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To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells
tend to rewire their metabolic pathways. Although different types of malignant cells share
this phenomenon, there is a large intracellular variability how these metabolic patterns are
altered. Fortunately, differences in metabolic patterns between normal tissue and
malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular
metabolism to improve treatment outcome is an emerging field proposing a variety of
promising strategies in primary tumor and metastatic lesion treatment. These strategies,
capable of either sensitizing or protecting tissues, target either tumor or normal tissue and
are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF)
stabilization, glucose metabolism, mitochondrial function and the redox balance. Several
compounds or therapies are still in under (pre-)clinical development, while others are
already used in clinical practice. Here, we describe different strategies from bench to
bedside to optimize the therapeutic ratio through modulation of the cellular metabolism.
This review gives an overview of the current state on development and the mechanism of
action of modulators affecting cellular metabolism with the aim to improve the radiotherapy
response on tumors or to protect the normal tissue and therefore contribute to an
improved therapeutic ratio.
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INTRODUCTION

Cancer incidence is predicted to almost double, from 12.7 million in 2008 to 22.2million cases in 2030
(1), resulting in a high burden on the healthcare system, but also necessitating the demand for efficient
therapies. Although cancer survival rates are improved over the last decades, metastases contribute for
the majority of cancer-related deaths (2). Approximately 50% of all cancer patients undergo
radiotherapy during their treatment, either as monotherapy, but more frequently in combination
with surgery, chemotherapy or immunotherapy, either to treat primary tumors and/or metastasis, or
as a palliative treatment (3–11). Different therapies are commonly combined as it improves tumor
control, progression-free survival and overall survival rates (12–16). Unfortunately, combination
treatments approaches can potentially increase systemic toxicity. In order to overcome this problem,
there is a need for a higher therapeutic selectively, which can be accomplished by enhancing tumor
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treatment sensitivity while reducing adverse effects. This
improved therapeutic ratio, is a favorable tradeoff between the
tumor control and the radiation-induced toxicity (17).

One of the hallmarks of many cancer cells, namely the
reprogramming of the cellular metabolism, has recently gained
again the attention of researchers and clinicians. Rewiring the
malignant metabolism is an interesting approach to considerably
affect the radiotherapy response in order to enhance the
therapeutic ratio (18, 19). This review gives an overview on the
mechanisms and current status of potential radiosensitizers and
protectors in relationship to rewire the cellular metabolism and
thereby enhancing the therapeutic ratio (Tables 1 and 2).
Frontiers in Oncology | www.frontiersin.org 2
METABOLIC REWIRING IN CANCER

Metabolic plasticity is crucial to ensure cellular survival since it
enables the cell to adapt to changing nutrient demands and
oxygen conditions. Therefore, metabolic adjustments are tightly
regulated by extrinsic signals, such as growth factors, mediating
the cell’s response to changed environmental conditions. In
contrast to healthy cells, the metabolism of primary cancer
cells or metastatic lesions is, to a certain extent, uncoupled
from external stimuli providing continuous resources for
proliferation, growth, and metastatic niche formation (107–109).
This is caused for instance by oncogene activation and/or loss of
May 2021 | Volume 11 | Article 653621
TABLE 1 | Compounds with potentially radiosensitizing properties.

Compound Mode of action Specificities References

HIF-1 signaling
Deguelin, SH-14 Akt inhibition, downregulation HIF-1a, reduced

hexokinase expression
Potential CI inhibitor- Development of Parkinson’s disease-like
syndrome in rat; SH-14 is a deguelin derivative

(20, 21)

Vandetanib Inhibition, EGFR, HIF-1a signaling interference FDA-approved for medullary thyroid cancer therapy (22–27)
Berberine Downregulation HIF-1a & VEGF (28–31)
Rg3 Inhibition NF-kB, decreased expression HIF-1a

& VEGF
(32, 33)

Cellular metabolism
Glucose metabolism
BAY-876 GLUT1 inhibition In vitro cisplatin sensitizer, radiosensitizing effects unclear (34, 35)
WZB117 GLUT1 inhibition (36, 37)
2-DG, WP1122 Glucose analogue, hexokinase inhibition,

radiosensitizing mechanism unclear
Tumor staging and metabolism profiling via PET-imaging using 2-DG
coupled to positron-emitting isotopes; WP1122 is a 2-DG analogue

(38–41)

Lonidamine Glycolysis inhibition, TCA cycle & CII interference Negative results in clinics (42–44)
Devimistat Deregulation TCA cycle enzymes, ROS induction In phase 2/3 trials combined with chemotherapeutics; No studies

about combination with radiotherapy
(45, 46)

FH535 and Y3 Distortion mitochondrial membrane potential,
apoptosis inducer

Y3 is an FH535-analogue (47, 48)

Ivosidenib IDH1mut inhibition FDA-approved for acute/refractory AML (49)
Enasidenib IDH2mut inhibition FDA-approved for acute/refractory AML (50, 51)
Vorasidenib IDH1/2mut inhibition Clinical trials (52, 53)
BAY-1436032 IDH1mut inhibition Clinical trials (54, 55)
Complex I
Metformin Inhibition CI, oxygen accumulation and subsequent

HIF-1-a destabilization, reduces PI3K/Akt signaling
FDA-approved for anti-diabetes therapy (56, 57)

Phenformin CI inhibition Redrawn, induces lactic acidosis in diabetes patients; Clinical trials phase I (58, 59)
Papaverine CI inhibition and PDE10A FDA-approved as anti-vasospasm therapeutic; In vivo

radiosensitization
(60, 61)

SMV-32 CI inhibition Papaverine derivative; In vivo radiosensitizing; Clinical trials phase I (61)
BAY 87 2243 In vivo radiosensitizing; Clinical trials status unclear NCT01297530
IACS-010759 Radiosensitizing effect unclear NCT03291938

NCT02882321
Complex III
Atovaquone Complex III inhibition FDA-approved for anti-malaria therapy; Clinical trials phase I (62, 63)
Pyrazinib OCR/ECAR reduction Precise target unknown (64)
Other pathways
ADI-PEG Arginine depletion Arginine deiminase and polyethylene glycol chimera- Clinical trials in

combination with chemotherapy
(65–67)

Orlistat FASN inhibition FDA-approved for obesity-management (68)
Fenofibrate Activates PPARa, metabolic reprogramming via

CPT1, AMPK and HK2 Prevention of HIF-1
stabilization

FDA-approved for hypercholesterolemia, mixed dyslipidemia and
severe hypertriglyceridemia

(69–71)

Redox signaling
Telaglenastat GLS inhibition Improved bioavailability, chemotherapeutic and immunotherapeutic

outcomes
FDA-approved for advanced renal cell carcinomas

(72–75)

Auranofin TrX-reductase inhibition FDA-approved for arthritis therapy (41, 76)
The compounds are grouped according to their intracellular effects.
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function in tumor suppressors. Consequently, malignant cells are
depended on anabolic pathways and rewire their metabolism to
meet their increasing demand for adenosine triphosphate (ATP),
macromolecules and reactive oxygen species (ROS) scavengers due
to their high proliferative potential (110). Metabolic patterns vary
between cancer cells, depending on several intrinsic and extrinsic
factors, such as the oncogene type and its microenvironment. The
tumor microenvironment is often, in contrast to normal tissues,
deprived from nutrients and oxygen due to a poor and imbalanced
vascularization. Tumor cells therefore are capable to adapt their
metabolic need by restructuring their metabolism and maintain a
high biosynthetic potential by altering their carbonmetabolism such
as their intracellular glucose or glutamine pathways (111–113).

A prominent example for the rewiring of metabolic pathways
in cancer cells is the “aerobe glycolysis,” also named the Warburg
effect. Aerobe glycolytic cells display an increased glucose uptake
which they convert, in contrast to normal cells, into lactate
instead of pyruvate in presence of oxygen (114–116). This
seems quite paradoxal since oxidative phosphorylation
(OXPHOS) remains possible as oxygen is available and has a
higher ATP yield. However, tumor proliferation also depends on
anabolic pathways derived from the glycolysis. A balanced exit of
glycolytic intermediates ensures that the anabolic pathways are
constantly replenished and (intermediate) products are
transferred to the pentose‑phosphate-pathway (PPP), fatty acid
(FA) synthesis and tricarboxylic acid (TCA) cycle in order to
meet tumor’s metabolic need to proliferate. Glucose-6-phosphate
is a central glycolytic intermediate as it can either be used by an
irreversible oxidative arm and a reversible non-oxidative arm of
which the oxidative arm contributes to reduced nicotinamide
adenine dinucleotide phosphate (NADPH) production. The
Frontiers in Oncology | www.frontiersin.org 3
metabolic flux of the PPP is important to maintain a redox
balance as reduced NADPH is a necessary cofactor for FA-
synthesis and glutathione peroxidase (117, 118). The sufficient
supply of anabolic pathways with intermediates is ensured by an
altered regulation, for example the overexpression of the pyruvate
kinase M2 (PKM2) in many tumors. This less efficient splice
variant of the pyruvate kinase M1 catalyzes the conversion of
phosphoenolpyruvate to pyruvate limiting the influx of pyruvate
into the TCA cycle (119–121). Despite the higher fermentation
rate, many cancers with an intact mitochondrial function still
maintain their ATP pool using the Electron Transport Chain
(ETC) and ATP-synthase (122). Due to the limited pyruvate
production, alternative anaplerotic pathways are very important
to sustain the TCA cycle, which recycles reduction equivalents
that are crucial for the redox balance.

