
RESEARCH ARTICLE

The EDN2 rs110287192 gene polymorphism is

associated with paratuberculosis

susceptibility in multibreed cattle population

Mehmet Ulaş ÇınarID
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Abstract

Paratuberculosis (pTB), also known as Johne’s disease (JD), is a contagious, chronic, and

granulomatous inflammatory disease of the intestines of ruminants which is caused by

Mycobacterium avium subsp. paratuberculosis (MAP) infection, resulting in billions of dol-

lars in economic losses worldwide. Since, currently, no effective cure is available for MAP

infection, it is important to explore the genetic variants that affect the host MAP susceptibil-

ity. The aim of this study was to analyze a potential association between EDN2 synonymous

gene mutations (rs110287192, rs109651404 and rs136707411), that modifies susceptibility

to pTB. EDN2 rs110287192, rs109651404 and rs136707411 mutations were genotyped in

68 infected and 753 healthy animals from East Anatolian Red crossbred, Anatolian Black

crossbred and Holstein breed cattle by using Custom TaqMan SNP Genotyping Assays.

For pTB status, serum antibody levels S/P� 1.0 were assessed in carriers of the different

EDN2 genotypes. EDN2 rs110287192 mutation showed a significant association with

bovine pTB (adj. p < 0.05). For rs110287192 locus, the odd ratios for GG and TG genotypes

versus TT genotypes were 1.73; (95% CI = 0.34–8.59) and 0.53 (95% CI = 0.12–2.37)

respectively, which indicated that proportion of TG heterozygotes were significantly higher

in control animals as compared to pTB animals. On the other hand, while rs136707411

mutation showed a suggestive association with pTB status in the examined cattle population

(nominal p < 0.05); no association was detected between rs109651404 genotypes and pTB

status. Selecting animals against rs110287192-GG genotype may decrease the risk of pTB

in cattle of the Bos taurus taurus subspecies.
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Introduction

Paratuberculosis (pTB), or Johne’s Disease, is a chronic disease affecting ruminant livestock,

and is caused by intestinal infection with Mycobacterium avium subsp. paratuberculosis (MAP)

[1]. MAP is a Gram-positive intracellular pathogen which is dependent on mycobactin, and

thus unable to replicate in the environment [2]. MAP’s ability to infect other animals through

indirect contact is facilitated by prolonged survival times. For instance, MAP remained viable

and was transmitted for up to 55 weeks in a shaded, outdoor area in Australia Whittington et al.
[3]. Animals are usually MAP infected at a young age and are generally believed to undergo an

extended latent period of chronic infection [4]. pTB begins as a localized infection that may

become systemic and often results in chronic granulomatous enteritis leading eventually to

weight loss, (diarrhea in some species) and death [1]. Therefore, pTB causes considerable eco-

nomic losses to livestock farmers, particularly in dairy cows and beef cattle. A recent study esti-

mated annual cost caused by pTB in the United States to be $20.80 per dairy cow [5] and this

value may estimate at up to $72.5 per cow per year in Netherlands [6]. Although, data to esti-

mate losses from pTB in beef herds are limited, Bhattarai et al. [7] reported an annual average

loss of $276 (95% CR: $149–$478) per infected beef cattle based on survey responses. Beside

direct losses as described above, indirect losses due to national and international trade restric-

tions and public health concerns may arise. Controversy remains as to the causation between

Crohn’s disease (CD) in humans and exposure to pTB, although some experiments have already

shown that there is a link between pTB and CD in humans [8,9]. Despite the application of sev-

eral control strategies, such as testing, vaccination and culling to reduce pTB transmission

between herds, many countries continue to face challenges in controlling pTB [1]. Therefore,

understanding the genetic basis of pTB susceptibility could be an alternative method for reduc-

ing the disease and selecting cattle for enhanced resistance against pTB [10,11].

