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Improvements in quantitative measurements of human physical activity are proving

extraordinarily useful for studying the underlying musculoskeletal system. Dynamic

models of human movement support clinical efforts to analyze, rehabilitate injuries. They

are also used in biomechanics to understand and diagnose motor pathologies, find new

motor strategies that decrease the risk of injury, and predict potential problems from

a particular procedure. In addition, they provide valuable constraints for understanding

neural circuits. This paper describes a physics-based movement analysis method for

analyzing and simulating bipedal humanoid movements. The model includes the major

body segments and joints to report human movements’ energetic components. Its

48 degrees of freedom strike a balance between very detailed models that include

muscle models and straightforward two-dimensional models. It has sufficient accuracy

to analyze and synthesize movements captured in real-time interactive applications, such

as psychophysics experiments using virtual reality or human-in-the-loop teleoperation of

a simulated robotic system. The dynamic model is fast and robust while still providing

results sufficiently accurate to be used to animate a humanoid character. It can also

estimate internal joint forces used during a movement to create effort-contingent

stimuli and support controlled experiments to measure the dynamics generating human

behaviors systematically. The paper describes the innovative features that allow the

model to integrate its dynamic equations accurately and illustrates its performance and

accuracy with demonstrations. The model has a two-foot stance ability, capable of

generating results comparable with an experiment done with subjects, and illustrates the

uncontrolled manifold concept. Additionally, the model’s facility to capture large energetic

databases opens new possibilities for theorizing as to human movement function. The

model is freely available.

Keywords: dynamic modeling, motor control, kinematic representation, movement costs, human movement

simulation

1. INTRODUCTION

The complexity of human motion was first dramatically captured via the Muybridge high-speed
photographs (Muybridge, 1887; Andriacchi and Alexander, 2000; Wolpert and Landy, 2012)
which spawned several different analysis techniques in different disciplines. Visualization first
used keyframing techniques, but later sophisticated models were used in advanced rendering
for computer graphics (e.g., Zordan and Hodgins, 2002). The early cognitive analyses of
human behavior (Badler et al., 1993) focused on human motion in problem-solving, using an
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essentially logical approach. In robotics, insights have been
obtained by building physical systems directly (Ijspeert et al.,
2007) that straddle the boundary between humans and robotics
that have shed light on human design. However, these efforts are
characteristically specialized. In another development, machine
learning techniques have been introduced for use in analyzing
animal-like motion (Schulman et al., 2016).

At the neural level, the brain’s control of movement utilizes an
array of specialized subsystems. One is the vast cortical memory
of movement plans. Others are the sequencing via the Basal
Ganglia andmediation of input and output via the Thalamus. The
details of how they coordinate (Callahan et al., 2013) are being
continually worked out, but there are many open problems (Loeb
and Tsianos, 2015). Given this incompleteness, a research choice
can be to search for descriptions at more abstract levels.

Since movements have to respect the dynamics of the
musculoskeletal system, one approach is to take these systems
for granted and start with measurements of motion and work
backward. However, modeling all the complexity of the human
musculoskeletal system can be challenging, with over 300
degrees of freedom and 650 muscles controlling a complex
interconnected skeletal system. Nonetheless, there are many
modeling approaches with a dynamics focus, which can be
introduced approximately chronologically.

A straightforward approach is to build a humanoid dynamic
model. This method is a valuable way to imitate human
movements, and it is widely used in biomedical engineering
due to its compliance with real-world physical rules. However,
it is not without limitations: (1) it is too difficult to model
and control a complex system like the whole human body.
(2) it is complicated to represent “kinematic loops,” such as
postures with both feet on the ground. (3) for large systems,
the equations of motion in nested, rotating reference frames
become very complex, making them demanding to approximate
well. As a result, due to the complexity of the direct modeling
method for large complex systems, the significant portion of the
studies choose the simplification of two-dimensional models that
constrain body motions to the sagittal plane.