Next to glucose, also glutamine can refill the TCA cycle and
maintain redox homeostasis. The glutamine pathway fuels the
TCA cycle via glutamate and a‑KG where oxaloacetate (OAA)
gets converted into aspartate in order to support nucleotide
synthesis (113). Vazquez et al. has given a comprehensive
overview and graphical representation of the different
substrates and connections between different oncological
metabolic pathways (123). Extracellular glutamine is
transported into the cells using transporters like SLC1A5.
However, under nutritional stress conditions, tumor cells are
also able to acquire glutamine by macromolecule breakdown
within the cell (113). The uptake of those macromolecules by
macropinocytosis can be stimulated by the oncogene RAS (113,
124). A large variety of oncogenes and tumor suppressors (e.g.
MYC, KRAS, HIF-1a stabilization, mTOR, P53, PTEN etc.) have
been found to influence the glutamine metabolism and its
TABLE 2 | Compounds with potentially radioprotective properties.

Compound Mode of action Specificities References

Radical scavengers
Amifostine, PrC-210 ROS scavenger, accumulates in normal tissue, precise mechanism

unknown
FDA approved for radioprotective effects
PrC-210 is an amifostine analogue

(77–81)

MNSOD-PL Mitochondrial localization (82)
JP4-039 fusion peptide, Mitochondrial localization (83, 84)
DSePA ROS scavenger Limited tumor uptake accumulation in lung and

intestine
(85, 86)

Inflammation mitigators
Celecoxib COX2 inhibitor Reduces skin toxicity, phase 2 clinical trial

FDA-approved for rheumatoid arthritis
(87)

Vitamin E, g-tocotrienol Reduction in radiation-induced lipid peroxidation Tumor radiosensitizing effects
g-tocotrienol is a Vitamin E derivative

(88, 89)

Ascorbic acid Downregulation of MnSOD in tumors (90, 91)
Curcumin Blocks NF-kB signaling (92)
Melatonin NF-kB downregulation, depleting hydroxyl radicals,stimulation of

SOD and GPx
(93–97)

CAPE Suppression of NF-kB-signaling, ROS disbalance Tumor radiosensitizing effects (98, 99)
DNA repair
RSV, HS-1793 Mcl-1 downregulation, cell cycle arrest, DNA repair HS-1793 is an RSV analogue (100–102)
Dietary Intervention
STF Differential stress response, Phase I/II clinical trial (103–105)

NCT01754350
Ketogenic Diet Differential stress response Phase I/II clinical trial- Used in epilepsy

treatment
Clinical trials for cancer treatment ongoing

(106)
NCT03451799
NCT02516501
May 2021 | Volum
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effector pathways, emphasizing the importance of the glutamine
pathway in tumor cell development, expansion and metastatic
properties (113).

Cancers also often upregulate the de novo FA synthesis to
provide enough lipids for membranes and other cellular
structures (125). ATP-citrate lyase (ACT) is often upregulated
to convert the TCA cycle derived citrate into acetyl-CoA.
Consequently, a higher substrate influx into the FA synthesis
occurs (126, 127). Lipid droplets are closely related to the fatty
acids as they serve as storage depots of fatty acids. Lipid droplets
can influence the metabolic regulation of tumor cells and tumor-
associated immune cells. A relationship between lipid droplet
accumulation, tumor establishment and aggressiveness has been
demonstrated in different types of cancer, although this seems
tissue type specific. In hypoxic tumor regions specifically,
accumulation of lipid droplets has been observed, which is
potentially related to an increased Fatty Acid Oxidation (FAO).
The role of lipid droplets has been extensively reviewed before
(128, 129). Inhibition of lipid droplet formation could potentially
serve as a novel therapeutic target to be used in combination with
therapies, such as radiotherapy, which modulate metabolism.

All these metabolic alterations are merely examples of
metabolic rewiring to facilitate fast proliferation, growth and
spread of cancer cells [extensively reviewed by (117, 130, 131)].
Importantly, the metabolic pattern varies between cancer cells
and their tumor microenvironmental conditions. Interestingly, it
has been suggested that cancer therapy itself, such as
radiotherapy, can influence the cellular metabolism, which
eventually will affect the cellular response to radiation (132–
134). Therefore, a more profound understanding of these
interactions is needed in order to enhance the therapeutic ratio.
RADIOTHERAPY AND METABOLISM

Radiotherapy is a fundamental treatment for most cancer
patients since it enables the local control of many cancer types
(3). Radiation results in deoxyribonucleic acid (DNA) double
strand breaks (DSBs), single strand breaks (SSBs) and the
radiolysis of water and other intracellular molecules, resulting
in a ROS burst (135). This causes lipid peroxidation, protein
oxidation and DNA damage, all processes massively harming
cellular viability (136–141). Some lesions will remain unrepaired,
resulting in genomic instability and cell death by mitotic
catastrophe, even several mitotic divisions post radiotherapy.
Cancer cells are more vulnerable to irradiation than normal cells
since their DNA repair machinery is less efficient, making them
more prone to genomic instability (142, 143).

Genotoxic effects of radiation are presumed to be caused by
direct irradiation of the nucleus and not to the cytoplasm of cells,
as direct irradiation of the nucleus is more lethal than the
cytoplasmic dose (144). DNA repair is a highly energy
demanding process in both tumor and normal tissue cells as
interactions have been observed between mitochondrial ATP
generation, DNA-repair and cell cycle kinase CDK1 (145, 146).
Also, chromatin remodeling is an important mechanism
Frontiers in Oncology | www.frontiersin.org 4
involving DNA repair. Chromatin relaxation is highly ATP
dependent and inhibition of glucose uptake can lead to
energetic stress that will result to a decreased tumor survival
upon radiation (147). DNA folding and remodeling involves
acetylation of the DNA and donors for this acetyl-group are
derived from acetyl coenzyme A (CoA), which is also required
for the TCA cycle. Acetate-derived acetyl-CoA has also been
linked to histone acetylation, suggesting that acetyl-CoA is an
important substrate for gene regulation (148, 149). Limiting
metabolic substrates will therefore have severe implications on
the ability of cells to repair their radiation-induced DNA
damage (150).

Nonetheless, the success of radiotherapy considerably
depends on the therapeutic ratio since the radiation dose given
to the tumor is limited by the maximal dose tolerated by the
surrounding normal tissue. Both phenomena therefore
contribute to the therapeutic ratio and are possible targets to
increase radiotherapy efficacy. Radiosensitivity varies between
cells, tissues and individuals and is determined by several
intrinsic and extrinsic factors. Generally, hypoxia and cellular
metabolism are two crucial determinants of cellular
radiotherapy-response (151, 152). Hypoxic areas of the tumor
can emerge from the immature tumor vascularization and the
OXPHOS-dependent increased oxygen consumption rate
(OCR), both due to the enhanced proliferative potential of
cancer cells. Hypoxic areas reduce the cellular radiosensitivity
since cells in hypoxic environments lack oxygen, the main
component for ROS formation and inducing radiation-induced
genotoxicity (153–155). Tumor survival and re-growth upon
radiotherapy is also relying on the formation of new blood
vessels. However, the mechanisms behind this new vessel
formation are still a matter of debate and can be broadly
categorized in: 1) the requirement of bone marrow–derived
cells, or 2) the remaining viable endothelial cells form these
new vessels (156–158).

Hypoxia regulates HIF signaling by promoting stabilization of
HIF-1a, which can regulate target gene expression by binding to
specific regulatory sequences in their promotor, the hypoxia
response elements (HRE) (159). Hypoxia contributes to
epithelial-mesenchymal transition (EMT) by binding to the
HRE in TWIST (160, 161) and ZEB1 (162, 163), thereby
supporting tumor invasiveness (164). Also, the downstream
mechanisms of HIF-1a signaling influence cel lular
radioresistance by facilitating a metabolic switch, i.e.
stimulation of glycolysis and OXPHOS downregulation,
supporting the depletion of ROS and promoting angiogenesis
(165–171). Importantly, HIF-1 expression is not only regulated
by hypoxia, also the genetic background of tumors influences
intracellular HIF-1 levels.

Tumor metabolism may also affect the radiation response
since evidence suggests an enhanced radioresistance in cells
harboring the Warburg phenotype. Studies observed an
upregulation of glycolytic enzymes in Warburg-dependent
cells, associated with elevated HIF-1 levels (172). Therefore, it
is hypothesized that activated HIF-1 promotes the Warburg
effect by e.g. activating glycolytic enzymes (173, 174). Genetic
May 2021 | Volume 11 | Article 653621
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interference with HIF-1–mediated effects on the glycolysis results
in radiosensitivity (175, 176).

