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Abstract

Today, many complex tasks are assigned to teams, rather than individuals. One reason for

teaming up is expansion of the skill coverage of each individual to the joint team skill set.

However, numerous empirical studies of human groups suggest that the performance of

equally skilled teams can widely differ. Two natural question arise: What are the factors

defining team performance? and How can we best predict the performance of a given team

on a specific task? While the team members’ task-related capabilities constrain the potential

for the team’s success, the key to understanding team performance is in the analysis of the

team process, encompassing the behaviors of the team members during task completion.

In this study, we extend the existing body of research on team process and prediction mod-

els of team performance. Specifically, we analyze the dynamics of historical team perfor-

mance over a series of tasks as well as the fine-grained patterns of collaboration between

team members, and formally connect these dynamics to the team performance in the pre-

dictive models. Our major qualitative finding is that higher performing teams have well-con-

nected collaboration networks—as indicated by the topological and spectral properties of

the latter—which are more robust to perturbations, and where network processes spread

more efficiently. Our major quantitative finding is that our predictive models deliver accurate

team performance predictions—with a prediction error of 15-25%—on a variety of simple

tasks, outperforming baseline models that do not capture the micro-level dynamics of team

member behaviors. We also show how to use our models in an application, for optimal

online planning of workload distribution in an organization. Our findings emphasize the

importance of studying the dynamics of team collaboration as the major driver of high perfor-

mance in teams.
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1 Introduction

Teams are now a basic unit of knowledge work. Organizations increasingly rely on teams, as

work has become complex enough to require a wide variety of skills and expertise from a

group of individuals [1]. Scientific knowledge is increasingly produced by teams of researchers

instead of an individual author [2]. Research shows that teams produce better outcomes than

individuals alone for complex knowledge work. For example, science research by teams has

been more impactful and novel than solo work [3, 4]. Given the importance of teams in knowl-

edge work, the two natural questions are What are the factors that contribute to team perfor-
mance? and How can we exploit these factors to make accurate predictions of team performance?
Our study is dedicated to answering these two questions.

Team performance is commonly considered an output of the input-process-output (I-P-O)

model [5], the widely known conceptual framework for studying groups. Research based on

the I-P-O model tends to assume that inputs such as group composition, lead to processes,

which in turn lead to outcomes such as performance [6]. One apparent input factor of team

performance is the task-related proficiency of the team members, and has been studied in vari-

ous disciplines. In computer science and engineering, a large number of studies focus on opti-

mal team design, with team optimality typically being defined in terms of the skill coverage of

team members [7–9] or team members’ skill diversity [10]. Similarly, much of social scientific

research focuses on the impact of cognitive abilities of team members upon the team’s perfor-

mance (see the reviews of Kozlowski and Ilgen [11] and Stewart [12]). However, the team

members’ proficiencies define the potential for good team performance, constraining rather

than defining the actual performance. The empirical studies as early as the 1949 work of

Deutsch [13] have shown that collaboration and cooperation are important contributors to

team performance. More recently, Barron has shown in her study [14] of the performance of

small teams of students on solving mathematical problems that equally competent teams can

perform very differently depending on how these teams’ members work together. Similarly,

Devine and Philips [15] have shown the lack of connection between the variance of team mem-

bers’ cognitive abilities and the team performance; an analogous result has been reported by

Shim and Srivastava [16] in their study of massively multiplayer online role-playing games.

The discrepancy between team members’ individual abilities and the team’s performance is

attributed to team processes, which mediate the translation of inputs to outputs [11]. The criti-

cal dependence of team performance outcomes upon the team process is also assumed in exist-

ing works on transactive memory systems [17], where team performance depends on team

members’ efficiently learning each other’s capabilities, and has also been recently studied by

Grand et al. [18] in the context of tasks the success on which heavily depends on efficient

knowledge sharing. Thus, in studying team performance, it is essential to investigate the team
process, defined as the actions and interactions team members engage in while working on

tasks.

While team processes are dynamic in nature, the ways in which they are studied have been

rather static [11]. In both social sciences and engineering, the team process has been exten-

sively studied indirectly—without explicitly measuring cross-member interaction—through

the analysis of the team members’ potential for efficient collaboration. In computer science lit-

erature, the problem of team formation in the presence of social network has been studied

from an algorithmic perspective [8, 19–21]. The basic assumption in these works is that, in

order to succeed in the completion of a task, not only the team members’ aggregate proficien-

cies should be sufficient, but the team members should also be able to efficiently communicate

by being “mutually compatible” as manifested by their proximity in the social network they

are embedded in. In social sciences, works that claim to study team process have often selected
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variables that do not represent actual interaction processes [22]. In response to the common

tendency that team processes are often measured by summarizing individual team members’

attitudes, values, cognitions, and motivations at the team level, researchers call for defining

these constructs as emergent states while distinguishing them from team processes, which

directly denote team member interaction processes [22].

Recently, team process has been studied directly, through the explicit analysis of some traits

of team members’ communication. For example, Brewer et al. [23] empirically study how mis-

communication affects team performance as well as the ways to alleviate this effect. Goodman

et al. [24] study how the communication delays in human-machine teams affect the latter’s

performance. Kamrani et al. [25] propose a theoretical predictive model of team performance

incorporating interaction between team members and its effect on the team’s performance.

Similarly, Jiang et al. [26] develop a team performance model capturing congruence between

the actual amount of cross-member communication and the amount of communication

required by the task at hand. Jung [27] studies the connection between the dynamics of intra-

team conflict or “the mood” of communication and the team performance. Finally, Barron

[14] has empirically demonstrated that the performance of equally skilled teams depends on

how these teams’ members react to each others’ task solution proposals.

Based on the above review of existing literature, it is clear that understanding team perfor-

mance requires looking beyond team composition based on team members’ individual charac-

teristics. Furthermore, high-level team process characteristics studied in the previous literature

—such as the number of turns taken in conversation, or proximity of team members in a social

network—are insufficient because of their “static” nature as well as being overly coarse charac-

teristics of the cross-member interaction. Thus, in order to gain a deeper insight into the

nature of team performance and design predictive models allowing its accurate prediction, we

need to look at the dynamics of the team process as well as the fine-grain patterns of team

members’ interaction.

The central goal of this study is to design formal predictive models for team performance

that would use the knowledge of the intra-team process’ dynamics. Particularly, we focus on

two types of dynamics: the dynamics of historical team performance, as well as the dynamics

of the interaction among team members within their collaboration networks.

The data we analyze was collected by Engel et al. [28] to study the performance of small

human groups on simple task sequences. In addition to the performance data, which was the

primary focus of the original study, we also do extensive analyses of the team member commu-

nication logs that Engel et al. collected but did not extensively analyze.

We make the following three specific contributions.

1. Our analysis of the connection of team performance with the dynamics of historical team

performance reveals that most teams with high average performance start performing well

early and perform consistently well throughout the entire task battery. Lower-performing

teams, on the other hand, start poorly, with their performance’s noticeably and steadily

improving over time.

2. Our analysis of the interaction between team members reveals that the high-performing

teams have well-connected collaboration networks, characterized by high mean and low

variance of node degree, high mean edge density and reciprocity, and high algebraic con-

nectivity. Such networks are known to be robust, and allowing for an efficient spread of net-

work processes, such as consensus seeking.