For example, some studies build a two-dimensional dynamic
bipedal robot by modeling the whole body with a skeleton of
rigid segments connected with joints. However, those method’s
simplifications to human bodies limit studies to simple single-
behavior human movements. The simplest bipedal robot uses
three links to represent the torso and two legs in the sagittal
plane (Lee, 1988; Čelikovskỳ and Anderle, 2018). Nonetheless,
there have some extensions. Five-link biped robots use two links
to represent each leg (Mu andWu, 2003, 2004; Krishchenko et al.,
2007), and seven-link biped robots further extend it by adding
feet (Mousavi and Bagheri, 2007; Bajrami and Murturi, 2017).
Furthermore, those methods also make many assumptions in
studying locomotion. For example, most researchers assume an
instantaneous exchange of biped support occurs when the swing
leg contacts the ground. In this way, as robot manipulators, the
biped foot support can be considered a successive open loop of
kinematic chain from the support point to the free ends. There
have been some recent three-dimensional model improvements
to the two-dimensional biped robot models (Grizzle et al., 2010;

Khusainov et al., 2016; Bailly et al., 2021). However, they are still
not sophisticated compared with a real human body.

To get beyond the disadvantages of these simple models,
a major way forward is to incorporate more detailed
musculoskeletal models (Durandau et al., 2017; Lee et al.,
2019). Among them, the most advanced and sophisticated one
is OpenSim (Delp et al., 2007; Seth et al., 2011; Rajagopal et al.,
2016; Dembia et al., 2020), which allows modeling large systems
including detail to the level of attached muscles. OpenSim
is a significant advance by providing a modeling level that
includes muscle contractions, which are essential in shaping
movement dynamics. However, this level works best in fitting
contraction data. It can be challenging to solve desired muscle
co-contractions from a movement kinematic plan because those
equations are non-linear and normally under-constrained.

To avoid this complexity, many studies that need such
generating capability choose to eschew muscle components and
focus on simpler dynamic models at the level of inertias and
joint torques and model abstract versions of the human system
that still use multiple degrees of freedom but summarize detailed
dynamics via joint torques. For example, co-contraction can
use a simple Hill model (Blümel et al., 2012). These alternative
methods of dynamics computation of such multi-jointed systems
have also experienced significant advances (OpenSim can also be
used in this way). The foremost of these is to use a kinematic
plan to integrate the dynamic equations directly. Several dynamic
libraries were designed for this purpose, such as MuJoCo1,
Bullet2, Havok3, Open Dynamic Engine(ODE)4, and PhysX5. An
evaluation of these dynamic libraries by Erez et al. (2015) found
them roughly comparable in capability. However, the focus of
these systems is on a physics engine with the expectation that the
users will program their own applications.

In contrast to previous studies, our Human Dynamic
Model (HDM) system is a complete model that is readily
available 6,7. It is built on top of the physics engine ODE,
the most commonly used dynamic library in the robotic area.
Our 48 degree-of-freedom HDM focuses on individual human
movement modeling and applies a direct dynamics integration
method (Cooper and Ballard, 2012; Johnson and Ballard, 2014)
to extract torques frommotion data using a novel unifying spring
constraint formalism.

One of the advantages of the HDM system is that the
simulation’s costs can be recovered. At each frame, the
instantaneous power is computed from the net joint torque
and joint angular velocity. The work performed at each joint is
determined by numerically integrating the instantaneous powers
over the entire tracing task. In this way, given motion capture
data, we can compute the mechanical cost without building a
humanoid biped robot with motion equations. Note that it is
common to use mechanical measures of work to indicate cost

1MuJoCo, http://www.mujoco.org/
2Bullet, https://pybullet.org/
3Havok, https://www.havok.com/
4OpenDE, http://www.ode.org/
5PhysX, https://developer.nvidia.com/gameworks-physx-overview
6HDM, https://github.com/EmbodiedCognition/HDM_UI
7HDMDemo, https://youtu.be/ASs4Wo5PQcM
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instead of metabolic energy consumption (Burdett et al., 1983).
The “energetic cost” mentioned in the following sections means
the mechanical cost.

The focus of the paper is to describe the HDM simulator as
a practical laboratory instrument and detailed demonstrations
that illustrate the model’s capabilities. The paper is organized
as follows: first, the methods section starts with an introduction
to the model topology and then elaborates on the use of the
motion markers to capture the model’s joint torques, which
allows the estimation of energetic costs. Next, the results section
describes several tests taken to measure the performance of
the HDM system. After that, the discussion section highlights
the features and issues of the HDM and points out one of
the potential applications of the model, which is its use to
capture large amounts of analyzed movement data. Finally, the
Supplementary Material includes two appendices that represent
the essential low-level implementation of the model, which is the
integration steps of the dynamics equations.