Metabolic Rewiring Upon Radiation
of Tumors
Although malignant oncogene activation or loss of function of
tumor suppressors alters the metabolism, radiation itself may also
enhance metabolic alterations by influencing different signaling
pathways. Among the several affected pathways, the PI3K/Akt
and the NF‑kB pathway play a crucial role in radiation-induced
metabolic remodeling and the tissue response to radiotherapy (133,
134). PI3K/Akt are master regulators of glucose uptake. Normally,
the PI3K/Akt pathway is activated by external stimuli, however, in
many cancers PI3K and its downstream target Akt are constitutively
activated due to mutations (177). PI3K can also be indirectly
activated by radiation through stimulation of the PI3K upstream
epidermal growth factor receptors (EGFR) (132, 178–180). Akt
overactivation facilitates glucose uptake and intracellular
accumulation of glucose by enhancing the glucose transporter
expression and by activating hexokinase and phosphofructokinase
1, respectively. Furthermore, Akt stimulates FA synthesis by
activating ATP-citrate lyase (133). These alterations may nurture
malignant cells and thus, many radiosensitizers have been used to
influence this pathway (181).

NF-kB is a family of five master transcription factors,
influencing the expression of various genes, which is
deregulated in many cancers with various effects depending on
the cellular context. Radiation stimulates the pathway by
enhancing the DNA binding affinity of NF-kB, its expression,
the dissociation of the IKB complex and consequently its
activation (182, 183). Thalidomide is a for multiple myeloma
U.S. Food and Drug Administration (FDA) approved NF-kB
modulator that interferes with the NF-kB activation and is
currently investigated to reduce urinary complications, a
normal tissue complication, upon irradiation of the pelvic
region (184). As radiation activates NF-kB- and PI3K/Akt-
signaling and thereby affects the radiation response modulation
of those signaling pathways, thalidomide can contribute to
enhance the therapeutic window (185, 186).

Next to radiation, also manganese superoxide dismutase
(MnSOD or SOD2) is able to activate NF-kB and contributes
as such to an aggressive tumor phenotype (187). MnSOD is a
well-known and an important anti-oxidant enzyme located in
the mitochondria and is required to scavenge super-oxides
generated by the OXPHOS. Due to its function, MnSOD also
acts as a tumor suppressor and reduced MnSOD has been shown
to contribute to the oncogenic transformation of cells (188).
However, elevated MnSOD activity has been reported to be
involved in the increased invasion and metastatic potential of
tumors (189). MnSOD also seems to play a role in rewiring the
tumor’s metabolism upon genotoxic conditions such as radiation
exposure. CDK1 is found to contribute to mitochondrial energy
production, which contributes to radiation induced DNA
damage repair (145). MnSOD is able to interact with and
activate these CDKs, and activated CDKs are involved in
OXPHOS enhancement [reviewed by (190)]. This suggests that
Frontiers in Oncology | www.frontiersin.org 5
tumors are able to use the mitochondrial metabolism as a
substitute metabolic system for glycolysis, when they are in a
high metabolic need. Therefore, this phenomenon can contribute
to growth, metastatic formation and a radiation resistance
phenotype (190–192). Besides the signaling-pathway-mediated
and radiation-induced metabolic shift of the tumor cells, also the
metabolic rewiring of the TME and CSC population can play an
important role in treatment response.

Metabolic Rewiring Upon Radiation of the
Tumor Micro-Environment
As radio-, and/or chemotherapy exert untargeted effects, induced
metabolic alterations are not exclusively restricted to the
irradiated tumor cells, but also include tissues that are in close
proximity to the irradiated tumor tissue, i.e. the tumor micro-
environment (TME). This comprises different cell and tissue
types, secreted factors, and proteins resulting in a complex
ecosystem which is shaped to promote tumor survival and to
establish a connection with the whole organism contributing to
cancer stemness and metastasis. Here, the malignant metabolism
plays a pivotal role as the increased oxygen and nutrient
consumption, as well as the release of several (onco-)
metabolites and other factors such as growth factors, cytokines
and extracellular vesicles, into the TME establishes interactions
with neighboring cells, in order to promote tumor growth and
therapy resistance (193–195).

Cancer-Associated Fibroblasts
One of the components of the TME is the stroma. It is composed
of different cell types such as fibroblasts, mesenchymal stem cells,
endothelial cells, and lymphocytes. Cancer-associated fibroblasts
(CAFs) are a prominent example how cancer cells metabolically
modulate the TME to promote tumorigenesis and metastasis. In
contrast to normal fibroblasts, CAFs are continuously active,
secreting growth factors and cytokines to promote tumor
growth. Moreover, the elevated ROS levels in cancer cells
mediate metabolic reprogramming of CAFs towards glycolysis
followed by an increased MCT4-mediated export of lactate in the
TME. The enhanced lactate uptake of aerobic cancer cells by
upregulated expression of the MCT1-lactate transporter fuels
malignant metabolism (196). This tumor feeding through the
TME is involved in tumor metastasis and therapy resistance as it
decreases the tumor’s dependency on proper vascularization,
which is emphasized by the correlation of the tumor’s CAF
infiltration and prognosis (197–201). Radiation has been shown
to activate CAFs and enhance their proliferative potential. Co-
culture experiments with cancer cells have suggested that CAFs
have a radioprotective effect on cancer cells through integrin-
signaling, which stimulates the invasive potential of cancer cells
(200, 202, 203).

Immune Cells and (Onco-)Metabolites
Furthermore, tumors can influence, due to their altered
metabolism, the TME to establish an immune suppressive
environment. This is important as the TME comprises a
variety of immune cells, including tumor-suppressing cells like
May 2021 | Volume 11 | Article 653621
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natural killer (NK) cells, CD4/8+ T-cells, proinflammatory M1
macrophages, dendritic cells and tumor-promoting immune cells
e.g., Foxp3+ regulatory T-cells (Tregs), tumor-associated
macrophages and myeloid-derived suppressor cells (MDSCs).
The high anabolic rate of tumors results in hypoxic and nutrient-
poor areas, which influence immune cell types massively as their
function is determined by their metabolic program (204, 205).
Glucose-deprivation results in T-cell and macrophage
exhaustion as these cells depend on glycolysis to cover their
demand for metabolic intermediates and energy (206).
Moreover, the TME is a selective pressure for tumor-
promoting immune cell types. Naïve T-cells favor the
differentiation into Treg cells rather than into T-helper cells in
a glucose and glutamine deficient TME as Tregs mainly rely on
OXPHOS and FAO to meet their energy demand (207–209). The
enhanced production of kynurenine caused by the expression of
the tryptophan catabolizing IDO1 enzyme in cancer cells,
cancer-derived vesicles and several other immune and stroma
cells in the TME has immunosuppressing effects and is a
predictor for poor prognosis in different cancer types. IDO1
stimulates the Treg-dependent recruitment and activation of
MDSCs and the differentiation of CD4+ to Tregs (210–214).
Concomitantly, IDO1 inhibits tumor-antagonists like CD8+

T-cells and NK cells (215, 216).
Radiation of the TME however provokes ambiguous

responses, which is likely due to the heterogeneity in TME
composition and the radiotherapy dosage (217). For example,
radiation can exert immunosuppressive effects by decreasing the
relative abundance of immunoreactive lymphocytes due to their
inert higher radiosensitivity compared to immunosuppressive
cells like MDSCs and Tregs (218–221). MDSCs exert
immunosuppressive functions, amongst others, by depleting
amino acids such as cysteine and arginine from the TME
which impairs the function and activity of T-cells (222–224).
Studies with high-dose or hypofractionated radiotherapy suggest
that radiation potentially triggers an anti-tumor immune
response. The release of cytokines, damage associated
molecular patterns, tumor associated antigens and other
factors by dying cells upon radiation activates CD8+ T-cells,
although this seems to be dependent on radiation-induced
conventional DC1 activation which mediates the cross-priming
of CD8+ T-cells in the lymph nodes (225–228). The treatment
with adjuvants rescued the absence of an improved radiation
response in tumors with no DC1 activation. These observed
differences may be due to the TME as for instance cancer cells are
proposed to reduce the activity and functionality of DCs by
inducing a Msr-mediated lipid uptake, which results in lipid
accumulation and decreased antigen presentation (229, 230).

Another mechanism of tumors to interact with neighboring
cells is the secretion of (onco-)metabolites from the TME, which
are associated with tumor-promoting effects (231). The release of
lactate, the end product of glycolysis, is promoted through
hypoxia-mediated HIF-1 stabilization which results in the
enhanced expression of monocarboxylate transporter 4
(MCT4). This leads to an increased acidification of the TME.
Lactate exerts tumor-protecting effects by its inhibitory effects on
Frontiers in Oncology | www.frontiersin.org 6
T-cells, dendritic cells, natural killer cells, and tumor-associated
macrophages (232–235) and its contribution to the induction of
CD4+ Treg cells (234). Tumors with loss or gain of function
mutations in genes encoding TCA cycle enzymes such as
succinate dehydrogenase (SDH) and isocitrate dehydrogenase
(IDH) respectively, exhibit an accumulation of the
oncometabolites succinate or 2-hydroxyglutarate (2-HG). Both
promote tumorigenesis and metastasis formation by
epigenetically initiating EMT as inhibitors of a-KG dependent
dioxygenases and by their release into the TME (236). Succinate
induces macrophage polarization into M2-like tumor-associated
macrophages via succinate receptor activation and the PI3K-
HIF-1a axis promoting metastasis (237). 2-HG is released by
IDH-negative cancer cells and is proposed to affect T-cells as
IDH-negative tumors display a significantly lower T-cell
infiltration compared to IDH-wildtype tumors (238, 239).
2-HG uptake induces HIF-1a destabilization and a shift
towards OXPHOS in T-cells which is associated with lower
levels of T-helper cells and a higher Treg abundance (217). In
mice, CD4+ T cells display a decreased secretion of cytokines
under hypoxia and 2-HG treatment (240). This exemplifies how
the tumor metabolism participates in the shaping of its protective
niche and how this reduces its radiotherapy response.