3. Our predictive models of team performance allow for accurate performance predictions—

with a relative error of 15-25%—on a variety of simple tasks, outperforming baseline
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models that do not capture the fine details of the team process. Additionally, we show

how our model based on the team performance dynamics history augmented with an out-

lier control mechanism can be applied to the problem of optimal online planning of work-

load distribution in an organization. When used in this way, our model outperforms the

baselines.

Our work reinforces the idea that the team performance is largely determined by how the

team members collaborate, and emphasizes the importance of studying the dynamics of team

collaboration as a major driver of high performance in teams.

The remainder of our paper is organized as follows. In Sec. 2, we describe the experimen-

tal setting as well as the collected team features characterizing the teams’ composition,

performance, and communication. In Sec. 3, we describe our general team performance

modeling approach (Sec. 3.1) as well as the specific models—the model based on the dynam-

ics of historical team performance (Sec. 3.2) and the model based on the collaboration pat-

terns (Sec. 3.3). Subsequently, in Sec. 4.1, 4.2, and 4.3, respectively, we report the team

performance modeling results. In the subsequent Sec. 5, we show how to use one of our mod-

els for optimal workload distribution planning and compare our model’s performance to

that of the baselines. Finally, in Sec. 6, we conclude with the discussion of our results as well

as directions for future research. Additional description of the data, as well as the data itself

are provided in S1 Dataset.

2 Data

In this work, we analyze the data of Engel et al. [28], which was collected to examine a group’s

collective intelligence, defined as a group’s ability to perform a wide range of tasks [29]. In the

study, 272 individuals were recruited from the general population of the Boston area via the

Internet advertisements and divided into 68 four-member gender-balanced groups—with the

average share of women across all the teams being around 49%—and asked to work on a series

of group tasks for approximately an hour. The tasks were administered on a browser-based

platform, which supports synchronous group collaboration as well as text-based chat. Each

member used a laptop computer to work on the group tasks while communicating with other

members. About a half of the groups were allowed to talk face-to-face while working on the

tasks, while the other groups communicated via text chat only.

2.1 Tasks and team performance

All groups completed a battery of diverse group tasks, which represent five broad task catego-

ries described below (the tasks are executed by each group in the same order as they are listed

here). The descriptions of all the tasks are provided in S1 Text.

1. Executing (Typing Text, Typing Numbers)

2. Sensing (Detection Words, Detection Images)

3. Generating (Brainstorm Words, Brainstorm Brick, Brainstorm Equations)

4. Choosing (Matrix Solving, Unscramble Words, Sudoku, (Judgement Slogans, Judgement Pic-
tures, Judgement Pages)

5. Memorizing (Memory Video, Memory Images)

For the completion of each task, each group receives a task score—reflecting the quality of

the task completion result—on a task-specific scale. In our analysis, however, we linearly trans-

form all the task scores to fit the range between 0.0 and 1.0; the corresponding task score
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distributions for all tasks are shown in Fig 1. We also used z-score normalization for the task

scores as an alternative, but the simpler linear transform reported here resulted in more accu-

rate predictive models for team performance.

2.2 Baseline team features

The data also includes the following team features—that we will use to establish a baseline per-

formance prediction method—characterizing each team’s composition and summarizing its

communication behavior:

⊳ proportion of female team members;

⊳ Big-5 personality traits [30] (e.g., average extraversion);

⊳ average social perceptiveness as measured by the “Reading the Mind in the Eyes” test

[31], and

⊳ basic group communication features: the total amount of communication (the amount of

time speaking for the face-to-face condition or the number of words typed for the online

condition), and the distribution of communication (the standard deviation of these two

measures).

The value distribution for each of the baseline features is shown in Fig 2.

3 Method

In what follows, we will, first, describe in Sec. 3.1 our general method for team performance

analysis, and derive in Sec. 3.2 and 3.3, respectively, two qualitatively different sets of team fea-

tures to be used with the general method.

3.1 General method

Our team feature-based analysis of team performance will consist of two stages.

Fig 1. The distributions of task scores for 15 tasks for 68 groups.

https://doi.org/10.1371/journal.pone.0204547.g001
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At the first stage, we will study Pearson correlation between the team features as well as

between team features and the scores that teams have earned for the completion of different

tasks. The obtained p-values will be corrected using Benjamini-Hochberg procedure [32] with

the false discovery rate of 10%. Further, only statistically significant correlation values will be

reported, with the p-value threshold’s being 0.05. This analysis will provide an insight into

which team features are “redundant” and which are statistically related to team performance.

The second stage of our analysis will be using team features to build a predictive model for

team performance on each task. To that end, we will use elastic net regression [33], whose loss

function, besides having the least-squares fitness term, is augmented with the LASSO [34] and

ridge [35] regularizing terms:

b̂ ¼ arg min
b

ðky � Xbk
2

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
least

squares

þl1kbk1|fflfflffl{zfflfflffl}
LASSO

þl2kbk
2

2|fflfflffl{zfflfflffl}
Þ;

ridge

ð1Þ

where β is a model; y is a (response) vector of scores for a given task; X is the design matrix

with its rows corresponding to teams, its columns corresponding to team features standardized

to have zero mean and unit variance, and its entries being the team feature values; and λ1 and

λ2 are the constant regularization parameters. The ℓ1-regularization term sparsifies the model

trying to emphasize only a small number of significant team features, while the ℓ2-regulariza-

tion term attempts to group related team features together, forcing the coefficients of highly-

correlated features to have similar coefficients in model β. To deal with overfitting, we perform

10-fold cross-validation, considering different combinations of λ1 and λ2 that result in multiple

regression models. Among these models, we select only those sparse enough, having the total

weight of the top 6 features in the model accounting for at least 80% of the total model’s

Fig 2. The value distributions of baseline team features for 68 teams.

https://doi.org/10.1371/journal.pone.0204547.g002

Dynamics of collective performance in collaboration networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0204547 October 10, 2018 6 / 31

https://doi.org/10.1371/journal.pone.0204547.g002
https://doi.org/10.1371/journal.pone.0204547


weight. Then, from these models, we choose the single best-fitting model, having the lowest

root mean square error (RMSE). For readability, in the introduction of this manuscript, the

prediction errors are reported in percentages, with an error of, say, 25% corresponding the

RMSE of 0.25 for a prediction of a task score measured on a scale between 0.0 and 1.0.

In addition to regularized linear regression, we have also experimented with non-linear

regression, Gaussian Process [36], as well as Support Vector Regression [37], yet, the best

results were obtained using the simplest regularized linear regression, so we do not report the

results for non-linear models.

Having found the best regression model for each task, we will analyze which team features

are most emphasized in these models and, consequently, are predictive of team performance.

Then, we will quantify the predictive quality of the obtained models, by making the actual

team performance predictions and measuring the prediction accuracies.

3.2 Team performance dynamics-based features

The baseline team features described in Sec. 2 characterize the teams’ composition and sum-

marize their basic behavioral properties, not capturing the temporal component of team work.