2. METHODS—MODEL DESIGN AND
OPERATION

This section provides a comprehensive exposition of building
the human dynamic model from high level. Low level details
of building the HDM and the derivation of the mathematics
underlying the physics simulation are presented separately in
the Appendix.

2.1. Body Structural Details
Our techniques use a simulated model of the human whose
movement is analyzed. The first order of business is to build
a physical model capable of representing human movements,
of which the accuracy influences the outcome of the analysis.
Figure 1 shows the body segments and topology of the model.
The humanoid model is a collection of rigid bodies connected by
joints. Each joint connects two rigid bodies with anchor points
(center of rotation), defined in the reference frame of both bodies.
The body dimensions (bone lengths) of the character model were
determined based on motion capture data.

2.2. Data Fitting
The technique for fitting a human model to motion capture
data begins with a character model that serves as a template,
Figure 1 presenting the number of body segments and topology
of the model. We further assign all labeled markers used in
motion capture to specific model segments. It is straightforward
to derive these using techniques such as in Kirk et al. (2005) and
De Aguiar et al. (2006). However, manually assigning markers is
also not complicated because the motion capture suit typically
puts markers on the same body segments (Figure 2), even if
they are in slightly different places or the body segments have
different dimensions.

We present a method in S2 Appendix section, for using
marker data to help determine the dimensions of the model
segments and where markers attach to the model. Although
this method could easily be automated, in practice, the research
did not rely on very many different models, so the system uses

a mechanism for relaxing the marker attachment points and
joint anchors with the click of a button in the graphical user
interface (Figure 5). With a new data set, a handful of iterations
proved sufficient to produce a reasonable model with marker
attachments that fit the data well enough for further analysis. This
algorithm does not address joint limits on a range of motion.
These can also be learned (Tournier et al., 2009), but in our
case, the range of motion for each joint is set a priori. After
determining segment lengths, we set other segment dimensions
as appropriate to fit against the markers. Mass properties for each
segment assume uniform density by volume.

Given motion capture data of a subject, the model is fit to the
subject’s dimensions, and joint-range-of-motion is constrained
to approximate the subject’s flexibility. Additionally, the model
segments have inertial matrix properties. The initial mass
assignment to each segment assumes a uniform density of water

(1, 000
kg

m3 ) for the volume associated with each rigid body. The
mass assignment should be modified to match that of a specific
subject roughly. The increased fidelity required for individual
subjects in clinical biomechanics research would employ more
sophisticated techniques to better approximate mass distribution
in the model. However, interestingly the experimental results
discussed above show that even this low fidelity model is
sufficient to produce high-quality data that compares favorably
with data gathered from independent sensors.

2.3. Pose Fitting
Having addressed the issues in attaching the model to motion
capture data, we turn to the construction of its capability of
representing human movements. Various commercial packages
provide different methods for converting marker trajectories
into sequences of body poses, but they can be time-consuming,
expensive, or difficult to use. This section describes an approach
related to Demircan et al. (2008) and Zordan and Van Der Horst
(2003) that is free, fast, uses intuitive parameters, and allows the
user to fit markers to whatever model they wish.

The method uses the physics engine to constrain a character
model to fit marker data and other constraints. Markers are
modeled as infinitely massed points attached to the character
model. Given a frame of marker data, the position and
orientation of all body segments can be found by balancing
internal joint targets and external marker data. From the global
position and orientation of the different body segments, it
becomes simple to compute relative orientations (joint angles).

The internal degrees of freedom are limited by the range
of motion constraints, e.g., the elbows and knees cannot
bend backward. All other joints have similar range-of-motion
limitations based on the subject’s flexibility. Furthermore, each
joint is set to have a “target state,” a preferred relative orientation
between its connected bodies. These preferences can be thought
of as “muscle stiffnesses” and are modeled as weak constraints
with limited force. Joint limits and stiffness serve as a prior over
possible poses so that in the absence of any marker data, the
model still takes on a pose. Consequently, every internal degree
of freedom is constrained to some degree. These constraints hold
the model together and give it a default pose. Next, in a pivotal
step shown in Figure 3, marker data pull the model from the
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FIGURE 1 | The 48 degree of freedom model. (A) The skeleton of a character model: 21 body segments connected by 20 joints. (B) A summary of the joints used in

the model. c., chiral: there are two of each of these joints (left and right). Four ball-and-socket joints connect five body-segments along the spine from the head to the

waist. Ball-and-socket joints are also used at the collar-bone, shoulder, and hip. Universal joints are used at the elbows, wrists, knees, and ankles. Hinge joints

connect the toes to the heels. All joints limit the range of motion to angles plausible for human movement. Our model assumes that joint DOFs summarize the effects

of component muscles.

