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Abstract: The response to the high demand for decreasing the amount of CO2 in the atmosphere, a
new polyaminal-based polymer network was designed and successfully prepared through one-pot
polycondensation reaction of melamine and [2,2′-Bipyridine]-5,5′-dicarbaldehyde. The formation of
the polymer structure was confirmed by FT-IR, solid-state 13C NMR, and powder-X-ray diffraction.
The porous properties of the polymeric structure were confirmed by field-emission scanning electron
microscope and N2 adsorption–desorption methods at 77 K. The prepared polymer can take up
1.02 mmol/g and 0.71 mmol/g CO2 at 273 K and 298 K, respectively, despite its relatively modest
Brunauer–Emmett–Teller (BET) surface area (160.7 m2/g), due to the existence of superabundant
polar groups on the pore surfaces.

Keywords: polyaminal-linked polymers; melamine; CO2 uptake; Bipyridine

1. Introduction

Organic-based polymers such as porous organic polymers (POPs), covalent organic
frameworks (COFs), and metal-organic frameworks (MOFs) are an important class of
materials that paved the way for many applications such as carbon dioxide capture, hydro-
gen storage, adsorption of volatile organic compounds, heterogeneous catalysis, chemical
sensing, materials for batteries, light harvesting, and photoluminescence [1–7].

On the other hand, POPs have received far more attention from scientists than other
polymers owing to their efficiency in a variety of applications as well as their ease of
synthesis via one-pot condensation. Furthermore, POPs can be functionalized with various
moieties in order to tune their properties and enhance their efficiency [1–3].

Global warming mainly occurs when CO2 concentration increases abundantly in the
atmosphere. Scientists have long been dedicated to overcoming this issue by preparing
sorbent materials to decrease the concentration of CO2 [4,5]. In this regard, the polyaminal-
based POPs provide an efficient platform for CO2 capture and enhance the porosity param-
eters owing to their rich nitrogen system and facile synthesis pathways [7–11]. Exploiting
the benefit of the formation of a stable aminal-linked network, hence polyaminal adsorbents
have been extensively prepared through one-pot catalyst-free polycondensation between
aldehyde moieties and melamine [12–17]. Meng Rong and co-workers successfully syn-
thesized three triphenylamine-based polyaminal networks (TMPs) by polycondensation
of triphenylamine-based aldehydes with melamine. They explored that presence of more
formyl groups would increase the surface area and provide high porous materials [18].

Furthermore, the introduction of a polycyclic aromatic compound in the polymeric
structure could also increase the porosity and the efficiency of CO2 capture owing to their
rich electron conjugated systems. Accordingly, naphthalene-based polyaminal networks
(PAN-NA) were designed and explored their properties [18–20]. Alkayal et al. confirmed
that the effect of the introduction of α-naphthaldehyde to improve the efficiency of CO2
capture of PAN-NA was clearly noticed; uptake increased to 133 mg/g at 273 K and one bar.
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Furthermore, the adsorption behavior of PAN-NA for different metal cations such as Pb(II),
Cr(III), Cu(II), Cd(II), Ni(II), and Ba(II) was explored; an excellent adsorption selectivity
toward the Pb(II) cation was pronounced [21].

Inspired by the previous work [21], herein, we report the fabrication of porous organic
polymer based on melamine and [2,2′-Bipyridine]-5,5′-dicarbaldehyde via a one-pot con-
densation approach. The prepared polymer (Bipy-PAN) was characterized by utilizing
FT-IR, solid-state 13C NMR, powder-XRD, and SEM analysis. Porosity was examined using
surface (BET). The gases (CO2 and N2) uptakes are performed by the prepared polymer

2. Experimental Section
2.1. Materials

All experiments were carried out under an atmosphere of argon. [2,2′-Bipyridine]-
5,5′-dicarbaldehyde was purchased from ShanghaiSunchemlnc, and melamine (97.5%)
and Dimethyl sulfoxide (DMSO 99%) were purchased from BDH laboratory reagents.
Tetrahydrofuran (THF ≥ 99.5%) and dichloromethane (≥99.8%) were purchased from
Fisher chemicals, as well as acetone (99.5%). All other materials were purchased from
commercial sources and used without further purification.