In this section, we would like to understand whether the teams’ performance on early tasks is

predictive of their future performance. To that end, for each team, and for each task the perfor-

mance on which is to be predicted, we analyze the series of the task scores for the tasks the

team has already completed, and extract from each such series the following features character-

izing the historical dynamics of team performance:

⊳ the scores for the first and the last tasks;

⊳ the mean and the median scores;

⊳ the scores’ standard deviation and variance;

⊳ the scores’ skewness and kurtosis;

⊳ the features of the best line fitting the series (least squares fitting):

– the ordinate values corresponding to the first, middle, and last tasks;

– the slope, in radians;

– the difference between the last and the first score;

⊳ the number of increases and decreases in a task score series; and

⊳ the number of score changes above and below the median score change value.

3.3 Collaboration pattern-based features—Teams as networks

The team features described so far are insufficient for our study. The baseline team features of

Sec. 2 provide useful information about each team’s composition, yet, do not capture the fine

details of the team members’ behavior. The basic communication features, such as the number

of turns taken in conversation or the number of words spoken, do provide a limited informa-

tion about the teams’ behavior, yet, do not capture how individual team members contribute

to the team’s common goal and interact with their teammates.

In this section, we would like to understand how the intra-team interaction during task

completion affects the quality of the outcome. In order to analyze the connection of the team

members’ behavior patterns with their teams’ performance, we represent each team as a collab-

oration network, constructed as follows.
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As mentioned in Sec. 2, about 50% of the participating teams were communicating only via

an online text chat and were not allowed to talk to each other, despite residing in the same

room while working on tasks. The communication data for these non-talking teams was

recorded, with an example of a partial text chat log of a single team shown in Table 1.

Our immediate goal in the analysis of each such chat log is to extract the network that

would describe how the members of the team collaborate in the process of task completion.

While that information can, potentially, be derived from the text messages occurring in the

logs, an automatic extraction of such collaboration semantics from the actual words included

in short text messages is very challenging. Due to that fact, we will perform the analysis of

team members’ collaboration solely based on the chat messages’ timestamps and senders.

This approach implies a basic assumption: if a message B appears on a chat log close enough in
time to an earlier sent message A, then B is likely a response to A; and, the larger the time gap
between two messages is, the less likely the later message is a response to the earlier message. Fol-

lowing this assumption, for a message m occurring at time m.time on the log, we define the set

of its responses

RðmÞ ¼ fr j m:time < r:time ^ t1 � r:time � m:time � t2 ^ r:sender 6¼ m:senderg

as all the messages occurring within the time window of [t1, t2] seconds after m and sent by the

team members other than m’s sender m.sender. We select the values for t1 and t2 based on how

well they work for the purpose of binary classification of the messages of several manually

annotated chat logs into true responses and non-responses, maximizing the classification

result’s F2-score, with Fβ’s being defined in terms of the classification precision and recall as

Fb ¼ ð1þ b
2
Þ �

precision � recall
b

2
� precisionþ recall

:

Based on the F2-scores for different combination of t1 and t2, shown in Fig 3, we choose the

best response time window to be [t1, t2] = [1, 17] with F2 = 0.49.

As soon as we have defined a subset R(m) of responses for each message m, we define the

collaboration network W whose nodes correspond to team members, and the weight wij of

Table 1. An example of a partial text chat log recorded while a non-talking team was working on tasks.

Time Sender Message

36:38 nick So, I think the salt is really low importance.

37:00 kate i don’t think the aircraft compass or motor oil are very useful

37:05 nick kate, sun umbrella is high (we need shade!)

37:11 kate i would put umbrella and food next after water

37:16 nick Well, I think the compass works regardless, but yeah.

..

. ..
. ..

.

38:13 jeral Mirror is high because it’s a signal

38:17 jeral You can reflect the sun

38:25 greg depends how big it is

38:29 kate well yeah

Each message is accompanied by its timestamp and the sender’s alias.

https://doi.org/10.1371/journal.pone.0204547.t001
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edge (i, j) is defined as

wij ¼

X

p:sender ¼ i
q:sender ¼ j
q2RðpÞ

e� rjp:time� q:timej; ð2Þ

where the summation is performed over all suitable pairs (p, q) of messages p and q contained

in the team’s chat log, and ρ—equal 0.15 in our experiments—is a constant parameter regulat-

ing how fast the likelihood of a message’s being a response degrades with the increase of the

time gap between the two messages. The edges corresponding to team members who have not

communicated with each other are absent from network W, although, many such networks

appear to be dense. In addition to definition (2), we have used a simpler edge weight definition

—with the exponential term’s being replaced with 1, thereby, capturing only the number of

times person j responds to person i over the entire conversation—yet, such simpler definition

resulted in the predictive models of worse quality.

Having analyzed the text chat log for each team, we end up with a directed weighted net-

work W reflecting who responds to whom while the team works on the tasks, as well as the

amount and timing of these communication acts. In addition, for each network W, we define

three sparse unweighted collaboration networks S25, S50, and S75, obtained from W by removing,

respectively, 25%, 50%, and 75% of the lowest-weight edges and, subsequently, dropping all

edge weights. Fig 4 provides an example of a dense weighted and a sparse unweighted collabo-

ration networks derived from the partial chat log shown in Table 1.

For each team, we analyze both types of collaboration networks and extract from them the

following network features, aggregated over all the nodes or edges of each network:

⊳ the mean and the standard deviation of node in- and out-degrees;

⊳ the difference of the mean and the standard deviation of in- and out-degrees; and

⊳ the mean edge reciprocity [38].

In addition to the above mentioned degree-based network features, we will discuss the

related spectral features of our collaboration networks in Sec. 4.3.

Fig 3. F2-scores for binary classification of log messages into responses and non-responses for different time

windows [t1, t2] sec.

https://doi.org/10.1371/journal.pone.0204547.g003
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The following network features are extracted only from sparse unweighted collaboration

networks S25, S50, and S75:

⊳ edge density, defined as the ratio of the number of present edges to the maximum possi-

ble number of edges;

⊳ the network’s diameter;

⊳ the mean length of a shortest path;

⊳ the number of (weakly) connected components;

⊳ the number of strongly connected components;

⊳ the mean betweenness centrality of a node; and

⊳ the mean clustering coefficient of a node.

In addition to the network features, we extract from the chat logs the following team fea-

tures, among whom the ones marked with † have been investigated in previous works [28, 29]

for their potential connection with team performance.

† the total number of characters and words written by a team;

† the mean and the standard deviation of the number of characters and words written by a

team member over all the members of a single team;

† the number of turns taken in the chat conversation;

⊳ the mean, the median, and the standard deviation of a delay between adjacent chat mes-

sages; and

⊳ the mean and the standard deviation of the quantified sentiment of a text message.

For the sentiment-related features on the list above, the sentiment of each text message was

quantified as a real number from −1 (extremely negative) to 0 (neutral) to 1 (extremely posi-

tive). The sentiment quantification was performed using AlchemyAPI sentiment classifier,

whose expected classification accuracy evaluated using a discrete set {−1, 0, +1} of sentiment

values and the dataset of short text messages from www.sentiment140.com is 70%.

