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ABSTRACT
Copper is one of the metals described to bind the Parkinson disease-related protein a-synuclein
(aSyn), and to promote its aggregation. Although histidine at position 50 in the aSyn sequence is
one of the most studied copper-anchoring sites, its precise role in copper binding and aSyn
aggregation is still unclear. Previous studies suggested that this residue does not significantly affect
copper-mediated aSyn aggregation. However, our findings showed that the aggregation of the
pathological H50Q aSyn mutant is enhanced by copper hints otherwise. Despite the inexistence of a
model for aSyn H50Q-copper complexation, we discuss possible mechanisms by which this metal
contributes to the misfolding and self-assembly of this particular aSyn mutant. Considering the
genetic association of the H50Q mutation with familial forms of Parkinson disease, and the fact that
copper homeostasis is deregulated in this disorder, understanding the interplay between both
factors will shed light into the molecular and cellular mechanisms triggering the development and
spreading of the aSyn pathology.
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The abnormal accumulation of a-synuclein (aSyn) is a
characteristic of various neurodegenerative diseases,
such as Parkinson disease (PD), that are collectively
known as synucleinopathies.1 However, the pathological
consequences of this process are still not clear, neither
the molecular mechanisms promoting and/or causing
aSyn aggregation. Factors that promote aSyn misfolding
and self-assembly include point mutations, found in
genetic forms of synucleinopathies, and the presence of
environmental stimuli, such as pro-aggregation metals.2,3

We recently exploited the unique combination of the
H50Q pathological aSyn mutation and the presence of
copper(II) (Cu2C), a metal whose homeostasis is deregu-
lated in many neurodegenerative conditions, and found
that the neuronal damage induced by the aSyn species
used in our study is not correlated with the accumulation

of intracellular aSyn inclusions, supporting the dissocia-
tion between toxicity and the accumulation of large
inclusion bodies.4

Since the recent discovery of the H50Q mutation in
familial forms of PD, various studies reported that it enhan-
ces the aggregation of aSyn in vitro.5-7 Additionally, Cu2C

and other metals are known to accelerate aSyn fibrillation.8

Cu2C interacts with the negatively-charged C-terminal
region of the protein, but binds the N-terminal region with
higher affinity.9,10 Two main possible complexation modes
in the N-terminus are suggested: one consider the first few
residues and His50 (together with neighboring residues) as
2 independent binding sites;10 the other considers the for-
mation of a long-range bridge in the polypeptide chain
through the binding of a single metal ion, in which His 50
would act as a coordination switch (Fig. 1).9 Cu2C
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coordination provokes compaction in aSyn.11,12 These con-
formational changes, even if subtle, may reduce the free
energy barrier and trigger aggregation. However, these
hypotheses are challenged by the recent finding that the
aggregation-inducing activity of Cu2C is stronger in the
H50Qmutant than in the wild-type (WT).4 This conclusion
is derived not only from cell-free aggregation experiments
but also from a cellular model where a panel of pathological
mutations was expressed and exposed to different metals
and only the combination of Cu2C and H50Q resulted in
the formation of inclusion bodies.4 This uncovers a plethora
of questions regarding the binding mode of Cu2C in this
particular mutant of aSyn, and why such event causes the
rapid formation of aSyn aggregates (Table 1).

Existing data indicate that the binding profile of aSyn-
Cu2C is not significantly disturbed in the H50Q mutant,
despite the absence of the His50 site, suggesting the
absence of coordination of Cu2C with Gln50.5 However,
the faster aggregation of H50Q in the presence of Cu2C,
when compared with WT aSyn, indicates that position
50 likely plays a role in modulating the effect of Cu2C.
One possibility is that His50 lies on a “strategical” posi-
tion in the sequence, in such a way that the binding of
Cu2C to this residue may induce a local turn-like struc-
ture, thereby favoring b-sheet nucleation.13 The lack of
this process in the H50Q variant, due to the lack of Cu2C

binding at position 50, would trigger other misfolding
mechanisms, resulting in different aggregation character-
istics. Another possibility is that, indeed, the differences
between Cu2C¡promoted aggregation of WT and H50Q

do not depend on conformational changes in the begin-
ning of the aggregation process, but rather on the subse-
quent elongation stages. However, previous studies
reported that, at least with WT aSyn, Cu2C mainly influ-
ences the lag phase of aggregation, promoting accelerated
nucleation.14 Similarly, although the Cu2C effect on WT
aSyn seems restricted to intramolecular phenomena11

promotion of intermolecular aberrant interactions could
occur in the H50Q. Additionally, it is also possible that
the increased flexibility of the C-terminal region in the
H50Q mutant15 could change the Cu2C-binding features
in this domain and, thereby affect the overall aggregation
process. Although the absence of the imidazole ring of