TME Involvement in Metabolic Rewiring of
Cancer Stem Cells
The dynamic TME leads, amongst others, to a high heterogeneity
of metabolic profiles within tumors (241). Particularly,
differences between normal cancer and cancer stem cell
populations need to be considered for efficient therapeutic
interventions as cancer stem cells (CSCs) drive cancer
progression and recurrence. Mostly, glycolysis-dependent CSCs
have been observed but there are also reports about mitochondrial
driven CSCs, which is likely to depend on the genetic background,
TME and the proliferative capacity (242–248). CSCs seem to be
metabolically flexible, switching from OXPHOS to glycolysis or
vice versa upon inhibition of one of these pathways (248).
Moreover, evidence suggests that the metabolic profile between
normal cancer cells and CSCs varies so that effective therapies and
relapse prevention potentially requires the interference with
different pathways (248–251). Highly aggressive cancers such as
triple negative breast cancer or glioblastoma are suggested to
exhibit CSC populations and to mainly rely on a mitochondrial
energy metabolism (251–254). Therefore, it may be necessary to
combine mitochondrial and glycolysis metabolism inhibition, in
order reduce the potential radioresistance and have a
successful treatment.
IMPROVING RADIOTHERAPY RESPONSE
BY TUMOR SENSITIZATION

Radiosensitizers aim to improve local tumor control and
curation by enhancing radiotherapy-induced mitotic
catastrophe of tumor cells without affecting normal cells.
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Different strategies to enhance radiosensitivity have been
explored, such as 1) the physical amplification of the
irradiation intensity e.g. by nanoparticles (255), 2)
interventions to selectively enhance the radiation-induced ROS
production for instance by increasing intracellular oxygen levels
(175) and 3) suppression of survival pathways such as ROS
degradation pathways or DNA repair pathways (175, 256). As
metabolism and radiation response are linked, modulation of the
cellular metabolism is another promising strategy to increase
tumor’s radiosensitivity (Figure 1; Table 1).

Modulation of HIF-1 Signaling
Mutations in the TCA cycle enzymes IDH, SDH and fumarate
hydratase (FH) lead to HIF-1 accumulation (257–259). Tumors
with mutations causing SDH or FH deficiency exhibit TCA cycle
disruption and a disbalanced redox status caused by a disrupted
NADPH-recycling. Due to these mutations levels of succinate
and fumarate augment and thereby influence cellular
metabolism also through phosphorylation-mediated
downregulation of pyruvate dehydrogenase (260). Next to
hypoxia, also mutations in SDH, FH and IDH are involved in
EMT of cells and contribute to the formation of metastasis.
Furthermore, these enzymes enhance the metabolic shift towards
Frontiers in Oncology | www.frontiersin.org 7
glycolysis, as they also inhibit prolyl hydroxylases leading to
stabilization of HIF-1 (261, 262). Therefore, compounds
interfering with HIF-1 signaling might enhance radiosensitivity.

The radiosensitizer deguelin is a rotenoid naturally produced
by Leguminosae and has been proposed to augment the tumor
chemo- and radiotherapy response (263). It targets multiple
signaling pathways including STAT3, c-myc and E-cadherin to
de-regulate proliferation, angiogenesis and metastasis capability.
Furthermore, deguelin facilitates apoptosis by promoting cell
cycle arrest and Akt inhibition (20, 264, 265). Inactivation of Akt
destabilized the anti-apoptosis factors XIAP, Mcl-1, and survivin,
downregulated HIF-1 signaling and reduced hexokinase
expression. The deguelin-caused Akt dysregulation has been
shown to radiosensitize breast cancer cells, associated with
increased G2/M- arrest and caspase-dependent apoptosis (263).
The mechanism of selective apoptosis induction of deguelin is
unclear, but supposedly different caspase levels in normal and
cancer cells influence the selectivity of deguelin (266). The use of
deguelin is currently limited due to its assumed function as
OXPHOS Complex I (CI) inhibitor (267). Caboni et al.
demonstrated that rats receiving subcutaneous deguelin doses
developed Parkinson’s disease-like syndrome (267). In vitro
results suggested similar molecular effects of the deguelin
FIGURE 1 | Schematic representation of different interventions to improve the therapeutic ratio. Interventions can either improve the radiosensitivity of the primary
tumor or metastatic lesion or protect the healthy tissue. Influencing the differential stress response between tumor and normal healthy tissue can contribute to an
enhanced therapeutic ratio. Different pathways and proteins can be influenced in relationship to enhancement of the therapeutic ratio, such as mitochondrial and
glucose metabolism, ROS scavenging and redox signaling, hypoxia response, DNA repair capacity and inflammation.
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derivative SH-14 but less toxicity and higher solubility which
potentially could be an alternative (21).

Vandetanib, a FDA-approved medullary thyroid cancer
therapy that inhibits EGFR (22), impairs the HIF-1 pathway by
targeting the mTOR–HIF-1a–VEGF signaling axis in breast
cancer cells (23) and increases survival in advanced medullary
thyroid carcinoma (268). Vandetanib is able to radiosensitize and
improve overall survival in xenografts (24). Phase I clinical trials
proved Vandetanib’s safety in a (chemo)radiotherapy regimen for
head and neck cancers (25) and brain metastasis of melanomas,
although without differences for progression free survival (PFS)
or overall survival (OS) (26). Additionally, adult SDHmut

gastrointestinal stromal tumor patients displayed treatment-
related toxicities without partial or complete responses (27).
The alkaloid Berberine also downregulated HIF-1-a and its
downstream target vascular endothelial growth factor (VEGF)
and reduced tumor invasiveness resulting in an improved
radiotherapy response (28, 29, 269). Furthermore, berberine
treatment results in decreased levels of RAD51, part of the
homologous recombination mediated repair of irradiation-
induced DSBs (30, 270) and induces a dose-dependent cell
cycle arrest (31). Similarly, succinate and fumarate can, as both
are competitive inhibitors of a-KG-dependent dioxygenases
which control chromatin-methylation status (e.g. histone- and
DNA-demethylases) (271), influence gene expression and
DNA‑repair mechanisms; such as hypermethylation of the O6-
methylguanine-DNA methyltransferase promoter (272–274).
Also, ginsenoside Rg3, a ginseng extract, modulates HIF-1a
stabilization, VEGF expression and NF-kB activation upon
hypoxia exposure and sensitizes tumor cell lines and xenograft
to radiation (32, 33).

Altering Cellular Metabolism
The metabolism of malignant cells, especially pathways which
are involved in the utilization of carbon as these are crucial for
maintenance of cancer cell survival and proliferation, can be
targeted directly. Prominent targets are the glucose metabolism,
mitochondrial metabolism and antioxidant metabolism.

Glucose Metabolism Targeting
Glucose has a central function in the cellular metabolism and
therefore several compounds have been developed which target
the glucose import to reduce the glycolytic rate. BAY-876 is a
highly selective small molecule inhibitor of the glucose
transporter 1 (GLUT1), upregulated in many tumor cells and
predictive for poor survival (34, 275–277). Moreover, BAY-876
demonstrated sensitizing effects towards cisplatin treatment in
esophageal cancer cell lines (35). Its usefulness as a
radiosensitizer needs to be investigated. WZB117, another
promising GLUT1 inhibitor, re-sensitizes therapy-resistant
breast cancer cells to radiotherapy and demonstrates anti-
cancer effects in glioblastoma cells (36, 37).

The glucose analogue 2-deoxyglucose (2-DG) influences the
radiotherapy response of cancer cells by interfering with
glycolysis (38–40). Glucose and 2-DG compete for GLUT-
mediated transmembrane transport. Both molecules are
phosphory la t ed by hexok inase (HK) fo l lowed by
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phosphoglucose isomerase dependent metabolism, only
possible for glucose. 2-DG, however, is not sensitive for the
enzyme resulting in its accumulation and inhibition of HK. 2‑DG
mediated downregulation of glycolysis therefore reduces cell
growth and proliferation of radioresistant cells (41) and
reduces angiogenesis and invasiveness of tumor cells (278).
However, the mechanism of 2-DG-mediated cellular
radiosensitivity remains to be elucidated. Studies proposed that
2‑DG reversed the radiation-induced cell cycle arrest which may
contribute to later occurring cell death by mitotic catastrophe
(38). Additionally, 2-DG-mediated disbalance of the cellular
redox balance seems to promote radiation-induced cell death.
Concurrent radiotherapy and 2-DG treatment led to 50%
reduction of GSH levels while thiol-antioxidants reversed the
2-DG-induced radiosensitizing effects (39). Rashmi et al. showed
that co‑treatment with GSH (buthionine sulphoximine) and
thioredoxin synthesis (auranofin) inhibitors enhanced the
radiosensitizing effects of 2-DG via adenosine monophosphate-
activated protein kinase (AMPK) stimulation and subsequently
autophagic cell death (41).