Fig 4. An examples of two types of collaboration networks constructed from a team’s chat log. In the shown sparse

network S50, 50% of the lowest-weight edges of W have been dropped.

https://doi.org/10.1371/journal.pone.0204547.g004
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4 Results

In this section, we report our team performance prediction results. We use the general

method of Sec. 3.1 together with, first, the baseline team features of Sec 2 and, then, the per-

formance dynamics-based and the collaboration pattern-based features of Sec 3.2 and Sec

3.3, respectively.

4.1 Team performance via baseline team features

First, we analyze the correlation between the baseline team features as well as their correlation

with the task scores. The correlation values are shown in Fig 5.

Among the baseline features, three features, namely social perceptiveness (ρ 2 [0.24, 0.48]),

amount of communication (ρ 2 [0.26, 0.38]), and the share of females (ρ 2 [0.27, 0.45]) are sig-

nificantly correlated with team performance. These results replicate the original analysis of the

same dataset as well as other previous work on collective intelligence [28, 29].

Next, we use the baseline features for team performance regression modeling, as described

in Sec. 3.1. The best models for each task are shown in Fig 6.

We see that the amount of communication as well as the proportion of females have a

noticeable positive connection with team performance, while the distribution of communica-

tion (the standard deviation of the numbers of words written of spoken by team members)

has a negative connection. Again, these results echo previous analyses of this and other similar

datasets [28, 29]. We find two results that differ from previous analyses, however. First, Social
Perceptiveness is not emphasized in the regression models, while—based on the correlation

analysis as well as the results reported in the existing literature [28, 29]—we would expect it to

have a positive connection with the teams’ performance on many tasks. This discrepancy may

take place because the proportion of females and the social perceptiveness are strongly corre-

lated, yet, in the best regression models, the effect of ℓ2-regularization is insufficient to group

these two features equalizing their coefficients in the model, so the proportion of females fea-

ture likely “cloaks” the effect of the social perceptiveness feature. Second, unlike in previous

analyses, we find that agreeableness and extraversion have a negative relationship with team

Fig 5. Correlation between baseline team features as well as their correlation with the task scores. Only statistically significant correlation values are displayed, with

p-value threshold’s being 0.05. The p-values have been corrected using Benjamini-Hochberg procedure.

https://doi.org/10.1371/journal.pone.0204547.g005
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performance. Perhaps, for example, groups that are very agreeable avoid conflict and perform

worse, and perhaps those that are very extraverted spend more time on socializing instead of

task performance.

The prediction accuracy of the best regression model for each task is shown in Fig 7. We

observe that for most of the tasks—excluding image detection as well as all three judgement

tasks—we have found non-degenerate models for team performance. The models resulting

in the lowest RMSE for the four excluded tasks are degenerate in that all their feature coeffi-

cients are approximately zero, and the score predictions are approximately equal to the mean

scores for the respective tasks. We will use the obtained RMSEs later, to compare the predictive

power of the baseline models with alternatives.

4.2 Team performance via historical performance dynamics

In this section, we analyze team performance using the general method of Sec. 3.1 and the

team features derived from the dynamics of the teams’ performance on earlier tasks, as

described in Sec. 3.2. More specifically, we perform the explanatory analysis of team perfor-

mance with respect to the chosen features, as well as a quantitative analysis of the predictive

quality of our model as compared to baselines. Later, in Sec. 5, we will show how to use the

predictive model analyzed in this section for the purposes of optimal dynamic planning of

workload in organizations.

Fig 6. The team features emphasized in the regression models built with baseline team features. Each row includes

the team feature coefficients of the best elastic net regression model for a given task. In the best models, the

regularization is dominated by LASSO, with λ1: λ2 = 75%: 25% in the loss function (1).

https://doi.org/10.1371/journal.pone.0204547.g006
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Prior to proceeding to the formal analysis, we would like to develop an intuition for how

the historical dynamics of team performance is connected to the future team performance. To

that end, in Fig 8, we display the task score series for all 68 teams, having ordered the teams

based on their average performance, from the lowest- to the highest-performing team.

In Fig 8, it is easy to observe that

⊳ the higher-performing teams usually perform well as of the first task, while the lower-per-

forming teams perform poorly on the first few tasks; and

⊳ the higher-performing teams perform well consistently, while the performance of the

lower-performing teams noticeably changes through time.

The above observations become even more pronounced when we compare the teams’ aver-

age performance with their performance on early tasks as shown in Fig 9.

In order to formalize and quantify the above observations, we proceed with the correlation

and regression analysis of team performance. First, we look at the correlation between the per-

formance dynamics-based features and baseline team features.

Based on the correlation results shown in Figs 10 and 11, we make the following observations:

Fig 7. The prediction accuracy of the baseline best regression models for each task. On the displayed scatter plots, the x-coordinate corresponds to the true task score

of a team, the y-coordinate corresponds to the predicted task score, and each point corresponds to a task score prediction for a single team. The root mean square errors

(RMSEs) for predictions are also reported.

https://doi.org/10.1371/journal.pone.0204547.g007
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⊳ The proportion of females and the social perceptiveness—the features positively con-

nected with team performance, as pointed out in Sec. 4.1—are positively correlated with

the first, mean, and median task scores, as well as the corresponding features of the best

fit line; the correlation values for the proportion of females are between 0.29 and 0.32,

and the correlation values for the social perceptiveness are between 0.36 and 0.55.

⊳ The task scores are generally negatively correlated with the skewness (ρ 2 [−0.45, −0.24]),

and kurtosis (ρ 2 [−0.58, −0.42], except ρJudgementPages = 0.40) of the score series; the latter

quantify the dispersion of scores about their mean. This finding supports the earlier stated

hypothesis about the performance consistency of the high-performing teams.

⊳ The Big-5 personality trait score characterizing agreeableness is slightly negatively corre-

lated with the mean score (ρ = −0.25), yet, is positively correlated with the number of

times a task score increases (ρ = 0.35) or, more generally, changes above the median score

value (ρ = 0.32). These two findings are self-consistent, since, from what we have estab-

lished above, the latter score dynamics is characteristic of lower-performing teams.

Next, we use the performance dynamics-based features in the regression analysis, executed

as described in Sec. 3.1 with the following modification. When predicting the teams’ perfor-

mance on a given task, we compute the performance dynamics feature values using only the

preceding task, the teams’ performance on which has already been observed. Since our method

relies on historical performance data, we predict team performance starting from the fourth

task and further. The best regression models as well as their quality are shown in Figs 12 and

13, respectively.

Fig 8. The series of scores for each of 15 tasks for each of 68 teams. The teams are arranged from the lowest- (top left) to the highest- (bottom right) performing with

respect to the mean task score. Each score series is accompanied by the best fit line.

https://doi.org/10.1371/journal.pone.0204547.g008
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Further, we will analyze the predictive power of our model relying on the performance

dynamics-based features. Besides comparing its prediction accuracy to that of the method of

Sec. 2 relying on the baseline features, we add into comparison several time series extrapola-

tion methods that build time series models for each team individually: Mean Oracle (a baseline

whose prediction equals the mean task score computed over both observed and not-yet-

observed task scores), Observed Mean (the predicted score is the mean over the so-far observed

task scores), Naive Forecast (the prediction equals the score for the immediately preceding

task), Least Squares (predictions are obtained from a linear model fitted to the series of

observed scores using least squares), and ARMA (an autoregressive moving-average model

[39], with its parameters estimated via maximum likelihood). The prediction RMSEs for all the

methods are reported in Table 2.