Endothelins (EDN), with three isoforms of 21-residue peptides (EDN1, EDN2, EDN3), two

G-protein coupled receptors (ETA and ETB), and two endothelin-converting enzymes (ECE-1

and ECE-2), are vasoconstrictor peptides [12]. The EDN are involved in the regulation of

many physiological processes, such as cardiovascular development and function, craniofacial

development, blood pressure regulation, renal water and sodium excretion, neurotransmis-

sion, ovulation, and proliferation, migration and differentiation of cranial, cardiac, trunk,

sacral and neural crest cells [12,13]. Among EDN genes, EDN2 has been studied in terms of

ovarian research especially due to its roles in steroidogenesis and corpus luteum formation in

human, model organisms and in livestock [14]. Takizawa et al. [15] investigated the EDN2
expression in mice and revealed that EDN2 mRNA was abundant in epithelial cells of the

mucosal layer in the intestinal tract which may be associated with modulation of the mucosal

defense by triggering immune cells. In livestock, EDN2 has been investigated for its corpus

luteum formation in cattle [16] and mRNA expression profiling in chicken tissues [17]. In

addition, Settles et al. [18] and Neibergs et al. [19] reported EDN2 as a strong functional and

positional candidate gene for pTB susceptibility in Holstein cattle according to GWAS study.

EDN2 locus was identified with genome-wide significant level of association to the presence of

MAP in tissue and both tissue and feces, respectively [18]. Three EDN2 synonymous muta-

tions on bovine chromosome 3 (BTA3), named rs110287192, rs109651404 and rs109490418
were patented for being associated with pTB susceptibility in Holstein breed cattle [20].

This study aimed to examine the association between EDN2 SNPs rs110287192,

rs109651404, rs109490418 and pTB susceptibility in a Holstein population reared in Turkey

and in Turkish indigenous cattle crossbreds (East Anatolian Red Cattle and Native Black Cat-

tle). Genotyping experiments for three EDN2 SNPs were conducted and the relationship with

pTB susceptibility in three cattle populations was evaluated.
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Materials and methods

Sample collection

We undertook this case-control study between June 2014 and August 2014. All experimental

procedures were performed in accordance with the guidelines of the Local Ethics Committee

for Animal Experiments at Erciyes University (#14/77-09.04.2014). All samples were received

for confirmation of a clinical suspicion of pTB in the herd and had no further follow up. Cattle

were classified as infected (cases) if they were positive for blood serum enzyme-linked immu-

nosorbent assay (ELISA). Animals that were both clinically negative and serologically negative

were considered healthy (controls). Further details regarding sample collection and ELISA

diagnostic tests have been published elsewhere [21]. The study population was found to consist

of 68 infected and 750 healthy animals. Briefly, blood samples were collected from cattle at two

to three years of age including East Anatolian Red crossbred (n = 288), Anatolian Black cross-

bred (n = 112) and Holstein (n = 418) breeds from the Kayseri province and its vicinity in Tur-

key. Animals included in the present study were housed in similar environmental conditions

and not vaccinated for pTB. Blood samples were used for the isolation of genomic DNA for

genotyping, and serum samples were used for detection of MAP antibodies by ELISA.

SNP selection

Three SNP selection methods were followed in the present study. First, we obtained genotype

data of U.S. Holsteins from the existing literature on the association of EDN2 gene polymor-

phisms with MAP tissue infection and pTB susceptibility [19]. Second, rs110287192–

g.104700352T>G in 50 UTR variant, rs109651404–g.104689861G>A intergenic variant and

rs109490418–g.104706758G>A in 30 UTR variant mutations were patented by Neibergs et al.
patent# US20140283151 [20] for selective breeding to produce offspring having at least one of

susceptibility, resistance or tolerance to pTB. Third, since assay design for the patented

rs109490418 mutation failed due to too many variants in the immediate vicinity, another

mutation which is linked (D’ = 0.88, r2 = 0.28) and 6166 bp downstream rs136707411–

g.104700592G>A in 50 UTR variant region was selected for genotyping. The susceptible alleles

for rs11028192 and rs109651404 were previously reported as G and A, respectively [19].

Genotyping

Genomic DNA was extracted from whole blood using a standard phenol–chloroform extrac-

tion procedure. DNA concentration of the samples were quantified by Nano Drop (Nano-

Drop, Thermo Fisher Scientific, Waltham, MA, USA), diluted to 50 ng/μl and stored at −20˚C

until used. rs110287192, rs109651404 and rs136707411 SNPs of EDN2 were genotyped using

the TaqMan allelic discrimination method, which determines variants of single nucleic acid

sequence. Since current SNPs have not been genotyped by using any other method, the custom

TaqMan chemistry was selected as cost and time effective genotyping method. Using two

primer/probe pairs in each reaction allows genotyping of the two possible variants at the single

nucleotide polymorphism in a target template sequence. Details of assay IDs, primer and

probe sequences were given in the Table in S1 Table. The genotyping PCR reaction was per-

formed by adding 2 μl of genomic DNA template, 5 μl of genotyping master mix (Thermo