Figure 1. The H50 residue is key for anchoring Cu2C binding to aSyn. Quantum Mechanics / Molecular Mechanics (QM/MM) simula-
tions21 (21) were performed to test the stability of all the possible coordination geometries of Cu2C at H50 site, fitting available experi-
mental evidences.14,17,20 Models A and B results to be the most plausible. The Cu2C ion binds to H50 side chain in both of them. The 3
additional ligands are the H50 amide group, a water molecule, and either V48 carbonyl O (model A) or V49 deprotonated amide (model
B). All of the coordination bonds exhibited relatively small fluctuations around their average values, except for the Cu2C -V48 carbonyl
and Cu2C -V49 amide. This suggests an interconversion between the 2 forms. Residues and water molecules are shown in ball-and-stick
representation: red, blue, gray and white for oxygen, nitrogen, carbon and hydrogen, respectively. Cu2C is shown as a golden ball.

Table 1. Effects of Cu2C on H50Q vs. WT aSyn.

Metal binding profile No major alterations detected besides the
loss of the His50 binding site (measured
by electrospray ionization¡ion mobility
spectrometry¡mass spectrometry,18

electron paramagnetic resonance19 and
nuclear magnetic resonance5)

In vitro aggregation Faster aggregation rate4,18

Aggregate morphology Fibrillar morphology is replaced by
amorphous aggregates4

Seeding activity Mature aggregates display very low homo-
seeding capacity4

Amyloid structure Reduced thioflavin-T binding and b-sheet
structure4

Cellular aggregation Stronger inclusion formation capacity of
H50Q aSyn in the presence of Cu2C4

Exposure of neurons to
exogenous aSyn
aggregates

H50Q aggregates formed with Cu2C are
stronger inducers of intracellular aSyn
aggregation, but display reduced
neurotoxicity4
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His50 may disturb Cu2C-triggered aSyn aggregation,
Gln50 may also promote a toxic gain-of-function role.
The aggregation of different aSyn point-mutants at posi-
tion 50 revealed that, while H50Q was the more aggrega-
tion-prone among the mutants tested, a positive charge
at this site (WT or H50R) probably protects from fibrili-
zation.15 A similar experiment performed in the presence
of Cu2C would contribute to defining the effect of Gln50
in Cu2C binding. Even if the Gln50 is not directly
involved in metal coordination, it could play a role in
stabilizing protein-metal complexation.16

Electron microscopy confirmed that fibrils formed
by the H50Q mutant resemble those formed by WT
aSyn.4-6 Cu2C also does not alter the morphology of
fibers formed by WT aSyn.14 However, the combina-
tion of the H50Q mutation and Cu2C results in the
formation of amorphous aggregates.4 Although this
could be the mere consequence of the very rapid self-
assembly rate, it will be worthwhile exploring this
issue further to understand when and where those
morphological changes arise.

Finally, certain physiologic circumstances may also
cause the loss of Cu2C-binding, such as N-terminal
acetylation of aSyn or a reduction in the micro-envi-
ronmental pH.17,18 The latter would result in proton-
ation of the His50 imidazole ring, impairing metal
binding. In this case, the H50Q substitution could
create a similar scenario, forcing Cu2C to coordinate
only to the N-terminal cluster. The lack of a potential
intramolecular bridge supported by a Cu2C ion might
alter the entire conformation, probably inducing more
open Cu2C-aSyn complexation modes, affecting the
aggregation process and eventually the toxicity of the
resultant species.

In the future, when further addressing the role of
Cu2C as an enhancer of the H50Q aggregation, physio-
logic micro-environments and posttranslational modifi-
cations will have to be considered. A molecular
understanding of the interplay between genetic factors,
such as aSyn mutations and environmental factors, such
as the presence of Cu2C, might greatly contribute for our
understanding of the pathological events causing PD.
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