2.2. Synthesis of Porous Organic Polymers Based on Melamine and
[2,2′-Bipyridine]-5,5′-Dicarbaldehyde

A dry three-necked flask equipped with a stirrer and a condenser was degassed
using one evacuation-argon-backfill cycles. The flask was evacuated first using vacuum.
Under argon flow, melamine (0.5 g, 3.96 mmol), [2,2′-Bipyridine]-5,5′-dicarbaldehyde (0.7 g,
5.94 mmol) and 30 mL DMSO were added and heated at 175 ◦C for 72 h. The system
was cooled down, and the solid was isolated and washed successively with 30 mL of
dimethyl formamide, dichloromethane, and acetone. The resulting white solid was dried
in a vacuum at 60 ◦C for 3 h to afford a yield of 85%.

2.3. Instrumentation

NMR spectra were recorded on a Varian Inova 400 or Inova 600 MHz NMR spectrom-
eter using C6D6 or THF-d8 as the solvent. The NMR standards used are as follows: 1H
NMR spectra were referenced to residual C6D5H (7.15 ppm) or THF-d7H (3.58 ppm); 13C
NMR spectra were referenced to the central transition of C6D6 (128.00 ppm). FT-IR spectra
were recorded as thin films using a Bruker Tensor 27 Spectrometer (resolution of 4 cm−1).
Thermogravimetric analysis (TGA) was carried out on a TG-DTA6300 (Shimadzu, Kyoto,
Japan) with a 10 ◦C min−1 heating rate in an interval of 25–500 ◦C under N2 atmosphere.
X-ray diffraction (XRD) patterns were studied using a Bruker D8 Advance with Cu Kα

radiation (wavelength 1.5418 Å) at 40 kV and 40 mA. The patterns were collected between
2θ of 10◦ and 60◦, and the scan speed was 1.5 degree/min. N2 adsorption–desorption mea-
surements were conducted on a Micromeritics 3 Flex 3500. The Brunauer–Emmett–Teller
(BET) and Langmuir methods were conducted to measure the surface area of the material.
The t-plot was used to approximate the micropore surface area. Before analysis, the sample
was degassed by heating at 120 ◦C for 12 h under vacuum.

3. Result and Discussion
Synthesis and Characterisation

The polyaminal polymer was synthesized using a one-step polycondensation reaction
of melamine with 2,2′-Bipyridine]-5,5′-dicarbaldehyde at 175 ◦C in an inert atmosphere as
depicted in Scheme 1.
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Scheme 1. Synthetic route for the preparation of bipyridine-based polyaminal network (Bipy-PAN). 
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the FT-IR spectrum (indicated in the blue line in Figure 1.). The broad adsorption band at 
3300 cm−1 in the FT-IR spectrum was assigned to the secondary amine (N–H) of the aminal 
moiety. Stretching vibrations of pure melamine (indicated in black) at 3470, 3420, and 1650 
cm−1 for –NH2 stretching and –NH2 in the melamine unit, disappeared upon the reaction 
of [2,2’-Bipyridine]-5,5’-dicarbaldehyde with melamine forming Bipy-PAN. Stretching vi-
brations of pure [2,2’-Bipyridine]-5,5’-dicarbaldehyde (indicated in red) at 1610 cm−1 as-
signed to the CHO disappeared upon the formation of Bipy-PAN. The aminal moiety is 
also confirmed by the characteristic bands at 1340 cm−1 assigned to the (CN) group. The 
characteristic adsorptions of triazine rings are observed at 1510 and 1490 cm−1 [21], which 
confirms the existence of a melamine ring in the polymer. Moreover, the lack of azome-
thine C=N stretching resonance around 1600 cm−1 confirms the formation of an aminal 
bond in the provided reaction condition.  

 
Figure 1. FT-IR spectra of melamine, pyridine dialdehyde and BiPy-PAN. 

Scheme 1. Synthetic route for the preparation of bipyridine-based polyaminal network (Bipy-PAN).