4.3 Team performance via collaboration network features

In this section, we will use the team features of Sec. 3.3 extracted from the text chat logs and, in

particular, the team network representations for predicting team performance. We start with

the correlation analysis, whose results are reported in Fig 14; and the correlation values for the

top correlated features are reported in Table 3.

The correlation analysis in Table 3 suggests that there are two facets of communication

noticeably connected to team performance.

⊳ Firstly, the amount and—due to the semantics of our collaboration networks—frequency
of communication are associated with higher team performance. One fact supporting this state-

ment is that the node degree-based features as well as algebraic connectivity, which have larger

Fig 9. For each team, its average score over all but the first tasks (to avoid overfitting) is compared to its score on

the first task. The two measures are significantly correlated (ρ = 0.50, p = 1.73 � 10−5).

https://doi.org/10.1371/journal.pone.0204547.g009
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values in denser networks, both appear in Table 3 as noticeably correlated with team perfor-

mance. Another fact is that the median delay between chat messages (as well as the number of

turns taken in conversation—the feature investigated by Woolley et al. [29]) also show up as

correlated. This finding confirms the results of Woolley et al. [29] and Engel et al. [28] regard-

ing the amount of communication’s being positively related to team performance.

⊳ Secondly, and more prominently, the well-connectedness of the collaboration network,
and, more specifically, the uniformity of collaboration are associated with higher team perfor-
mance. Both Woolley et al. [29] and Engel et al. [28] found that the non-uniformity of commu-

nication—expressed through the Communication Distribution baseline feature (Sec. 2.2)

measuring the variance in the amount of communication by team members—was negatively

connected with the team’s collective intelligence. Our results in Table 3 allow us to extend and

strengthen this conclusion, and apply it to team performance on individual tasks rather than

an aggregate team performance measure, such as collective intelligence.

The differences of the mean and the standard deviation of the in- and out-degrees of the

nodes of the weighted collaboration networks appear to be noticeably correlated with team

performance. Intuitively, these features indicate how uniformly highly-connected the nodes of

the network are—a large average node degree is indicative of high edge density, and a small

standard deviation of the node degree indicates structural uniformity of the network. More

formally, these node degree-based features are closely related to the algebraic connectivity of

the network, that appears to be the network feature most correlated with team performance.

Fig 10. Correlation between the performance dynamics-based features of Sec. 3.2 and the baseline team features. Only the statistically

significant correlation values are displayed, with the p-value threshold of 0.05. The p-values have been corrected using Benjamini-Hochberg

procedure.

https://doi.org/10.1371/journal.pone.0204547.g010
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Algebraic connectivity, defined as the smallest positive eigenvalue of the network’s Laplacian

matrix [40], measures well-connectedness of the network through how robust it is to perturba-

tions as well as how fast network processes, such as a random walk [41] or a consensus forma-

tion [42], unroll in it. Empirically, the rescaled out-degree-based feature and the algebraic

connectivity of network closely follow each other, as shown in Fig 15.

It is clear, however, that one can deliberately design a team with only two members interact-

ing a lot—making the average degree of their collaboration network high—yet, whose perfor-

mance is low due to the lack of coordination between most of team members. To achieve high

performance, the activity should be uniformly distributed among team members, as reflected

in the robustness (algebraic connectivity) of their collaboration network. Because of that, it is

very likely that in larger-scale sparse collaboration networks, the connection of degree summa-

ries (mean, standard deviation) with team performance would wane, while the connection

between the network’s robustness—expressed as the algebraic connectivity—and team perfor-

mance would persist.

This latter result is particularly important, because there is no communication or collabora-

tion uniformity measure in the existing literature that has been shown to be statistically signifi-

cantly related to team performance on specific tasks.

Fig 11. Correlation between the performance dynamics-based team features and task scores. Only the statistically significant correlation

values are displayed with the p-value threshold of 0.05. The p-values have been corrected using Benjamini-Hochberg procedure.

https://doi.org/10.1371/journal.pone.0204547.g011
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We have also initially observed that the variance in the sentiment of conversation is nega-

tively related to team performance, yet, this result turned out to be statistically insignificant

after Benjamini-Hochberg correction.

Having performed the correlation analysis, we proceed with the regression analysis. For

each task, we build a regression model, whose coefficients are shown in Fig 16. The features

most emphasized in the best regression models are shown in Table 4. From the obtained

results, we see that, similar to the above reported results of the correlation analysis, the features

characterizing a network’s well-connectedness are emphasized in the regression models.

The prediction quality of the best models for the team performance on each task is reported

in Fig 17.

The quality of team performance prediction based on using collaboration features is com-

pared to the prediction quality obtained using baseline and performance dynamics-based fea-

tures, with the results shown in Table 5.

From Table 5, we can conclude that on most of the tasks, the log-based performance predic-

tions are more accurate than these of baseline predictions. Additionally, on six tasks, including

the first three, the log-based predictions are more accurate than the ones based on the perfor-

mance dynamics-based features. However, on most tasks excluding the first three, the perfor-

mance dynamics-based predictions are superior to others.

5 Application

In order to demonstrate the usefulness of our team performance model of Sec. 3.2 and 4.2 rely-

ing on the features based on the dynamics of observed team performance, we will consider a

Fig 12. The features based on the dynamics of historical team performance emphasized in the best regression models.

https://doi.org/10.1371/journal.pone.0204547.g012
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practical application of this model to the problem of optimal online planning of workload dis-

tribution in an organization. Our goal here is to see how our predictive model can actually be

used in practice as well as see how well it performs in comparison to alternatives.

Suppose that a manager of n teams needs to sequentially assign m tasks to the teams based

on how well they are expected to perform on these tasks. Assuming that the work on each task

Fig 13. The prediction accuracy of the best regression models obtained using the team performance dynamics features. On the displayed scatter plots, the x-

coordinate corresponds to the true task score of a team, the y-coordinate corresponds to the predicted task score, and each point corresponds to a task score

prediction for a single team. Since prediction requires information about the teams’ performance on the previous tasks, the performance for the first three tasks is

not predicted.

https://doi.org/10.1371/journal.pone.0204547.g013

Table 2. Comparison of RMSEs for team performance prediction on 15 tasks using the general method of Sec. 3.1 with baseline features (Baseline) and the perfor-

mance dynamics-based features (Dynamic), as well as using several standard time series extrapolation methods.