FIGURE 2 | Marker arrangement on the HDM. The suit contains 51 markers as shown by the LEDs in total but only 41 are used in the model, e.g., Markers that are

unused are present on the fingers. Markers can easily assigned to specific model segments. For example, the markers of RBHD, RFHD, LFHD, and LBHD are

assigned to Head segment while the markers of RBWT, RFWT, LFWT, and LBWT belong to Pelvis segment.

default pose into a new pose. Each marker is connected to a
body segment using a ball-and-socket joint constraint for a given
frame of motion capture data. A total of 41 markers, which do
not contribute any degrees of freedom because of their infinite
mass, attach to the character model, adding additional 3 × 41 =

123 constraints.
Finally, collisions between the ground and the feet also

influence the model pose. Each foot can form up to three contact
points with the ground. Inequality constraints at these points

prevent penetration with the ground. When both feet are firmly
on the ground, all markers are actively pulling the body into a
pose, all joints are holding the body together, and joint limits and
stiffness are biasing the relative orientation of the bodies. The
experiments described above show that the model can simulate
the ground force correctly.

This approach is intuitive: attach markers to the model with
springs and drag the body along. The parameter, tunable for
each constraint, known in ODE as the constraint force mixing
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FIGURE 3 | Pose fitting. Initially, the motion capture data points are in a very different configuration than the initial stance of the model. To find the appropriate

correspondences, simulated markers attach to the humanoid model through ball-and-socket joints and pull the body parts into place, subject to model joint

constraints. The left to right sequence in the figure shows the body targets being gradually reconciled with the external markers.

parameter (CFM)8, allows a constraint to slip proportional to
the amount of force required to maintain the constraint. We
use a CFM value of 1 × 10−5 for the regular internal body
joints and contact constraints while using 1 × 10−4 for the
constraints between markers and body parts. Both of these values
represent very stiff springs, although they are different by order
of magnitude. This stiffness stabilizes the simulation by allowing
the markers to stretch slightly from their mapped locations if the
marker constraints are not compatible with the character model.
Figure 3 shows that when the markers move, the constraints drag
the character along with them.

2.4. Inverse Dynamics
It can be useful to know the torques to apply at each joint or
the required effort to accomplish a particular movement. Given
a kinematic sequence of body poses, the physics engine ODE can
archive the computation with minimal effort. Given constraints
like each joint’s angular velocity, it can correctly compute the
desired torques/forces measurements.

The process is straightforward. Given the current joint angle
and the desired joint angle for the next frame, the body parts’
relative angular velocity is constrained to achieve the target
orientation on the next frame. Contact constraints are necessary
to prevent ground surface penetration as well. The ODE physics
library handles the constraints and solves the torques and forces
that satisfy each constraint in the process.

8ODE CFM http://www.ode.org/ode-latest-userguide.html#sec_3_8_0

For computing inverse dynamics, the first step is to initialize
the model to a starting dynamic state. The initial state can
be found from the first and second frames of kinematic pose
data. The model pose is set by using the second frame of
data, and the initial linear and angular velocity of each joint is
computed by taking the finite difference between the two frames
(and dividing by the time-step). Computing velocity through
finite differences is appropriate for a physics engine using first-
order semi-implicit Euler integration. After that, continuously
find the torques between two consecutive frames of pose data
using the finite difference between poses to compute angular
velocities that will move the model from the current to the
next pose.

Differentiating again, this time between the current and future
velocity gives a target acceleration that constraints the model.
The primary difference between this step and the previously
discussed method for finding pose from marker data is that
no marker constraints are dragging the body into place. The
internal dynamic constraints drive the model toward a target
pose on each frame instead of toward a “default” pose. Because
there are fewer constraints in play, stiffer muscle forces are used,
but the absolute forces the muscles can apply are limited to
prevent muscle forces from being unreasonably large. Again,
we can use the relative spring stiffness to express confidence in
the measurements in this case. We use very stiff springs (CFM
= 10−10) to keep the model segments together. We use looser
constraints to keep the feet from penetrating the ground (CFM
= 10−5) and to constrain the model to adopt the appropriate
pose (CFM= 10−8).
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FIGURE 4 | Model capability illustration. A complex jump sequence reproduced with physics-engine-based inverse dynamics using recorded motion capture data

from a human subject. The recreated jump height is achieved completely from ground forces, augmented with small residual torques (≤ 100 Nm), allowing the model

to maintain balance.

