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ABSTRACT We report here paired isogenic Burkholderia pseudomallei genomes ob-
tained from three patients receiving intravenous meropenem for melioidosis treatment,
with post-meropenem isolates developing decreased susceptibility. Two genomes were
finished, and four were drafted to improved high-quality standard. These genomes will
be used to identify meropenem resistance mechanisms in B. pseudomallei.

Burkholderia pseudomallei is a Gram-negative soil- and water-borne bacterium that
causes the tropical infectious disease melioidosis. Melioidosis severity ranges

widely, with the most serious form of disease, septic shock, resulting in fatality in up to
95% of untreated cases (1). B. pseudomallei is intrinsically resistant to many antibiotics
commonly used in sepsis treatment, limiting treatment options and often resulting in
progressive disease when not diagnosed (2, 3). In Australia, where melioidosis mortality
rates have decreased to approximately 10% (4), ceftazidime is the mainstay of intra-
venous therapy for melioidosis, with meropenem usually reserved for life-threatening
sepsis requiring intensive care therapy (5). We recently identified three Australian blood
culture-persistent patients in whom decreased meropenem sensitivity has been ob-
served (D.S. Sarovich, J. R. Webb, M. C. Pitman, L. Viberg, M. Mayo, R. W. Baird, B. J.
Currie, E. P. Price, unpublished data); this is the first time that this phenomenon has
been reported. Identifying the molecular mechanisms underpinning decreased mero-
penem susceptibility in B. pseudomallei is vital in detecting resistance emergence toward
this life-saving antibiotic. The genome of another clinical isolate of B. pseudomallei with
imipenem resistance, a related carbapenem, has recently been described (6).

Three paired isogenic B. pseudomallei isolates were examined in this study (Table 1).
The first isolates were sensitive toward meropenem, whereas the latter isolates had
decreased sensitivity according to MIC testing. The six isolates were extracted as
previously described (7), with the addition of RNase treatment. Genomic DNA was
subjected to Illumina paired-end HiSeq2000 whole-genome sequencing (Macrogen
Inc., Geumcheon-gu, Seoul, Republic of Korea) to ~55� coverage. In addition, PacBio
single-molecule real-time sequencing was conducted on the PacBio RS II instrument
(Institute for Genome Sciences, Baltimore, MD, USA) to ~13� coverage using 20-kb
SMRTbell libraries and P6C4 chemistry.
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PacBio genomic data were assembled using HGAP.3 (8) (MSHR strains 3763, 4083,
and 5864), Celera Assembler version 8.2 (9) (MSHR strain 6522), and Celera Assembler
version 8.3 (MSHR strains 6755 and 7929). Assemblies were reorganized relative to the
closed B. pseudomallei K96243 genome (10) (GenBank accession no. CP009538 and
CP009537) with the assistance of progressiveMAUVE (11), followed by error-correction
with the Illumina reads using iCORN2 (12). For MSHR strains 3763 and 4083, SPANDx
version 3.1 (13) was used to identify a handful of remaining errors in the assemblies,
which were manually corrected and verified by repeat analysis in SPANDx. All variants
were also confirmed by comparison of the MSHR strain 3763 and MSHR strain 4083
assemblies using Illumina-only assemblies generated by MGAP.

The development of B. pseudomallei resistance toward meropenem is of great
concern, as this drug is one of a handful of efficacious antimicrobials for melioidosis
treatment. Meropenem resistance is especially concerning given that this antibiotic is
used to treat the most severe melioidosis cases in Australia and some other melioidosis-
endemic regions. Treatment failure in such cases must be rapidly identified in the
clinical setting to enable clinicians to alter therapy in close-to-real time. The six
genomes reported in this study will be used to search for genetic variants imparting
decreased meropenem susceptibility in B. pseudomallei.

Accession number(s). The genome sequences of the B. pseudomallei isolates
reported here have been deposited in GenBank under the accession numbers listed in
Table 1.
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