982)

RMD Specificity 0.955 (0.923, 0.977) 0.966 (0.937,0.985) 0.843 (0.793, 0.884) 0.959 (0.928,0.979)

GCS Specificity 0.963 (0.982, 0.932) 0.974 (0.947, 0.989) 0.921 (0.882, 0.951) 0.996 (0.979, 0.999)

The numbers in the parentheses are lower and upper bounds of the respective 95% CIs.

TABLE 8 Mean absolute di�erence and Pearson correlation of

prediction scores on pairwise images of same eye and di�erent

cameras.

Baseline AI-100

RDR MAD (mean± std.) 0.057± 0.115 0.032± 0.023

correlation 0.295 0.739

RMD MAD (mean± std.) 0.095± 0.103 0.036± 0.029

Correlation 0.231 0.922

GCS MAD (mean± std.) 0.073± 0.121 0.022± 0.030

Correlation 0.229 0.776

TABLE 9 Specificity values of AI-100 on Topcon and Syseye with

PUMCH-NSDE mixed data.

Camera Topcon Syseye

RDR Sensitivity 0.889 (0.518, 0.997) 1.000 (0.292, 1.000)

Specificity 0.961 (0.907, 0.990) 0.960 (0.902, 0.989)

RMD Sensitivity 0.963 (0.935, 0.982) 0.833 (0.717, 0.921)

Specificity 0.971 (0.919, 0.994) 0.959 (0.898, 0.989)

GCS Sensitivity 0.918 (0.615, 0.998) 0.875 (0.474, 0.997)

Specificity 0.963 (0.908, 0.990) 0.982 (0.935, 0.998)

The numbers in the parentheses are lower and upper bounds of the respective 95% CIs.

positive images for RDR, refer to Table 2), resulting in a larger

confidence interval and undermining the statistical power of

the corresponding result. In the NSDE dataset, none of the

participants is positive for any of the three diseases. As a result,

approximately 10 participants made an unnecessary visit to

the hospital (some of the participants were confirmed negative

through their annual physical examination). This reflects a

common challenge of false positives in a screening event where

the prevalence of the target disease is extremely low.

In the analysis of false positives and false negatives examples,

we find most false positives are due to the interference of

other diseases or lesions. For example, the prediction of

RDR interferes with hypertension fundus, venous obstruction,

retinitis pigmentosa, minor hemorrhages, etc. One way to

solve this may be to train a more comprehensive AI model

to discriminate against these diseases/lesions. Another possible

solution is to combine some other medical records and exams

to achieve more reliable predictions. Some other false positives

are caused by technical problems, e.g., the stains on the camera

lens and the limited field of view. However, these technical

pitfalls cannot be avoided in real-world use, especially in primary

care. In the future, we may introduce the neural network

interpretation (28) methods for further analysis.

The high specificity of the NSDE and PUMCH-NSDE

mixed datasets suggests that AI-100 is suitable for screening

purposes. In the community screening scenario, high specificity

is essential. Generally, a large number of people go for the free

community screening, whereas the percentage of real patients is

actually very low (27). Low specificity will lead to a huge waste

of medical resources. The AI-100 has a specificity of more than

96% on the NSDE dataset (mostly healthy people) and therefore

is applicable to the community screening scenario.

In summary, we investigate the feasibility of using an AI

algorithm, called AI-100, to screen for RDR, RMD, and GCS

on fundus images captured by four different camera models. AI

algorithm shows high sensitivity and specificity for all diseases,

and the performance fluctuations are acceptable among camera

models. As such, the AI-100 screening algorithm has value for

RDR, RMD, and GCS screening and can potentially be applied

to existing fundus cameras of various manufacturers.
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