Method Tasks

Baseline (Sec. 2) .20 .20 .20 .24 .27 .23 .27 .24 .22 .13 .18 .20 .20 .22 .21

Dynamic (Sec. 3.2) × × × .24 .25 .21 .26 .22 .21 .13 .15 .17 .19 .21 .18

Mean Oracle × × × .21 .25 .20 .25 .23 .20 .20 .17 .17 .23 .29 .24

Observed Mean × × × .27 .25 .24 .30 .27 .21 .21 .18 .17 .27 .32 .25

Naive Forecast × × × .30 .30 .35 .35 .34 .29 .29 .20 .22 .33 .28 .33

Least Squares × × × .42 .46 .41 .44 .36 .34 .35 .24 .26 .38 .37 .30

ARMA × × × .26 .33 .29 .32 .30 .32 .25 .21 .18 .27 .32 .24

The RMSEs corresponding to either unavailable or degenerate models are displayed in dark cells. Within each of two method categories, for each task / column, the best

(lowest) RMSEs (±0.01) are displayed in bold font.

https://doi.org/10.1371/journal.pone.0204547.t002
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is arbitrarily partitionable, let ω(t) 2 [0, 1]n (1⊺oðtÞ ¼ 1) describe how the workload on task

t 2 {1, . . ., m} is distributed over all the teams, with ωi(t)’s standing for the share of work team

i will perform on task t. If s(t) 2 [0, 1]n are the scores the teams will earn for task t’s completion,

then the teams’ total score on task t is sðtÞ⊺oðtÞ.
When tasks 1, . . ., (t − 1) have been completed, the manager is given the historical perfor-

mance Histtrain(t) of other teams who have already worked in the past on all the tasks up to t
as well as the performance Hist(t) = hs(k) j k = 1, . . ., t − 1i of the n currently managed teams

observed so far. Given Histtrain(t) and Hist(t), the manager’s goal is to predict the performance

sest(t) of the teams on the next task t, and, based on this prediction, define workload distribu-

tion ω(t) on task t, so that

⊳ more work is assigned to the teams who—according to sest(t)—are expected to perform

well on task t, yet,

⊳ the workload distribution is fair in that it does not happen that most of the work is

assigned to a single team, expected to perform best on the given task, while the rest of the

teams free-ride.

Fig 14. Correlation between the collaboration team features of Sec. 3.3 with task scores. Only the statistically significant correlation values are displayed with the p-

value threshold of 0.05. The p-values have been corrected using Benjamini-Hochberg procedure. The features names of (dense weighted) collaboration networks have

prefix “wn”, the feature names of the sparse unweighted collaboration networks with X% lowest-weight edges dropped are prefixed with “snX”, and the general chat log-

based features have prefix “log”.

https://doi.org/10.1371/journal.pone.0204547.g014

Table 3. Top log-based team features significantly correlated with task scores.

Team Feature ρ, [min, max] max p-value

# of turns in conversation [-0.34,-0.68] 0.047

Node mean in- or out-degree [-0.37,-0.65] 0.05

Node in- or out-degree, mean − std [-0.38,-0.55] 0.025

Algebraic connectivity [-0.35,-0.59] 0.04

Median delay between chat messages [−0.53, −0.37] [ {0.41} 0.03

https://doi.org/10.1371/journal.pone.0204547.t003
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More formally, if the manager adopts workload distribution policy P, then the manager’s

payoff R on task t, on which the teams’ actual scores are s(t), is defined as

Rðt; sðtÞ;oðtÞÞ ¼ sðtÞ⊺oðtÞ
|fflfflfflfflffl{zfflfflfflfflffl}

exploit

� akoðtÞk2

2|fflfflfflfflffl{zfflfflfflfflffl}
explore

;

oðtÞ ¼ Pðt;HisttrainðtÞ;HistðtÞÞ:

ð3Þ

In (3), the first summand describes the teams’ total score for task t’s completion, the second

summand is the uniformity penalty ensuring fairness of workload distribution ω(t), and

α 2 [0, 1] is a constant parameter regulating the extent to which the fairness is emphasized as

compared to the teams’ total score. Alternatively, the first and the second summands of (3) can

be thought of as, respectively, emphasizing exploitation (of the knowledge of the teams per-

forming best so far) and exploration (of the teams whose performance is yet largely unknown).

In what follows, we provide multiple workload distribution policies P—from the basic

unaware of the past team performance to the more advanced based on our predictive team

performance model—and compare their performance with respect to the manager’s cumula-

tive payoff
Pm

t¼1
Rðt; sðtÞÞ that the teams generate on a sequence of m tasks. More specifically,

we consider the following workload distribution policies.

⊳ Uniform Assignment: It is a baseline workload distribution policy that assigns the same

amount of work to each team, being ultimately fair

Puniformðt;HisttrainðtÞ;HistðtÞÞ ¼ 1=n:

⊳Mean Oracle: This baseline workload distribution policy estimates the teams’ scores on

task t as the average of the teams’ scores over both past and future tasks,

sestðtÞ ¼ sest ¼
Xm

i¼1

sðiÞ=n;

and the workload distribution ω(t) is chosen to be optimal with respect to the score

Fig 15. The relationship between the difference of the mean and the standard deviation (STD) of the out-degree of the collaboration network and its algebraic

connectivity for each of 34 teams.

https://doi.org/10.1371/journal.pone.0204547.g015
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estimates sest(t)

Poracleðt;HisttrainðtÞ;HistðtÞÞ ¼ arg max
o2½0; 1�

n

1⊺o¼1

½sestðtÞ⊺o � akok
2

2
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rðt;sestðtÞ;oÞ

: ð4Þ

All the subsequent policies will use the same optimization procedure (4) for choosing ω,

and will differ only in how they estimate the team scores sest(t).
⊳ Naive Forecast: Policy Pnaive assumes that the teams’ scores on task t will be identical to

their scores on task (t − 1), that is, sest(t) = s(t − 1).

Fig 16. The chat log-based team features emphasized in the best regression models. Each row includes the team

feature coefficients of the best elastic net regression model for a given task. The features names of (dense weighted)

collaboration networks have prefix “wn”, the feature names of the sparse unweighted collaboration networks with X%

lowest-weight edges dropped are prefixed with “snX”, and the general chat log-based features have prefix “log”.

https://doi.org/10.1371/journal.pone.0204547.g016

Table 4. Top 4 chat log-based team features emphasized in the best regression models.

Team Feature min|βi| max|βi| mean|βi|

Mean edge reciprocity 0.02 0.99 0.66

Edge density, S25 0.03 0.99 0.63

Mean betweenness centrality, S50 0.01 0.99 0.18

Mean clustering coefficient, S25 0.01 0.38 0.07

The features are sorted by mean|βi|, where βi is the model’s coefficient corresponding to the team feature.

https://doi.org/10.1371/journal.pone.0204547.t004
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⊳Observed Mean: Policy Pmean defines the teams’ scores on task t as the means of the scores

the teams received in the past, that is, sestðtÞ ¼
Pt� 1

i¼1
sðiÞ=n.

⊳ Least Squares: Policy PLS finds the best-fit—in the least squares sense—linear model for

each team’s observed score series and uses it to estimate sesti ðtÞ.

Fig 17. The accuracy of team performance prediction based on chat log-based and, particularly, network-based features. The best elastic net regression model is

used for score prediction of each team on each task. On the displayed scatter plots, the x-coordinate corresponds to the true task score of a team, the y-coordinate

corresponds to the predicted task score, and each point corresponds to a task score prediction for a single team. The root mean square error (RMSE) for predictions are

reported.

https://doi.org/10.1371/journal.pone.0204547.g017

Table 5. Comparison of RMSEs for team performance prediction on 15 tasks using the general method on Sec. 3.1 with baseline features of Sec. 2 (Baseline), team

performance dynamics-based features of Sec. 3.2 (Dynamic), and the features extracted from the text chat logs (Log-based), respectively.