Fisher Scientific, Waltham, MA, USA), 0.5 μl of the genotyping custom-made assay mix

(probes and primers) (Thermo Fisher Scientific, Waltham, MA, USA) and 2.5 μl of DNAase-

free water. Two negative controls were included on each plate. For the negative controls, 2.5 μl

of DNAase-free water was added to each reaction plate instead of genomic DNA for the sam-

ple. The cycling parameters were as follows: first, denaturation was done at 95˚C for 10 min,
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followed by 40 cycles of denaturation at 95˚C for 15 s, annealing and extension at 60˚C for 60

s. The PCR was performed in a StepOne Real-Time PCR System (Thermo Fisher Scientific,

Waltham, MA, USA).

Statistical analysis

An online software (http://www.husdyr.kvl.dk/htm/kc/popgen/genetik/applets/kitest.htm)

was used to analyze the Hardy-Weinberg equilibrium (HWE) and allele frequency for each

SNP and statistical significance was defined as p< 0.05. Data were analyzed using SAS 9.2 soft-

ware (SAS Institute Inc., Cary, NC, USA). Additive genetic model was used for statistical anal-

ysis. The univariable analysis for logistic regression considered the infection status as a

categorical response variable (yes/no), and SNPs (all three SNPs have three genotypes, there-

fore respective loci have three levels), breed (three groups i.e. two indigenous crossbred and

Holstein) and sex (male and female) were included as possible explanatory variables. Geno-

types were considered as ordinal variables and as class variables with the major homozygous

genotype deemed as baseline. Data were analyzed using PROC LOGISTIC procedure and

odds ratios (OR) with 95% confidential intervals (CIs) were calculated. Bonferroni correction

(based on the total number of markers tested) was used for multiple comparisons correction,

and statistical significance was defined as p< 0.05.

Results

A total of 818 animals met the inclusion criteria and were included in the study to be geno-

typed, of which 68 had a diagnosis of pTB according to ELISA OD values (�1.0) were sub-

jected to association analysis and were compared to 750 age-matched healthy controls. The

genotyping success rates were 97%, 94% and 90% for rs110287192, rs109651404 and
rs136707411, respectively and the consensus rate (on the basis of 5% duplicates) was 100% for

DNA isolated from whole blood. Although, the genotype frequencies of rs109651404 (χ2 =

0.0042 for case and χ2 = 1.07 for control) and rs136707411 (χ2 = 0.02 for case and χ2 = 2.98 for

control) SNPs were in accordance with the Hardy–Weinberg equilibrium in the both control

group and case, genotype frequencies of rs110287192 SNP was significantly deviated from

Hardy–Weinberg equilibrium (χ2 = 35.17 for case and χ2 = 36.31 for control) due to a deficit

of homozygous genotypes (TT) of the most frequent allele. The distribution of the bovine

EDN2 rs110287192, rs109651404 and rs136707411 genotypes and allele frequencies in the

study population are shown in Table 1.

Genotypic association analysis of all three EDN2 polymorphisms with pTB are shown in

Table 2. A significant association with the pTB was found for the EDN2 rs110287192 variant

Table 1. Genotype and allele distribution of the selected SNPs in animals with pTB and controls.

SNP Genotypes (%) Allele (%) χ2 (α = 0.05, df = 1)

rs110287192 n = 796 TT TG GG T�� G 55.31�

54 (6.78) 463 (58.17) 279 (35.05) 510 (64) 287 (36)

rs109651404 n = 769 GG GA AA G�� A 0.97

323 (42) 341 (44.3) 105 (13.7) 500 (65) 269 (35)

rs136707411 n = 751 AA GA GG A G 4.66

291 (38.7) 330 (43.9) 130 (17.4) 450 (60) 301 (40)

� p � 0.05 indicates statistical significance

�� Favorable allele in previous studies

https://doi.org/10.1371/journal.pone.0238631.t001
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(Table 2). When the TT genotype was used as a reference, while genotype GG alone

(OR = 1.73; 95% CI = 0.34–8.59; adj. p< 0.05) were significantly associated with a higher risk

of pTB, genotype TG was associated with lower risk of pTB (OR = 0.53; 95% CI = 0.12–2.37;

adj. p< 0.05) (Table 2). This association remained significant after Bonferroni correction for

multiple tests (Bonferroni-corrected significance level for three SNPs is 0.05/3 = 0.016).