Treatment with MLN4924, a SCF E3 ligase inhibitor,
synergized with 2-DG and radiotherapy in breast cancer cells
(279). On the other hand, combination of 2-DG with
radioimmunotherapy has antagonistic effects and indicated
that the treatment effect may rely on glucose availability and
level of hypoxia (280). WP1122 is an analogue of 2-DG having an
extended half‑life and good oral bioavailability resulting into
two-fold higher plasma concentrations compared to 2-DG and is
capable of passing the blood-brain barrier. However, its effect on
radiosensitivity remain to be elucidated (281).

Lonidamine 1-(2,4-dichlorobenzyl)-1H-indazole-3-
carboxylic acid interferes with cellular metabolism in a very
diverse manner. It can inhibit glycolysis via interference with
hexokinase, contributing to intracellular lactate accumulation.
Lonidamine also inhibits malate and fumarate formation in the
citric acid cycle and it influences the ETC function by disturbing
the mitochondrial transmembrane potential through inhibition
of Complex II (CII) and the pentose phosphate pathway causing
a decreased NADPH and glutathione pool (42, 282). Clinical
studies in Head and Neck cancer showed improved survival rates
(283). However, a prospective clinical trial for unresectable non-
small-cell lung carcinoma (NSCLC) was negative for lonidamine
in combination with radiotherapy versus radiotherapy alone
(284). The lack of radiosensitization may be explained by the
wide range of metabolic profiles observed in NSCLC (42, 43),
although also the shift to the mitochondrial respiration due to
potential tumor metabolic flexibility could be a potential
explanation (285, 286). Also, lonidamine did not show any
clinical effects in a large randomized trial in combination with
chemotherapy (NCT00237536) (44).

Mitochondrial Metabolism Targeting
Beyond targeting glycolysis, the selective disruption of the
mitochondrial metabolism might be another interesting
approach. Devimistat (CPI-613), which recently received FDA
fast-track designation for metastatic pancreatic cancer
(NCT03504423), is a lipoate-analogue which dysregulates the
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TCA cycle through inhibition of the pyruvate dehydrogenase
(PDH) and ROS induced inhibition of ketoglutarate
dehydrogenase (KGDH) (45, 287). CPI-613 also activates
AMPK signaling via stimulated ROS production (e.g. at
KGDH), resulting in deactivation of acetyl-carboxylase and FA-
synthesis (288). Combination of CPI-613 with PDK1 activators
led to a reduced mitochondrial membrane potential and
stimulated mitochondrial autophagy (289). Demonstrating
tolerable side effects, CPI-613 is now under investigation in
combination with different chemotherapeutics in phase 2/3
trials, but its effect in combination with radiotherapy is yet to
be examined (46, 290, 291). Similarly, FH535, and its analogue
Y3, disrupts the mitochondrial membrane potential which results
in a decreased ATP production, induces apoptosis and reduces
migration and invasiveness. FH535 has shown promising results
in vitro and in vivo for different tumor types however, to date no
clinical studies are available (47, 48, 292–295).

Also, IDH has been investigated as target for metabolic
interventions, as it is frequently mutated in many aggressive
cancers such as gliomas and AML (296, 297). Next to TCA cycle
and redox-balance disruption, gain of function IDH mutations
result in the production of the oncometabolite (D)-2-HG, which
inhibits a-KG-dependent dioxygenases and thus, influencing the
gene expression of metabolism regulators such as TP53-induced
glycolysis and apoptosis regulator (TIGAR) (298). TIGAR
regulates the cellular NADPH levels by controlling PPP supply
with the glycolytic glucose-6-phosphate, which is required for
the production of ROS scavengers as reviewed by Trachootham
et al. (299). Cells with low TIGAR levels are proposed to be more
susceptible to radiation, as ROS scavenging could be influenced
(298, 300). Furthermore, reduced DNA repair was observed in
presence of IDHmut, though inhibition of IDH1/2mut did neither
alter the radiation sensitivity nor radiation resistance of
chondrosarcoma cell lines (298, 301). Comparing the
treatment response between IDHwt and IDHmut AML and
glioma patients upon salvage and chemoradiotherapy
suggested an IDH mutation status independent treatment
response (302, 303). However, targeting these variants
specifically also has shown promising results. Ivosidenib and
Enasidenib (AG-221) inhibit IDH1mut and IDH2mut respectively
and are both FDA approved for treatment of acute or refractory
AML (49, 50) and reduce invasiveness (109). Especially patients,
who are not eligible for cytotoxic treatments, can benefit (51).
However, adaptive IDH mutations can result in resistance to
Enasidenib and Ivosidenib, causing a decrease in glioma
treatment efficacy (52, 304). Therefore, other IDH inhibitors
are under development. Vorasidenib has been shown to be a
good candidate for glioma treatment as it passes the blood-brain-
barrier (52, 305). Its safety and efficacy is currently investigated
in multiple clinical trials (53, 306). Furthermore, the IDH1mut

inhibitor BAY-1436032 delays xenograft growth (54) and has
also entered clinical trials (55, 307).

Also, inhibitors of different OXPHOS complexes are capable
to enhance radiation response, this related to improved tumor
reoxygenation. As they increase intracellular oxygen availability
due to inhibition of OXPHOS, a decreased oxygen consumption
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may result in higher oxygen levels eventually re-sensitizing
tumors to radiotherapy (308). Consequently, many OXPHOS
inhibitors are tested for their potential radiosensitizing effects
of tumors.

Complex I Inhibitors
The two CI (NADH:ubiquinone oxidoreductase) inhibitors
metformin and papaverine are FDA-approved for non-
cancerous diseases and are currently investigated for their
radiosensitizing properties. Metformin is an anti-diabetic
treatment and has already shown anti-cancer efficacy (309) and
the potential to reduce metastatic potential (310, 311).
Metformin was described to target the IGF receptor and
consequently, indirectly mediates the downregulation of PI3K/
Akt signaling (56, 312, 313). Additionally, metformin inhibits CI
of the ETC resulting in a reduced ATP/AMP ratio (56, 313) and
stimulates AMPK to promote cell cycle arrest and autophagy
(314, 315). While impairing OXPHOS function, metformin
administration results in oxygen accumulation and
subsequently destabilization of (HIF-1-a) (316–318) and favors
the formation of ROS after irradiation (319). Several in vitro
studies suggested that metformin enhances the radiosensitivity of
cancer cells. Zannella et al. demonstrated that metformin
treatment prior to radiotherapy increased the intra-tumor
oxygen levels in colorectal carcinoma xenografts, which
enhanced the radiotherapy response (320). In contrast, De
Bruycker et al. stated an anti-hypoxic effect of metformin in
colorectal cancer xenografts, but a metformin-mediated
enhanced radiotherapy response was not observed (321). These
contradicting reports about metformin’s radiosensitizing effects
may be caused by different experimental conditions since it is
suggested that metformin only exerts its radiosensitizing effects
in p53 mutated genetic contexts (322). Indeed, differences in
mutations between HCT116 and Colo205 corroborate these
findings (320, 321).

Completed Phase I trials of metformin combined with
radiochemotherapy in head and neck squamous cell carcinoma
patients are promising with a two years OS of 90%, a PFS of 84%
and manageable toxicity, compared to historical control rates of
80% (OS) and 65% (PFS), although only a small cohort was
included (57). Currently, metformin is investigated in several
phase II trials in combination with different treatments
(NCT02945813, NCT04275713, NCT02186847). Metformin’s
tissue-specific uptake depends on the expression of organic
cation transporter 1 (OCT1) transporters, explaining its low
bioavailability (58, 323). The related biguanide, but more
lipophilic, phenformin is suggested to have a higher
bioavailability, does not rely on OCT1 expression for uptake
and has a similar effect on cellular metabolism as metformin (58,
324, 325). However, it has been redrawn from the marked in the
1970s as it causes lactic acidosis in diabetic patients (326).
Nevertheless, it may be a promising anti-cancer drug since it
re-sensitizes resistant cells to chemo‑ and radiotherapy (327,
328) and synergizes with chemotherapeutics allowing a lower
dosage of chemotherapeutics (329). Its safety as an anti-cancer
drug is currently being investigated in phase I trials (59).
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Papaverine (PPV) inhibits phosphodiesterase 10A (PDE10A)
and is an FDA-approved vasospasm treatment (60). As it also
targets CI of the ETC, it might exhibit anti-tumor properties. PPV
sensitizes cells and xenografts to radiation, explained by a decreased
OCR (61). The PPV derivative SMV-32 has been developed as a
specific CI inhibitor, without affecting PDE10A activity. Its
administration results in decreased tumor hypoxia leading to an
improved radiotherapy response with acceptable toxicity profile in
xenografts (61). Currently, the safety and tolerability of SMV-32 is
assessed in a Phase I trial (NCT03824327).