FIGURE 5 | Relevant parameters for analyzing and simulating physically-based movements must be tuned manually. Parameters of the model consist of physical

world parameters, joints constraints, and the model’s body-marker relative positions. In this depiction shows how users can get the current HMD configurations by

clicking the buttons on the rightmost vertical menu. “Marker” is selected, meaning the marker information is shown: (1) The first column represents marker index

buttons. Buttons in blue means the corresponding markers are attached to the HDM. Users can attach/detach markers by clicking index buttons. (2) The second

column shows body segments where markers are attached. Each spin box is a collective item of all body segment names. Users can use it to change the

body-marker attachment relationship. (3) The three-five columns present the marker-body relative positions. Users can modify the values directly using this interface.

(4) The “Connect” button and “Release” button on the top are to attach or detach all the markers, respectively. The “Update Anchor” button automatically updates the

marker-body relative positions based on the current motion posture.

2.4.1. Residual Torques/Forces
The torque calculation by the HDM is ideal in the sense of
solving the inverse dynamic equations. The inverse dynamics
uses measured kinematics and external forces to calculate net
joint torques in a rigid body-linked segmentmodel (van der Kooij

et al., 2005). However, discrepancies between the dynamic forces
of the model and the kinematic of the reality make it so that the
dynamic model falls over unless action is taken to stabilize it.
Therefore, there needs a corrective system for unexpected errors
in practice. In the human system, there are multiple corrective
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systems based on vision, proprioception, and the vestibular
system. Such corrective systems have been extensively studied
(e.g., van der Kooij et al., 2005; Sentis et al., 2010;Welch and Ting,
2014).

In classical inverse dynamic areas, a common way to
compensate for this problem is by introducing “residual forces
and torques” (van der Kooij et al., 2005). In the HDM, a 6
degree of freedom joint between the waist segment and the
global frame generates the external forces. A weak, limited spring
constrains the waist segment to achieve its recorded pose relative
to the global frame. The experiments show that attaching the
external constraint to the head or the feet has little noticeable
difference. The non-realistic external forces (residuals) account
for noise as well as discrepancies between the model and the
human generating the data. In particular, differences in how
the feet interact with the ground cause errors in our analysis.
In most cases, it is only necessary to constrain two of the six
angular degrees of freedom (pitch and roll), leaving the other four
external degrees of freedomdisabled. The two angular constraints
keep the body from falling over but allow it to move about
through simulated ground interactions.

The stabilization system completes the model. It can be
implemented in parallel, with the control used to stabilize the
residual necessary to balance. With this included, The simulation
can reproduce highly dynamic motions (e.g., see Figure 4),
which shows a jumping sequence made originally by a human
subject and recreated using the torques computed by the inverse
dynamics model.

2.5. Method Summary
We construct a dynamic model for each human subject and force
themodel to follow the subject’s motion capture data, which leads
directly to the recovery of joint angles. Our algorithm constrains
the dynamic model to track these angles and consequently can
estimate the correct joint torques. This concept was originally
demonstrated in two dimensions for human walking by Faure
et al. (1997). We have extended the method to the significantly
more demanding case of 48 DOFs in three dimensions and
arbitrary posture changes. Figure 1 lists the body segments. The
dimensions of each segment are matched those of an individual
subject. The principal difficulty is that the constraints in the
high DOF 3D model present many delicate numerical issues for
the ODE solver that need to be addressed (Cooper and Ballard,
2012). Currently, the dynamic model does not attempt to model
stiffness components, with the consequence that it can only
directly recover the net torques at each DOF.

The calculation of mass properties is crucial for simulating
rigid body collisions. Mass and inertial are computed using the

volume of the body parts with a constant density of 1, 000
Kg

m3 .
The articulations are designed to allow the dynamic model to
simulate the majority of human movements. For instance, elbow
joints have two DOFs to represent the hinge movements of the
elbow as well as the twisting movements of the radius and ulna
bones in the arm. Joint angles are also limited to avoid impossible
movements, such as reverse bending of the elbows or knees.