The successful formation of a cross-linked polyaminal network was confirmed using
the FT-IR spectrum (indicated in the blue line in Figure 1.). The broad adsorption band at
3300 cm−1 in the FT-IR spectrum was assigned to the secondary amine (N–H) of the aminal
moiety. Stretching vibrations of pure melamine (indicated in black) at 3470, 3420, and
1650 cm−1 for –NH2 stretching and –NH2 in the melamine unit, disappeared upon the reac-
tion of [2,2′-Bipyridine]-5,5′-dicarbaldehyde with melamine forming Bipy-PAN. Stretching
vibrations of pure [2,2′-Bipyridine]-5,5′-dicarbaldehyde (indicated in red) at 1610 cm−1

assigned to the CHO disappeared upon the formation of Bipy-PAN. The aminal moiety is
also confirmed by the characteristic bands at 1340 cm−1 assigned to the (CN) group. The
characteristic adsorptions of triazine rings are observed at 1510 and 1490 cm−1 [21], which
confirms the existence of a melamine ring in the polymer. Moreover, the lack of azomethine
C=N stretching resonance around 1600 cm−1 confirms the formation of an aminal bond in
the provided reaction condition.
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To further confirm the structures, the solid-state 13C CP/MAS NMR measurements
were recorded (Figure 2). The strong signal at 165.9 ppm was assigned to carbons in the
triazine rings. A signal at 156 ppm was assigned for the triazine ring carbons of the second
ring, as each methylene group is attached to two melamine rings, and each one experiences
a different environment depending on cross-linking. The broad signal at 55.4 ppm was
assigned to the methylene group in aminal linkages. Our results agree with the observed
signal for the PAN-NA polymer, where signals of triazine ring were observed at 166 ppm,
and a signal at 53.9 ppm was assigned to the methylene group in aminal linkages [21].

Polymers 2022, 14, 3746 4 of 9 
 

 

To further confirm the structures, the solid-state 13C CP/MAS NMR measurements 
were recorded (Figure 2). The strong signal at 165.9 ppm was assigned to carbons in the 
triazine rings. A signal at 156 ppm was assigned for the triazine ring carbons of the second 
ring, as each methylene group is attached to two melamine rings, and each one experi-
ences a different environment depending on cross-linking. The broad signal at 55.4 ppm 
was assigned to the methylene group in aminal linkages. Our results agree with the ob-
served signal for the PAN-NA polymer, where signals of triazine ring were observed at 
166 ppm, and a signal at 53.9 ppm was assigned to the methylene group in aminal linkages 
[21]. 

 
Figure 2. 13C NMR spectrum of BiPy-PAN (*) peak arising from spinning sidebands. 

For structural investigation, Figures 3 and S1 show the XRD signals of BiPy-PAN and 
for the starting materials, melamine and [2,2’-Bipyridine]-5,5’-dicarbaldehyde, respec-
tively. The crystallinity of the starting materials are revealed by the unique diffraction 
peaks in Figure S1, where melamine has scattering angles of 2θ = 13°, 15°, 22°, 26°, 27°, 
28.9°, 30°, 34.8°, 35.9°, and 39° and [2,2’-Bipyridine]-5,5’-dicarbaldehyde has diffraction 
peaks at 2θ = 5°, 15°, 17°, 17.5°, 19°, 22°, 24°, 25°, 27.5°, and 32.3°. All sharp peaks can be 
regarded to be high crystallinity nature. Figure 3 displays only broad and wide diffraction 
peaks located at 2θ of 20° are found for BiPy-PAN, suggesting to their amorphous nature. 
The lack of any sharp peaks in Figure 3 indicates that all starting materials have been 
reacted. 

Figure 2. 13C NMR spectrum of BiPy-PAN (*) peak arising from spinning sidebands.

For structural investigation, Figure 3 and Figure S1 show the XRD signals of BiPy-
PAN and for the starting materials, melamine and [2,2′-Bipyridine]-5,5′-dicarbaldehyde,
respectively. The crystallinity of the starting materials are revealed by the unique diffraction
peaks in Figure S1, where melamine has scattering angles of 2θ = 13◦, 15◦, 22◦, 26◦, 27◦, 28.9◦,
30◦, 34.8◦, 35.9◦, and 39◦ and [2,2′-Bipyridine]-5,5′-dicarbaldehyde has diffraction peaks at
2θ = 5◦, 15◦, 17◦, 17.5◦, 19◦, 22◦, 24◦, 25◦, 27.5◦, and 32.3◦. All sharp peaks can be regarded
to be high crystallinity nature. Figure 3 displays only broad and wide diffraction peaks
located at 2θ of 20◦ are found for BiPy-PAN, suggesting to their amorphous nature. The
lack of any sharp peaks in Figure 3 indicates that all starting materials have been reacted.