Next to metformin and PPV, the small molecule CI inhibitors
BAY 87-2243 and IACS-010759 presented anti-cancer effects in
vitro and in vivo (330–332). BAY 87-2243 exhibited
radiosensitizing effects in xenografts and is suggested to
synergize with serine-threonine kinase inhibitors in BRAFmut

xenografts (333, 334). A phase 1 study with BAY 87-2243 was
initiated in 2011 but terminated with an unclear status
(NCT01297530). IACS-010759 has entered phase 1 trials
investigating its safety and tolerability in solid tumors,
lymphoma and leukemia (NCT03291938, NCT02882321).
However, its treatment sensitizing effects remains to
be elucidated.

Complex III Inhibitors
Atovaquone (ATO) inhibits Complex III (CIII) of the ETC and is
FDA-approved as an anti-malaria treatment. In xenografts,
radiotherapy combined with ATO delays tumor growth, which
has been associated with reduced hypoxia. ATO-treated
xenografts display a significant higher reduction in OCR as
compared to metformin treatment (73.7% vs 43.1%).
Additionally, ATO targeted the pyrimidine synthesis enzyme
dihydroorotate dehydrogenase (DHODH) (62). It is assumed
that ATO mainly exerts its radiosensitizing effects via CIII
inhibition since the potency against DHODH was markedly
lower (335–337). The results of a first phase 1 study
investigating the anti-hypoxic effects of ATO in NSCLC
patients are yet to be published (63). Hypoxia mitigating effects
of inhibitors of the ETC complexes II, IV and V are also
investigated (338–346).

The small molecule inhibitor pyrazinib (P3) reduces OCR
and extracellular acidification rate (ECAR) in zebrafish and is
associated with an improved radiosensitivity in esophageal
cancer cell lines, although the precise mechanism remains to
be elucidated. Buckley at al. hypothesized that the P3 target lies
upstream of glycolysis and OXPHOS. Furthermore, they
suggested that P3 acts as a radiosensitizer under hypoxic
conditions (64).

Other Metabolic Pathways
Modulation of the arginine metabolism is suggested to increase the
cellular sensitivity to anti-cancer therapies. ADI-PEG 20, a chimera
of the arginine deiminase (ADI) and polyethylene glycol (PEG)
(347), consumes the cellular arginine by catalyzing the conversion of
arginine to citrulline, a clinical marker for radiation-induced tissue
toxicity (348). Moreover, ASS1-deficient pancreatic cancer cells
displayed enhanced radiosensitivity through arginine depletion
after ADI-PEG 20 treatment (65).
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Arginino succinate synthetase (ASS1) produces endogenous
arginine from citrulline, however, many cancer cells exhibit
arginine auxotrophy e.g., due to ASS1 deficiency (349–351).
Being the precursor for various molecules including
pyrimidines, cells display an enhanced vulnerability in
arginine-depleted environments (352, 353). ASS1-deficient
cancer cells show synthetic lethality and an inhibited Warburg
phenotype under arginine depletion (66). Phase 1 trials in
combination with chemotherapeutics in different cancer types
reveal tolerable side effects and hint towards a treatment
response (354, 355). Interestingly the response depends on the
ASS1 status (67, 356). Currently, phase 2 trials investigate the
combination of different chemotherapeutics in several cancer
types including pleural mesothelioma and hepatocarcinoma
[NCT02102022, NCT02709512 (357, 358)].

Manipulation of the FA metabolism can increase the efficacy of
chemotherapy and radiotherapy. Different compounds
modulating FA metabolism have been investigated for their
potential applications in cancer treatment by either improving
therapeutic responses, reducing tumor progression or metastatic
formation. The FDA-approved obesity therapeutic agent orlistat
inhibits FA synthase blocking a crucial anabolic pathway (68) and
is associated with an enhanced response to chemotherapeutic
treatments and radiotherapy and experimental reduced
metastasis formation (359–361). Fenofibrate (FEN), a PPARa
agonist, reverses metabolic reprogramming of cancer cells
leading to enhanced radiosensitivity in vitro and in vivo under
hypoxic conditions (69, 70) and also reduces metastasis formation
of melanomas (362). FEN activates AMPK signaling and FA
oxidation via carnitine palmitoyltransferase 1 (CPT1) and
inhibits PI3K/Akt signaling resulting in reduced hexokinase 2
levels and glycolysis (71). FEN also prevents HIF-1 stabilization
(69, 70) and the disruption of the HIF-1a/VEGF axis may
contribute, when combined with radiotherapy, to G2/M-phase
arrest (70, 363).

Influencing Redox Signaling in Tumors
The indirect ROS-mediated DNA damage is believed to be a main
factor to activate cell death pathways upon radiotherapy (364,
365). Since proliferating cells have a naturally higher ROS
production, cancer cells need to compensate this by
simultaneously increasing the production of protective
antioxidants (366). Hence, the impairment of anti-oxidants
increases the radiotherapy effect (367). Moreover, excessive
ROS levels induced by mutations and/or radiotherapy are
suggested to induce ferroptosis, a phenomenon describing the
Fe2+-dependent cell death induced by high levels of peroxidized
lipids (368). Radiotherapy induced ferroptosis by further
enhancing ROS formation and activating long-chain-fatty-acid
CoA ligase 4 (ASCL4) to promote the formation of
polyunsaturated fatty acid phospholipids (PUFA-PL) (368).
Contrary, Lei et al. has described reduced ferroptosis upon
irradiation, depending on the genetic background through
induction of glutathione peroxidase (GPX) and SCL7A11 (part
of XC-antiporter), which increased the reduction equivalent pool
(368). Others however reported that radiotherapy suppresses
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SLC7A11 expression indirectly via ATM downregulation and
thus limits the import of cysteine, a GSH precursor (369).
Therefore, manipulation of this pathway is associated with
radiation sensitivity. Firstly, it is stated that the inhibition of Xc

or GPX induces ferroptosis and sensitizes cell lines and xenografts
to radiotherapy due to a lack of glutathione (GSH) (369–371).
Second, many neoplasms increase their glutaminolysis e.g., by
oncogene (myc)-driven glutaminase (GLS) overexpression.

GLS produces the GSH precursor glutamate and its inhibition
resulted in tumor growth delay (252). Although several GLS
inhibitors synergize with anti-cancer treatments (72, 372, 373),
their application in clinical practice is often limited due to its low
bioavailability (374). Telaglenastat (CB-839) demonstrates
improved bioavailability and synergizes in xenografts with
radio- and chemotherapy (72, 73). In clinical trials combined
with chemo- and immunotherapeutics it has demonstrated
promising results with tolerable side effects (74, 75, 375, 376).
Thirdly, supplementation of PUFAs pre-, during or post
radiotherapy demonstrates synergism in rat astrocytoma cells
and xenografts (377–379) as a result of COX2 downregulation
and reduced vascularization (379).

Moreover, inhibitors of enzymes maintaining the redox
balance, such as thioredoxin reductase (TrXR), are considered
potential targets. Auranofin is a TrXR inhibitor already
implemented as arthritis therapy. Its administration sensitized
cancer cells to radiation preventing ROS degradation (76).
PROTECTING NORMAL TISSUE
DURING RADIOTHERAPY

Radiotherapy cannot always be applied in curative doses as
damage in the adjacent normal tissues is dose limiting.
Additionally, the bystander effect, i.e. the phenomenon that
irradiated cells negatively influence non-irradiated cells, also
limits radiotherapy efficacy (380). Normal tissue cellular
damage affects quality of life post radiotherapy tremendously.
Therefore, it is crucial to identify strategies to protect normal
tissues without reducing the efficacy of radiotherapy.
Interventions aim to selectively augment the normal tissue
cellular survival pathways, e.g., ROS depletion and DNA repair
pathways counteracting the radiation-induced ROS burst and
DNA lesions (Figure 1). The differential metabolic pattern
between malignant and healthy cells represents a suitable
target to modulate these pathways selectively within normal
tissues. The NF-kB signaling pathway plays a pivotal role in
the response of tissues to radiation. Its activation results in
stimulation of inflammatory and apoptosis pathways in normal
tissues, promoting tissue damage and cell death and therefore
limits the applied radiotherapy dose (381). Consequently, many
interventions aim to modulate NF-kB signaling counteracting
the unwanted side effects. Here, we focus on radioprotectors
influencing the metabolic pathways attenuating radiotherapy-
induced effects in normal tissues. These can be broadly classified
based on their effect into radical scavengers, inflammation
mitigators and DNA repair modulators (Table 2).
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Radical Scavengers
The IR-induced ROS burst diminishes levels of endogenous ROS
scavengers which has to be recycled. Therefore, agents that
chemically reduce ROS or activate pathways/molecules
facilitating ROS depletion selectively in normal cells can
ameliorate radiation-induced damage (Figure 1).