In addition, we observed suggestive association between the EDN2 rs136707411 and

increased pTB risk (nominal p = 0.023; Table 2). The association did not remain significant

after Bonferroni correction for multiple tests (Table 2). At the EDN2 rs136707411 locus, the

OR of GA genotype versus GG genotype was 1.66 (95% CI = 0.92–2.98; nominal p< 0.05) and

AA genotype versus GG genotype was 2.94 (95% CI = 1.34–6.46; nominal p< 0.05) which

revealed that genotypes GA and AA increases the risk of pTB compared to genotype GG

(Table 2). No genotype of EDN2 rs109651404 were found to be significant associated with pTB

(all p> 0.05).

Discussion

Paratuberculosis (Johne’s disease) causes a chronic diarrhea characterized by a malabsorption

syndrome. The lack of absorption of nutrients in the gastrointestinal tract leads to malnutri-

tion, muscular wasting and eventually death which results in significant economic impact

worldwide [22]. Crohn’s disease, a granulomatous enteritis in humans that can persist for

decades, has clinical similarities with pTB in ruminants. Due to the clinical similarities

between pTB and Crohn’s disease, the role of MAP in Crohn’s disease has been of interest [8].

Approximately 1.4 million people in North American are affected with Crohn’s disease [9] and

its prevalence is rapidly increasing incidence worldwide, especially in newly industrialized

countries, making Crohn’s as a global disease [23].

Therefore, eradication of pTB might be vital both for ruminant and public health. Control

strategies to eradicate pTB mainly depend on: a) management strategies based on avoiding

contact of susceptible young stock with infected animals, and b) testing animals with ELISA

and culling infectious animals in herds [24]. Although management and testing strategies were

powerful in reducing the infection, due to low specificity of ELISA tests and lack of effective

vaccine, eradication of pTB has been shown to be difficult [24]. Thus, additional approaches,

Table 2. Univariate logistic regression analysis of studied bovine EDN2 variants and independent factors associated with pTB cases and controls.

SNP Genotype Phenotype frequency Nominal p-value Adjusted p-valuea Fixed factors OR (95% CI)

Case (%) Control (%) Sex Breed

rs110287192 TT 2 (3.70) 52 (96.3) 0.013 NS � 1.00

TG 58 (12.53) 405 (87.47) � 0.53 (0.12–2.37)

GG 8 (2.87) 271 (97.13) 1.73 (0.34–8.59)

rs109651404 GG 31 (9.6) 292 (90.4) 0.99 NS �� 1.00

GA 30 (2.33) 311 (91.2) NS 0.98 (0.32–2.97)

AA 7 (6.67) 98 (93.33) 0.76 (0.18–3.16)

rs136707411 GG 25 (19.23) 105 (80.77) 0.023 NS �� 1.00

GA 32 (9.42) 298 (90.58) NS 1.66 (0.92–2.98)

AA 11 (3.78) 280 (96.22) 2.94 (1.34–6.46)

Abbreviations: OR: odds ratio; 95% CI: 95% confidence interval

� p � 0.05 indicates statistical significance

�� p � 0.01 indicates statistical significance
ap- value was adjusted by Bonferroni correction; NS: not significant p > 0.05

https://doi.org/10.1371/journal.pone.0238631.t002
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such as genomic selection for cattle less susceptible to pTB to control pTB, are needed. Similar

to our results, variability among cattle breeds in their susceptibility to pTB were identified in

different experiments and support that selection for enhanced resistance to the disease is possi-

ble [21,25–27].

Association of bovine pTB susceptibility with EDN2 was first identified with a GWAS

[18] and SNP-based gene-set enrichment analysis for MAP infection detected via tissue

infection or fecal shedding by using in 245 US Holsteins [19]. In a subsequent study, the

EDN2 variants rs109651404, rs110287192 and rs109490418 mutations were patented for

being candidate SNPs for selection of cattle that were less susceptible to MAP infection in

Holstein cows [20]. In the present experiment, rs110287192 SNP was validated as signifi-

cantly associated with pTB susceptibility in a larger cattle population that consisted of Hol-

stein and Turkish indigenous cattle crossbreds (Table 2). For the rs110287192 locus, the OR

for TG genotypes versus TT genotypes was 0.53 (0.12–2.37; 95% CI) which revealed that the

relative proportion TG genotypes was significantly higher in the control population than in

the case population. It indicated that the TG genotype at the rs110287192 locus was associ-

ated with decreased relative risk of bovine pTB and consequently selection in favor of the TG

genotype or the T allele may reduce risk of pTB in cattle (Table 2). Due to the relatedness of

mycobacterial pathogens such as MAP, Mycobacterium tuberculosis and Mycobacterium
bovis, loci that provide less genetic susceptibility to one pathogen might afford some protec-

tion to the other organism. In fact, loci on BTA3 where we identified association for pTB sus-

ceptibility in the current study, overlapped with loci previously reported in the literature that

were associated with bovine tuberculosis susceptibility [28] and bovine respiratory disease

susceptibility [29].