The surface morphology of the polyaminal polymer (Bipy-PAN) was investigated
using SEM. Figure 4 shows agglomerated particles (cotton-like structures) as observed
previously for some of the polyaminal polymers [7,22].

The thermal stability of Bipy-PAN material was investigated by TGA analysis, and
the obtained Thermogram is presented in Figure 5. The first weight loss (9%) was around
125 ◦C, which is assigned to the weight loss of the solvent. The main weight loss started at
a temperature over 355 ◦C due to the breakdown of the network, and the burning began
gradually above 410 ◦C. Therefore, Bipy-PAN is more stable up to 355 ◦C.
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Nitrogen sorption studies at 77 K (Figure 6) exhibit a typical type IV isotherm with a
small H4 hysteresis loop, implying a solely mesoporous structure. The Brunauer–Emmett–
Teller (BET) surface area is evaluated to be 160.7076 m2/g (Figure S2), and the t-plot external
surface area is 153.2645 m2/g. The small difference between BET and t-plot surface areas of
Bipy-PAN suggests that these specimens almost have 7.4431 m2/g microporous channels.
The pore size of Bipy-PAN calculated by the Barrett–Joyner–Halenda method (BJH) shows
that Bipy-PAN has major peaks centered at ~53 nm with a significantly broader distribution
(Figure S3), and the total pore volume of pores less than 37 nm at p/p◦ = 0.94 is 0.31 cm3/g.
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The CO2 adsorption performance of Bipy-PAN is assessed by CO2 isotherms at 273 K
and 298 K, where both are measured up to one bar (Figure 7). It is observed that the CO2
uptakes of Bipy-PAN are ranged 0.1002–1.016 mmol/g at 273 K and 0.0363–0.7132 mmol/g
at 298 K. Remarkably, the CO2 uptake of Bipy-PAN at 273 K is much higher than that at
298 K, implying an exothermic physical adsorption process. The great affinity to capture
CO2 in both temperatures is attributed to the relatively high BET surface area and the
abundance of nitrogen in the Bipy-PAN skeleton. It is noticeable that the CO2 adsorption
of Bipy-PAN is comparable to or relatively superior to some other melamine-based POPs
reported in the literature (Table 1) [23–25]. Since the flue gas contains 3–15% CO2 at a
total pressure of ~1 bar, the CO2 adsorption of Bipy-PAN at ~0.15 bar is more relevant to
practical CO2 uptake [26]. At 0.15 bar and 273 K, Bipy-PAN adsorbs ~0.4002 mmol/g CO2,
remaining higher than that at the same low pressure and 298 K (0.2462 mmol/g).
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Table 1. The SBET surface area and the CO2 uptake of various melamine-based POPs.

SBET (m2/g)
CO2 Uptake (mmol/g)

Ref.
273 K 298 K

PA-1 84.5 0.134 0.09 [24]
PA-2 22 0.086 0.054 [24]

PTPA-0.5 157 0.53 0.32 [25]
PTPA-1 230 0.96 0.67 [25]
PTPA-2 215 1.03 0.73 [25]

Bipy-PAN 160.7 1.02 0.71 This work

4. Conclusions

A new polyaminal-based porous polymeric network from melamine and 2,2′-
Bipyridine-5,5′-dicarbaldehyde was synthesized by one-pot polycondensation. The struc-
ture and porous properties of the novel prepared polymer Bipy-PAN were investigated.
The gas sorption experiments indicate that the synthesized polymer has a high CO2 storage
capacity due to the presence of numerous polar groups distributed through its network.
Bipy-PAN, with a Brunauer–Emmett–Teller (BET) surface area of about 160.7 m2/g, can
uptake 1.02 mmol/g and 0.71 mmol/g CO2 at 273 K and 298 K, respectively, which makes
this polymer a promising gas adsorbent candidate for environmental applications, such as
gas storage or separation and catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14183746/s1. Figure S1. XRD pattern of [2,2′-Bipyridine]-
5,5′-dicarbaldehyde and melamine. Figure S2. BET plots of Bipy-PAN obtained from N2 isotherms at
77 K. Figure S3. Pore size distribution in Bipy-PAN, as determined by BJH analysis.
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