Amifostine, a ROS scavenger, is FDA‑approved for its
radioprotective effects in ovarian and head and neck cancer
patients. It is activated via dephosphorylation by alkaline
phosphatases, which are highly expressed on the surface of
normal cells; thus, amifostine accumulates preferentially in
normal tissues (77, 382). The precise mechanism of action is
unknown, but several have been proposed. Firstly, its active form
harbors free thiol groups to reduce intracellular ROS-induced
damage and to prevent delayed genomic instability in cells (383,
384). Second, amifostine reduces oxygen consumption and
induces HIF-1, which correlated with its radioprotective effect.
Koukourakis et al. argued that this oxygen-depletion may result
from the reaction between oxygen and the free thiol, which leads
to hypoxia for a short time, inducing HIF-1. However, the precise
mechanism of amifostine-induced HIF-1 stabilization is unclear
(385). Thirdly, its administration was associated with DNA
condensation reducing damage efficiency (386). Fourthly,
amifostine may alter lipid membrane dynamics affecting
membrane proteins and therefore it can influence downstream
signaling pathways of transmembrane receptors (387).

The results of clinical trials using amifostine are ambiguous,
some describing radioprotective effects whereas some did not
observe any effect (388). Prostate cancer patients receiving
radiotherapy combined with amifostine produced significant
improvements in acute and late bowel quality of life (up to 1
year after therapy), measured using the Expanded Prostate
Cancer Index Composite (EPIC) score. Differences between
dose groups are evident from week 7 onwards. The RTOG
gastrointestinal (GI) toxicity score mirrored these results
stating a lower GI toxicity in probands receiving a higher
amifostine dose, although in a non-significant manner (78).
Dose-related adverse effects induced by amifostine include
nausea and hypotension and seems to be affected by the route
of administration. Bardet et al. compared daily intravenous (iv)
with subcutaneous (sc) administration of amifostine prior to
radiotherapy and reported higher occurrence of hypertension
upon iv injection, while a higher number of patients suffering
from xerostomia upon sc administration (79). Another study
observed lower rectal mucositis after intrarectal amifostine
administration before radiotherapy, while sc application
resulted in a lower urinary toxicity (389). Aminothiol
analogues of amifostine, such as PrC-210, demonstrate less
adverse effects in rodents and significantly prolongs the
survival of P53−/− mice upon irradiation (80, 81, 390).

Another possibility to mitigate radiation-induced damage of
normal tissue is the intracellular stabilization of ROS scavenging
enzyme levels, which are inactivated after irradiation due to a
ROS burst and infiltration of neutrophils. Administration of
DNA-sequences encoding ROS-scavenging enzymes ameliorate
radiotherapy-induced cell damage (391). Ingestion of manganese
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superoxide dismutase- plasmid liposomes (MnSOD-PL) has
been shown to prolong mice survival after total body
irradiation without protecting the tumor (392, 393).
Mitochondrial localization of MnSOD-PL seems to be crucial
for its efficient radioprotection (82). In order to further exploit
anti-oxidant therapies, fusion peptides (nitroxides) with a high
mitochondrial localization rate have been developed. JP4-039
stabilizes mitochondrial ROS scavenger levels reducing radiation
induced anti-oxidant depletion and mitigating radiotherapy-
induced damage in normal tissues (83, 84, 394), while a
tumor-protective effect has been excluded (84, 395). Other
studies have shown protective effects on normal tissues by
recovery of stem cell function and differentiation (396, 397).
Di‑seleno‑di‑propionic acid (DSePA) is able to maintain the
levels of ROS scavengers in irradiated mice, mitigates the ROS
burst, reduces radiation‑induced expression of pro-
inflammatory cytokines, oxidative stress, pneumonitis and
inflammation responses (85, 398). In mice oral administration
is effective, contributing to potential improvement of patient
compliance (85). The effects on normal tissue may be explained
by the limited uptake of DSePA in tumors and the preferential
accumulation in lung, intestine and kidney (86). Therefore, it is
mainly investigated as co-therapy for cancer patients facing
upper body radiotherapy.

Inflammation Mitigators
Other approaches aim to exploit the differential response of normal
and cancer cells to stress (DSR) (Figure 1). These treatments
amplify radiation-induced stress in tumor tissues whereas they
ameliorate the normal tissue reaction. TNFa activation mediates
the expression of NADPH-oxidases, promoting oxidative stress
which damages healthy tissues and severely affects the patient’s
quality of life. Therefore, these molecular pathways are investigated
as a potential treatment target.

Cyclooxygenase-2 (COX2), involved in the prostaglandin
synthesis, is overexpressed in many cancers and is associated
with chemoradioresistance. Radiotherapy further enhances its
expression via NF-kB signaling pathways. Consequently,
blocking of COX2 and NF-kB-signaling improves radiotherapy
response (399). Elshawi et al. demonstrated in mice that COX2
inhibition with a benzopyran compound mitigated radiation-
induced NF-kB and COX2 activity. The treatment also
ameliorated other radiotherapy-induced effects such as the
increase of cytokines and decrease of liver enzymes (400).
Celecoxib, another COX2 inhibitor, reduces radiation-induced
skin toxicity in mice (401), which has been confirmed by other
studies, reporting that celecoxib treatment enhances
radiosensitization and reduces tumor growth (399, 402, 403).
The results of a phase 2 trial investigating the effects of celecoxib
combined with radiochemotherapy in NSCLC patients however
were inconclusive (404). A second study treating colorectal
cancer patients with celecoxib and chemoradiation stated an
ameliorating effect on skin toxicity compared to earlier
studies (87).

Naturally occurring compounds such as ascorbic acid,
curcumin, melatonin, caffeic acid phenol ester and vitamin E are
Frontiers in Oncology | www.frontiersin.org 12
associated with radioprotective effects on normal tissues whereas
they stimulate the radiosensitivity of tumor tissues. High doses of
vitamin E and ascorbic acid demonstrated radiosensitizing effects
in multiple cancer types (88–91). Intravenous administered
ascorbate increases the therapeutic ratio by increasing radiation-
induced DNA damage in pancreatic tumors and simultaneously
decreasing DNA lesions in a non-carcinogenic tissues (90).
Furthermore, ascorbate is suggested to downregulate the
expression of the ROS scavenger MnSOD in cancer cells by
controlling the NF-kB component RelB, whereas it upregulates
MnSOD expression in normal cells (91). In agreement, Alexander
et al. reported that supplementation of ascorbate mitigates the
decrease of ROS scavengers in normal tissue of mice (90).
Furthermore, they state in phase 1 trials that ascorbate
supplemented to radiochemotherapy for pancreatic cancer
patients is safe and potentially enhances treatment efficacy (90).

Curcumin blocks NF-kB signaling by inhibiting IkBa
dissociation and TNFa‑dependent pathway activation (92). In
agreement, Cho et al. described in rats that curcumin counteracts
the IR-induced TNFa expression and NF-kB translocation to the
nucleus, which eventually alleviates radiotherapy-induced
pneumonitis (405). This is substantiated by a study stating that
curcumin reduced IL4 and NADPH-oxidase levels post-IR,
which was associated with lower pneumonitis levels (406).

Melatonin (MLT) ameliorates radiation-induced oxidative
stress by depleting hydroxyl radicals directly and by
stimulating the activity of GPx and SOD, whereas it reduces
the activity of ROS producing enzymes (NOS, NOX2/4) in
normal cells (93, 407–409). Additionally, MLT downregulates
NF-kB-signaling, mitigating an inflammatory response and
enhances expression of DNA-repair genes contributing to
genomic stability in normal cells (410–412). However, evidence
implies that MLT combined with metformin exerted both
synergizing and antagonizing effects in healthy rodents in a
tissue-specific manner (94, 413). Findings in xenografts
suggested that MLT exerts tumor-sensitizing effects by
reducing DNA repair and stimulating OXPHOS in malignant
cells intensifying the oxidative stress. Simultaneously it reverses
the Warburg effect by potentially inhibiting mitochondrial PDK
(414–416). Clinical trials on MLT however reported
heterogeneous results. Onseng et al. examined the effects of
MLT supplementation to chemoradiotherapy of head and neck
cancer patients reporting a delayed onset of grade 3 oral
mucositis (95), however without differences in mucositis
incidence and quality of life. Treating breast cancer patients
with a MLT-emulsion resulted in a lower dermatitis incidence
(96). Post-radiotherapy MLT treatment is proposed to mitigate
long-term radiation effects (417). Others did not observe
synergistic effects with radiotherapy, although only upon
comparison with controls from other studies (97).

Caffeic acid phenyl ester (CAPE) may exert i ts
radiosensitizing effect in cancer cells by suppression of NF-kB-
signaling and is associated with decreased glutathione-reductase
levels and increased glutathione-peroxidase levels. As a result of
this redox-imbalance ROS levels are increased (418, 419).
Moreover, it re-sensitizes radiation-resistant breast cancer cells
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by impairing the DNA repair and thus, enhancing IR-induced
genomic instability (420). In normal cells on the other hand,
CAPE mitigates cellular oxidative stresses by enhancing ROS
scavengers expression levels and by interference with radiation-
induced NF‑kB‑signaling (98, 99). Also reduced expression of
cytokines preventing fibrosis of lung tissue post-radiation has
been observed (98).