The literature is rather sparse for identifying an association between EDN2 variants with

production or immune traits in livestock species. In cattle, pig, and laboratory animals, EDN2
acts in the regulation of steroid production of granulosa cells [14] and EDN2 mRNA expres-

sion found to be responsible for corpus luteum formation and ovulation [16,30,31]. Although

EDN2 was not found to be directly associated with immune traits, knockout mice for endothe-

lin receptor B (EDNRB) which is a G-protein-coupled receptor of EDN2, developed Hirsch-

sprung’s disease (HSCR) [32]. This disease is characterized by a lack of ganglion cells of the

colon and exhibits severe inflammation of the intestinal mucosa leading to like the clinical pre-

sentations associated with inflammatory bowel disease (IBD) [33]. IBD is a chronic inflamma-

tory disease of the gastrointestinal tract in humans that can be divided into those with Crohn’s

disease, where disease may be present throughout the GI tract and those with Ulcerative Coli-

tis, where disease is limited to the colon. There has been speculation that Crohn’s disease may

be caused by MAP as well [34].

In the present study, a strong association between a variant of EDN2, rs110287192, and pTB

susceptibility in Holstein and two Turkish indigenous cattle crossbreds was demonstrated, val-

idating, and extending the association that was previously described [18,19]. Such validation

provides important support for the biological role and practical application of genomic selec-

tion for this variant [35]. Furthermore, our data also contributes to the understanding of

bovine pTB and provides information that may be useful as an approach to reduce the disease

through selection. Selecting against animals with the rs110287192-GG genotype may decrease

the risk of pTB in Bos taurus cattle. Further analyses that are combining EDN2 genotyping

and holistic expression methods through expanded sampling of other cattle breeds together

with blood mRNA and serum samples for protein expression are recommended to better

understand the role genomic selection could play in reducing the susceptibility to pTB in

cattle.
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Supporting information

S1 Table. Primer and probes, used for genotyping of EDN2 rs109651404, rs110287192 and

rs136707411 SNPs. F: forward; R: reverse; � assay IDs given by prob production company.
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A, et al. Genome-wide association study in mexican holstein cattle reveals novel quantitative trait loci

regions and confirms mapped loci for resistance to bovine tuberculosis. Animals (Basel). 2019; 9(9):

636. https://doi.org/10.3390/ani9090636 PMID: 31480266

29. Neupane M, Kiser JN, Neibergs HL. Gene set enrichment analysis of SNP data in dairy and beef cattle

with bovine respiratory disease. Anim Genet. 2018; 49: 527–538. https://doi.org/10.1111/age.12718