Method Tasks

Baseline (Sec. 2) .20 .20 .20 .24 .27 .23 .27 .24 .22 .13 .18 .20 .20 .22 .21

Dynamic (Sec. 3.2) × × × .24 .25 .21 .26 .22 .21 .13 .15 .17 .19 .21 .18

Log-based (Sec. 3.3) .21 .15 .24 .23 .25 .22 .24 .23 .22 .14 .17 .18 .19 .21 .20

Mean Oracle × × × .21 .25 .20 .25 .23 .20 .20 .17 .17 .23 .29 .24

Observed Mean × × × .27 .25 .24 .30 .27 .21 .21 .18 .17 .27 .32 .25

Naive Forecast × × × .30 .30 .35 .35 .34 .29 .29 .20 .22 .33 .28 .33

Least Squares × × × .42 .46 .41 .44 .36 .34 .35 .24 .26 .38 .37 .30

ARMA × × × .26 .33 .29 .32 .30 .32 .25 .21 .18 .27 .32 .24

The RMSEs corresponding to either unavailable or degenerate models are displayed in dark cells. Within each of two method categories, for each task / column, the best

(lowest) RMSEs (±0.01) are displayed in bold font.

https://doi.org/10.1371/journal.pone.0204547.t005
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⊳ ARMA: Policy PARMA estimates sesti ðtÞ from an ARMA model, whose parameters are esti-

mated using maximum likelihood.

⊳ Performance Dynamics-based Prediction: Policy PPD estimates team performance sest(t)
using our model of Sec. 3.2 and 4.2 that relies on the observed team performance dynamics

features.

⊳ Performance Dynamics-based Prediction with Outlier Control: The previously described

policy PPD is based upon our predictive model for team performance, which is superior to the

predictive models used by other policies in terms of the mean prediction accuracy, measured

as the root mean square error (RMSE). However, while keeping a low RMSE, our predictive

model can have a small number of outlier predictions that considerably deviate from their

respective true performance values. The latter is an issue, since the workload distribution opti-

mization problem (4) is non-robust to such outliers. Thus, we also consider policy PPDOC,

which is a smoothened version of PPD, that does not allow its score predictions ŝestðtÞ to deviate

by more than � = 0.3 fraction from their so-far observed mean values

meank ¼
Xt� 1

i¼1

skðiÞ=n;

ŝestk ðtÞ ¼ maxfð1 � �Þmeank;minfð1þ �Þmeank; sestk ðtÞgg;

where scores estimates sestk ðtÞ are obtained as in policy Ppd.

While most of the policies on the list above base their score predictions solely on the

observed performance Hist(t) of the currently managed teams, the two last policies that use

our team performance prediction model are the only ones also exploiting the “training data”

Histtrain(t) that incorporates the historical performance of previously managed teams. Thus,

the main goal of the comparison of the workload distribution policies is to understand whether

and to what extent availability of this training data helps maximize the organization’s perfor-

mance relatively to the policies that rely solely on the observed past performance of the teams

working on tasks.

We evaluate the above described workload distribution policies using our data about

the performance of 68 teams on 15 tasks. We assume that 51 teams (75%), having already

worked on similar tasks, comprise the training data Histtrain, and we sequentially perform

workload distribution for each task among the remaining 17 teams. To ensure robustness of

the obtained experimental results, the experiments are repeated over 100 random 75%-25%

splits of teams, and the mean results are reported. We use α = 0.2 in the definition of the payoff

Rðt; sðtÞ;oðtÞÞ ¼ sðtÞ⊺oðtÞ � akoðtÞk2

2
, making sure that the payoff mostly depends on

assigning more work to the teams expected to perform well and, to a lesser extent, on the

workload distribution uniformity.

The cumulative payoffs obtained using each of the workload distribution policies scaled by

the cumulative payoff of the oracle baseline policy Poracle are shown in Fig 18. The average opti-

mal workload distributions for each policy are shown in Fig 19.

We can see that policy PPDOC that relies on our predictive model for team performance

results in the highest cumulative payoff, producing rather uniform workload distributions.

However, it is also important to notice that the outlier control in PPDOC is essential for the pol-

icy to noticeably outperform a much simpler intuitive policy Pmean.

6 Discussion

In this work, we have focused on the analysis of the dynamics of the team process for the pur-

poses of understanding and predicting team performance. We have introduced the team
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Fig 18. Relative cumulative payoffs over a sequence of 15 tasks corresponding to different workload distribution policies. The payoffs are scaled by

the payoff of the oracle baseline policy.

https://doi.org/10.1371/journal.pone.0204547.g018

Fig 19. Workload distributions ω(t) chosen by each policy on each of 15 tasks. The workload distributions of first two baseline policies are time-invariant. Other

policies, relying on the use of historical data, use Pmean if not enough historical data is available (for example, both least squares and ARMA fitting require at least 2

observed data points). For the first task, Pmean chooses a uniform workload distribution, as in Puniform.

https://doi.org/10.1371/journal.pone.0204547.g019
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performance predictive models based on the properties of the historical team performance

dynamics, as well as on the explicitly captured collaboration patterns occurring in teams dur-

ing task completion. We have also shown how our performance dynamics-based predictive

model can be used in an application.

Dynamics of Historical Team Performance Predicts Future Performance: Our first qual-

itative finding is that the dynamics of team performance on early tasks in a sequence is predic-

tive of team’s performance on future tasks. More specifically, high-performing teams start

doing so early, while low-performers start poorly, yet, in many cases, consistently improve

their performance over time.

One possible explanation for this observation is that, even though all the tasks in a sequence

were simple enough so that every team member was able to tackle them, some teams might

have nevertheless been worse prepared for task solving using the online web-based interface.

However, this explanation is challenged by the fact that every participant of the study, prior to

approaching the tasks the performance on which is evaluated, had practiced on non-scored

tasks.

Well-Performing Teams Have Well-Connected Collaboration Networks: Our second

qualitative finding is that there is a strong connection between the explicitly captured collabo-

ration patterns in teams and these teams’ performance. We find that better performing teams

have collaboration networks which are better connected, as manifested by their algebraic con-

nectivity, have a more uniform connectivity structure, as manifested by the node degree-based

features as well as edge reciprocity, and are denser. The network density’s connection to team

performance is expected, as it has been reported in existing literature that better-performing

teams communicate more [28]. If we assume that the amount of communication is commen-

surate with the degree of team members’ cooperativeness, this result is not surprising, as coop-

eration is expected to facilitate better performance [13].