Vitamin E and its derivates are proposed to cause a
differential stress response between tumor and normal tissues
(421). In combination with radiochemotherapy, vitamin E
ameliorates treatment-induced mucositis in head and neck
cancer patients (89). Especially, the vitamin E derivative g-
tocotrienol received attention as anti-cancer treatment having
based on its superior antioxidant capacity. Kumar et al. reported
that the lipid peroxidation levels in tumor tissue increases under
g-tocotrienol administration, whereas specific adjacent tissues
are protected (88). Moreover, they observe a reduction in
radiation-induced lipid peroxidation in a tissue-dependent
manner. The relatively low bioavailability of tocotrienols may
be enhanced by optimizing administration schedule (422).

DNA Repair/Genomic Maintenance
Radiation and ROS-induced DSBs activate ataxia telangiectasia
mutated (ATM) signaling promoting p53-induced cell cycle
arrest and epigenetic marking of DSBs to facilitate DNA repair
plays a central role in the decision whether to promote survival
or induce cell death to prevent tumorigenesis (423, 424). It is
proposed that polyphenol resveratrol (RSV) provokes a
differential stress response and radiosensitizes cancer cells via
interference with ATM-signaling and apoptosis cascade. It
inhibits the expression of Mcl-1 by downregulation of STAT3
signaling (100, 425). Vendrely et al. demonstrated that RSV
combined with capsaicin and radiotherapy inhibits ATM-based
DNA repair in pancreatic cancer cells and increases
phosphorylated p53. Activation of p53 results in cell cycle
arrest and promotes apoptosis by increasing the Bcl-2/Bax
ratio (101). Several other studies substantiated this, reporting
RSV-associated G0/G1 arrest (426), a cell cycle phase with higher
radiosensitivity compared to S-phase cells (426, 427).

The tumor suppressor p53 is required for maintenance of a
G1 arrest and determines the cellular fate. Serine/threonine
kinase (Akt) influences p53-mediated effects by decreasing its
pro-apoptotic effects. Thus, high pAkt levels favor cellular
survival whereas low pAkt levels favor apoptosis (428).
Interestingly, RSV is associated with downregulation of E2F1
and its downstream target pAkt (429–431). Multiple studies on
RSV and radiotherapy have demonstrated its radiosensitizing
effects in several carcinoma cells and in vivo (101, 429, 432–434).
On the other hand, RSV and 3,3′-diindolylmethane combination
treatment prior to radiotherapy stabilizes the levels of radical
scavenging enzymes, reduces genomic alterations such as
micronuclei formation and mitigated radiation-induced normal
tissue damage in mice (435–437). Moreover, it directly activates
ATM signaling in a context of oxidative stress, which may
explain the opposing effect in cancer and normal cells (438).
However, its clinical use is limited by its metabolic instability,
low bioavailability (439) and photosensitivity (440). More stable
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RSV analogues such as HS-1793 have been associated with an
improved radiotherapy response in xenografts by modulating the
anti-cancer immune response (102).
DIETARY INTERVENTIONS INFLUENCING
THE RADIOTHERAPY RESPONSE

Not only drugs and compounds could be of benefit to improve the
therapeutic window, also dietary interventions could contribute to
a more favorable treatment outcome (Figure 1, Table 2).
Malignant cells display different metabolic needs than normal
cells, because of their uncontrolled proliferative potential and often
impaired OXPHOS, which results in elevated ROS levels. Short-
term fasting (STF) and ketogenic diet (KD) exploit the difference
in tolerability of oxidative stress between cancers cells and normal
tissues by reducing global plasma glucose levels and increasing
ketone body levels (441–443). A minimum of 24 h fasting prior
treatment sensitized xenografts to radio-/chemotherapy (103, 104,
444). KD had a similar effect in xenografts exposed to
radiochemotherapy and prolonged the overall survival co-
occurring with enhanced protein oxidation, indicating that high
ketone and low glucose levels amplified the ROS-induced damage
in malignant cells (445). Moreover, KD may intensify energetic
stress in tumors which display TCA cycle mutations, since these
tumors are not able to utilize acetyl-CoA derived from the b-
oxidation. Furthermore, evidence points towards a higher
production of the oncometabolite 2-HG concurrent to increased
b-oxidation in IDH1mut glioblastoma cells (446).

Normal tissues react differently to glucose deprivation in
presence of ketone bodies as they display a higher metabolic
flexibility, reducing their proliferative potential to remain in G0-
phase. Furthermore, they circumvent an energy deficit relying on
FA-oxidation and OXPHOS (442). Abdelwahab et al. argues that
there is no correlation between plasma glucose levels and cellular
survival in vivo, indicating that metabolic reprogramming itself
does not exert significant anti-tumor effects (442). Using
pancreatic cancer xenografts, they demonstrate that 24 h
fasting prior to radiotherapy prolongs survival and protects
small intestinal stem cells optimizing the regeneration of
adjacent, damaged tissues without tumor protection (104)
Furthermore, they argue that this effect may occur due to a
reduced apoptosis rate in fasted animals, since fasted animals
display significantly lower cleaved caspase-3 levels. The
combination of cisplatin treatment and caloric restriction also
provoked a DSR in xenografts (447). Shi et al. demonstrates that
fasting led to AMPK and ATM/p53 signaling in both normal and
cancer cells (447). However, normal cells display increased levels
of phosphorylated p53 resulting in G0/G1 phase arrest and less
vulnerability to cisplatin treatment. Cancer cells maintain
normal levels of phosphorylated p53 and cell cycle progression
enhancing their sensitivity against cisplatin-induced damage
compared to unfasted controls (447). Despite these results, the
authors conclude that the introduction of caloric reduction into
clinics is not advisable since many cancer patients already suffer
from cachexia (104, 448).
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KDmirrors themolecular effects of fasting, but does not enhance
the cachexic phenotype of patients in phase 1 trials (443, 449, 450).
These studies suggest that the combination of KD and radiotherapy
synergizes in xenografts, but large cohort studies are currently
lacking. Furthermore, they report that patient diet compliance is
difficult with a lot of drop-out in these clinical studies. In addition, it
is until now unclear what the best KD administration starting point
before treatment is. A different route of administration via PEG
tubes may facilitate treatment compliance (449). Another possibility
may be mimicking the molecular effects using different drugs, such
as metformin (104, 451). Cuyàs et al. reports an increase of ketone
bodies and a-KG in HER2-positive breast cancer patients treated
with metformin and chemotherapy (451).
CONCLUSION AND PERSPECTIVES

Modulating cellular metabolism to increase anti-cancer therapy
efficacy is a powerful strategy, evidenced by the clinical
implementation of some of these modulators. However, the
utility of most of these metabolism-modulating compounds is
limited due to low bioavailability, adverse and off-target effects.
Adverse effects may occur less or more depending on the delivery
route as seen for amifostine. Therefore, it is crucial to identify for
every compound the optimal conditions for administration.
Often alternative administration methods mitigate adverse
effects and slightly enhance the bioavailability. Hence, attempts
are made to develop derivatives and analogues of these
compounds which mirror the effect of their parent compound
and potentially reducing the binding to off-targets and
subsequently reduce adverse effects. The success of metabolic
interventions depends on the metabolic pattern of the primary
tumor, metastatic lesions and the tumor’s micro-environment,
which shows a large intra- and intercellular variability due to
different nutritional requirements for proliferation/invasion and
metastasis formation, and thus requires understanding and
assessment of this pattern. Influencing the primary tumor’s
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metabolism could potentially also increase EMT, thereby
causing a higher invasiveness potential or a more radioresistant
phenotype of the metastasis.

As the tumor and TME metabolism are very dynamic
processes, interactions between substrate availability and
different metabolic pathways are very complex. There are close
relationships reported between e.g. glycolysis, PPP, glutamine
metabolism, FAO, TCA cycle, and OXPHOS as often substrates,
by-products, and end-products often interact with multiple
metabolic and signaling pathways. Rewiring the tumor’s
metabolism is therefore very challenging. Combining rewiring
metabolism with radiotherapy creates challenges and
opportunities for successful implementation in clinical practice.
Creating more therapeutic resistant tumors, increasing their
metastatic potential, or induce adverse normal tissue effects
needs to be prevented. Therefore, more research on this topic
is needed to elucidate these risks.

Overall, the malignant, metabolic rewiring and its
implications on treatment response is complex. However, first
attempts exploiting this phenomenon demonstrate promising
results to further optimize our current anti-cancer therapies and
to improve the therapeutic window for patients.
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identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in
primary adipocytes. J Biol Chem (2002) 277(37):33895–900. doi: 10.1074/
jbc.M204681200

134. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFkB-
signaling pathway in cancer. OncoTargets Ther (2018) 11:2063–73. doi:
10.2147/OTT.S161109

135. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB. Reactivity of HO2/O–2 Radicals
in Aqueous Solution. J Phys Chem Reference Data (1985) 14(4):1041–100.
doi: 10.1063/1.555739

136. Shadyro OI, Yurkova IL, Kisel MA. Radiation-induced peroxidation and
fragmentation of lipids in a model membrane. Int J Radiat Biol (2002) 78
(3):211–7. doi: 10.1080/09553000110104065
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