PMID: 30229962

PLOS ONE Effect of EDN2 on bovine pTB

PLOS ONE | https://doi.org/10.1371/journal.pone.0238631 September 3, 2020 8 / 9

https://doi.org/10.1016/j.livsci.2014.04.034
http://www.ncbi.nlm.nih.gov/pubmed/26339300
https://doi.org/10.1124/pr.115.011833
http://www.ncbi.nlm.nih.gov/pubmed/26956245
https://doi.org/10.1152/physrev.00060.2009
http://www.ncbi.nlm.nih.gov/pubmed/21248162
https://doi.org/10.1016/j.anireprosci.2017.09.008
http://www.ncbi.nlm.nih.gov/pubmed/28967452
https://doi.org/10.1677/jme.1.01787
https://doi.org/10.1677/jme.1.01787
http://www.ncbi.nlm.nih.gov/pubmed/16216902
https://doi.org/10.1210/en.2009-0767
http://www.ncbi.nlm.nih.gov/pubmed/20176726
https://doi.org/10.1016/j.ygcen.2019.113231
http://www.ncbi.nlm.nih.gov/pubmed/31351053
https://doi.org/10.1111/j.1365-2052.2009.01896.x
https://doi.org/10.1111/j.1365-2052.2009.01896.x
http://www.ncbi.nlm.nih.gov/pubmed/19422364
https://doi.org/10.1007/s00335-010-9278-2
http://www.ncbi.nlm.nih.gov/pubmed/20706723
https://patents.google.com/patent/US20140283151
http://www.ncbi.nlm.nih.gov/pubmed/30555064
http://www.ncbi.nlm.nih.gov/pubmed/30555064
http://www.ncbi.nlm.nih.gov/pubmed/30555064
https://doi.org/10.3389/fvets.2017.00187
http://www.ncbi.nlm.nih.gov/pubmed/29164142
https://doi.org/10.1007/s00281-019-00756-1
http://www.ncbi.nlm.nih.gov/pubmed/31552470
https://doi.org/10.3168/jds.2013-7032
http://www.ncbi.nlm.nih.gov/pubmed/24556012
https://doi.org/10.1080/00480169.2009.36866
https://doi.org/10.1080/00480169.2009.36866
http://www.ncbi.nlm.nih.gov/pubmed/19252541
https://doi.org/10.3168/jds.2010-3404
http://www.ncbi.nlm.nih.gov/pubmed/21257043
https://doi.org/10.1016/s0167-5877%2897%2900028-7
https://doi.org/10.1016/s0167-5877%2897%2900028-7
http://www.ncbi.nlm.nih.gov/pubmed/9443332
https://doi.org/10.3390/ani9090636
http://www.ncbi.nlm.nih.gov/pubmed/31480266
https://doi.org/10.1111/age.12718
http://www.ncbi.nlm.nih.gov/pubmed/30229962
https://doi.org/10.1371/journal.pone.0238631


30. Cacioppo JA, Oh SW, Kim HY, Cho J, Lin PCP, Yanagisawa M, et al. Loss of function of endothelin-2

leads to reduced ovulation and CL formation. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.

0096115 PMID: 24763822

31. Iwai M, Hasegawa M, Taii S, Sagawa N, Nakao K, Imura H, et al. Endothelins inhibit luteinization of cul-

tured porcine granulosa cells. Endocrinology. 1991; 129: 1909–1914. https://doi.org/10.1210/endo-

129-4-1909 PMID: 1655389

32. Yildiz HM, Carlson TL, Goldstein AM, Carrier RL. Mucus barriers to microparticles and microbes are

altered in Hirschsprung’s disease. Macromol Biosci. 2015; 15: 712–718. https://doi.org/10.1002/mabi.

201400473 PMID: 25644515

33. Nakamura H, Lim T, Puri P. Inflammatory bowel disease in patients with Hirschsprung’s disease: a sys-

tematic review and meta-analysis. Pediatr Surg Int. 2018; 34: 149–154. https://doi.org/10.1007/s00383-

017-4182-4 PMID: 28983688

34. Pierce ES. Could Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease, ulcerative

colitis. . .and colorectal cancer? Infect Agent Cancer. 2018; 13: 1. https://doi.org/10.1186/s13027-017-

0172-3 PMID: 29308085

35. White SN, Knowles DP. Expanding possibilities for intervention against small ruminant lentiviruses

through genetic marker-assisted selective breeding. Viruses. 2013; 5(6): 1466–1499. https://doi.org/10.

3390/v5061466 PMID: 23771240

PLOS ONE Effect of EDN2 on bovine pTB

PLOS ONE | https://doi.org/10.1371/journal.pone.0238631 September 3, 2020 9 / 9

https://doi.org/10.1371/journal.pone.0096115
https://doi.org/10.1371/journal.pone.0096115
http://www.ncbi.nlm.nih.gov/pubmed/24763822
https://doi.org/10.1210/endo-129-4-1909
https://doi.org/10.1210/endo-129-4-1909
http://www.ncbi.nlm.nih.gov/pubmed/1655389
https://doi.org/10.1002/mabi.201400473
https://doi.org/10.1002/mabi.201400473
http://www.ncbi.nlm.nih.gov/pubmed/25644515
https://doi.org/10.1007/s00383-017-4182-4
https://doi.org/10.1007/s00383-017-4182-4
http://www.ncbi.nlm.nih.gov/pubmed/28983688
https://doi.org/10.1186/s13027-017-0172-3
https://doi.org/10.1186/s13027-017-0172-3
http://www.ncbi.nlm.nih.gov/pubmed/29308085
https://doi.org/10.3390/v5061466
https://doi.org/10.3390/v5061466
http://www.ncbi.nlm.nih.gov/pubmed/23771240
https://doi.org/10.1371/journal.pone.0238631