On the other hand, the positive relationship between the amount of collaboration and per-

formance is contrary to some existing works that focus on either usefulness or the cost of

intra-team communication. As one example, Kanawattanachai and Yoo [43] report that, in the

context of studying transactive memory systems, communication becomes less important with

time, when the group’s shared knowledge of each other—affecting efficient expertise location

inside the team—reaches a certain saturation point. In the study where our data is obtained

from, however, the team members were strangers, and operated on a much shorter time scale

(1 hour), which left not enough time for teams to reach the point where collaboration starts

having diminishing returns. As another example, Hansen [44] argues that the need for mainte-

nance of redundant links in knowledge networks can adversely impact performance outcomes

when the knowledge being tranferred throught the network is codified. In our case, however,

all the knowledge transferred during task completion is non-codified, and, according to Han-

sen, redundant links in such an environment should actually facilitate performance. As the

final example, Hollingshead [45] reports that the teams with less of a need to explicitly coordi-

nate—such as those in close relationship—perform better when they are not communicating,

whereas communication has a positive effect on performance for stranger teams. Teams in our

data composed of individuals who were not known to each other, and, thus, likely benefited

from high volume of communication.

While the positive connection between the amount of collaboration and the resulting team

performance is not so surprising, it is less obvious, however, why the well-connectedness and

structural uniformity of (a potentially sparse) network is connected to high performance, as

the tasks themselves do not impose any communication or collaboration uniformity require-

ments upon teams. One possible explanation is that a network’s well-connectedness character-

izes how fast a consensus can be reached in such a network, and the latter may contribute to
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the team’s better outcomes. Alternatively, the structural uniformity of a collaboration network

may help efficiently establish “joint intentions” [46], which formalize team members’ commit-

ments and responsibilities and, in turn, facilitate effective teamwork. Our formal analysis of

collaboration and its connection to team performance complements several related results in

existing literature. Losada [47] found that the connectivity of a team—as measured by the

cross-correlation of time series of “speech acts” of team members—is predictive of the team’s

performance. Stewart [12] mentions in his review of team performance factors that “high coor-

dination improves intra-team processes by opening communication channels, building feel-

ings of esprit de corps, and reducing social loafing.” Balkundi and Harrison [48] state that

“teams with densely configured interpersonal ties attain their goals better”. Finally, Engel et al.

[28] find that the standard deviation of the amount of communication by team members in

the process of task completion is positively connected to the team’s collective intelligence fac-

tor. In our work, we formalize and reinforce the claim about the positive effect of team “well-

connectedness” upon team performance through the precise analysis of collaboration net-

works and their metrics. Overall, our study of network-based models supports a conclusion

that in order to form a well-performing team, besides selecting socially apt individuals, one should
create a work environment that would promote team members’ efficiently communicating in a
reciprocated fashion, making sure that the structure of the communication network facilitates effi-
cient spread of processes—such as consensus formation—in this network.

Quality of the Predictive Models: Finally, our third finding is that relying on such team

features as those characterizing the team’s performance dynamics on early tasks and those

explicitly quantifying the process of collaboration happening inside teams through network-

level features results in higher-accuracy predictive models, with the prediction errors varying

between 15% and 25% (RMSEs varying between 0.15 and 0.25).

Applications: Additionally, we have studied our model relying on the dynamics of the

observed team performance in a practical application of optimal online planning of workload

in an organization. We have observed that the online workload distribution policy based on

our model augmented with an outlier control mechanism results in the highest cumulative

payoff for the organization, as compared to the policies obtaining predictions through extrapo-

lating the score series for each team individually.

Limitations: One limitation of our study, coming together with the primary data [28], is

the sample size—68 teams / 272 persons—which may be considered fairly small, especially, if

compared to the analyses performed at the level of an individual, rather than a team. However,

it is important to note that research on teams often involves greater challenges in data collec-

tion than research on individuals, due to the impact of individual partipants’ no-shows and

dropout on the entire team-level data. In addition, the data we used is adequate for the current

study for two reasons. First, despite the sample size being not large, findings from the primary

data replicated previous research on collective intelligence [29] and was replicated by subse-

quent research on the same topic [49]. This suggests that stability and replicability of study

findings were not compromised by sample size. In addition, the data is well suited for answer-

ing our main research question on dynamics of collaboration. Examining the latter requires

data on teams’ performance on multiple sequential tasks. The data used in this study provides

a sufficiently large number of tasks that were administered in a standardized fashion. Other

similar studies on collective intelligence, such as [50] and [51], include much fewer (3-5) tasks,

thus, making it hard to model collaboration dynamics reliably.

Future Work: There are a few questions that our study leaves open. First, we have yet to

establish the causal relationship between the collaboration dynamics and team performance.

More specifically, it is important to understand whether incentivizing particular collaboration

patterns would actually result in a higher team performance, or these patterns are just
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“symptoms” of high performance caused by some other factors, such as team members’ com-

patibility in psychological traits or social aptitude. Answering this question is an important

direction for future research.

In addition, how generalizable our findings are beyond the laboratory deserves further atten-

tion. One may argue that the tasks in our data are fairly simple compared to the type of tasks

workers encounter in the workplace, and question whether our models will be able to account

for dynamics in the “real” teams in organizations. The tasks used in this study [29] were not

designed to exactly mirror the tasks encountered in the workplace, but rather to capture an

underlying factor that leads teams to perform well. Thus, the tasks in the test battery are different

from the real-world tasks in the same way the tasks from the IQ test are different from the real

problems people tackle daily. Nonetheless, we can expect that the group performance on a

diverse group of “simple tasks” would transfer to that on other tasks, since, as in the case with

the IQ, “. . .the concept of measurable human intelligence is based on a fact that . . .[p]eople who

do well on one mental task tend to do well on most others, despite large variations in the tests’

contents and methods of administration” [29]. Indeed, the research on collective intelligence

found that collective intelligence measured using simple cognitive tasks predicted groups’ later

performance on more complicated tasks including building structures following strict building

codes [29] and playing online multiplayer games [49], which require multi-faceted, fast coordi-

nation among team members. Future research should examine whether the findings of this

study would still apply to teams that work on complex tasks over an extended period of time.

Finally, we encourage future research to consider an even wider range of tasks, including

tasks with high interdependence which would require high degree of coordination. The tasks

used in our experiments—described in S1 Text—do not have “hard” collaboration require-

ments, unlike, for example, the CRONUS tasks of [18]. We observed in our data that, despite

no formal collaboration requirements, self-organization happens among team members in

varying degrees. And the effect of collaboration varies across tasks. Fig 16 shows that density of

the collaboration networks is positively connected with team performance on memorizing,

detecting, and judgment tasks, yet, is negatively related to team performance on the text typing

task. The situation is similar with the mean edge reciprocity measure and the number typing

task. These observations seem to suggest that the amount of communication among team

members may not have substantial impact on simple execution tasks as long as team members

efficiently split the work and execute their respective assigned work chunks. Execution tasks

do require coordination, but perhaps at a more implicit level. Memorizing, detecting, and

judgment tasks, on the other hand, can greatly benefit from actively pooling together memo-

ries, points of view, and expertise of multiple performers. Overall, the tasks used in the primary

data are fairly simple. However, our findings suggest that collaboration dynamics and network

structures are important factors that contribute to strong team performance, even on fairly

simple tasks. With more complex, and highly interdepedent tasks, we think that understanding

of fine-grained dynamics of team collaboration will be even more important.

Supporting information

S1 Dataset. Dataset and description of the team features, task scores, and communication

logs used in analyses; correlation- and regression-related values obtained in the experi-

ments.

(ZIP)

S1 Text. Descriptions of the tasks.

(PDF)
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