For data capture, a subject wears the motion capture suit
developed by PhaseSpace. Each LED marker on the suit is

mapped to a corresponding point on the model. The markers
are then introduced into the physics simulation as kinematic
bodies without collision geometry. As a heuristic, each marker
is considered infinite mass. Thus, when another dynamic body is
attached to the marker through a joint constraint, the dynamic
body’s trajectory will follow the marker’s trajectory completely.

The PhaseSpace motion capture system records 3-dimension
positions of specific human body locations over time. When
the simulation steps forward, the constraint solver adapts
the dynamic model to a state that satisfies the internal joint
constraints, the external marker constraints, and other
constraints such as ground forces and conservation of
momentum. Knowing the kinematics allows the recovery
of the dynamics since the joint velocities allow the equations
of motion to be inverted. The retrieved forces can be used to
generate feed-forward torque profiles for actuating the character.

Utilizing the human dynamic model to analyze human
movements includes the following five steps:

1. Motion synthesis step: it represents humanmotion in terms of
motion capture data.

2. Inverse kinematics step: the ODE built-in functions are called
to compute the joint angular velocities and joint angles at
each frame.

3. Forward kinematics step: human motions are simulated based
on the joint angles and angular velocities acquired from
the previous step. This step is to check the correctness of
recovered kinematic properties.

4. Inverse dynamics step: ODE built-in functions are called to
calculate the required joint torques.

5. Forward dynamics step: human motions are simulated based
on the computed torques and residual forces. This step is to
check the recovered dynamic properties against the original
motions.

At each frame, instantaneous power was computed from the
product of net joint torque and joint angular velocity. The
work performed at each joint was determined by numerically
integrating the instantaneous powers over the entire tracing task.
In this way, the energy cost of human motions can be computed
given motion capture data. The overall idea behind the method
for calculating joint torques/angles is straightforward using our
implementation in ODE. The mathematics underlying the rigid
body simulation software used in our work is explained in the
Appendix section.

3. RESULTS—HDM BASIC CAPABILITIES

The HDM is a fast, robust, intuitive, and inexpensive multi-
purpose tool for simulating, analyzing, and synthesizing
humanoid movement. Figure 5 shows a frame of tracing
movements collected from the virtual reality experiment (Liu
et al., 2019). Users can specify the configurations of the human
dynamic model via a multi-purpose graphical interface9 for
analyzing movement data captured through interaction with the
virtual environment. With this tool, it is possible to manually fit

9HDMUI Demo, https://youtu.be/ASs4Wo5PQcM
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FIGURE 6 | Model noise sensitivity. The errors of joint angles and internal torques, resulting from physics-based inverse kinematics and inverse dynamics, are used to

analyze perturbed marker data. We repeated the process twenty times for each noise level at nine different standard deviations. Standard-deviations, in mm, were

(0.1, 0.5, 1, 2, 4, 8, 16, 32, 64). Error bars show the standard error of the mean. (A) The accuracy of the PhaseSpace motion capture device is ∼5 mm over its 3 × 6

m workspace, resulting in an average angular error of 1◦. (B) The same estimates for torque error are between 5 and 10 Nm, typically ∼1%. These small errors are

well within the requirements for our experiments. (C) Poses generated by forward dynamics using forces obtained from three inverse dynamics simulations based on

Gaussian perturbed walking data (0.1, 8, and 64 mm noise levels). Although at very high noise levels, the model follows the reference motion poorly, the movement

still looks, qualitatively, like walking.

a model to motion capture data, dynamically adjust parameters
to test different effects, and visualize the results of kinematic and
dynamic analysis. In the particular experiment shown, a subject’s
fitted model traces a virtual curve to generate a kinematics
posture trajectory that allows the cost of the subject’s dynamics
model to be calculated.

This section focuses on describing the model’s capabilities
through a series of examples in different settings. Several test
experiments provide qualitative and quantitative validation of the
physics-based movement analysis techniques described here.

3.1. HDM Accuracy
Given that the torque recovery technique will be the basis for our
experiments, it is essential to establish its accuracy in absolute
terms. A straightforward way to do this is to use a particular
model to generate joint torque data and then verify that these
generating torques can be recovered with sufficient accuracy. To

test the model accuracy and noise sensitivity, we first use the
PhaseSpace motion capture system to gather the walking data
and then let the model simulate the walking motion. To simulate
possible sensor errors in the PhaseSpace system, we introduce
noise into the simulated marker positions and study recovery
accuracy with increasing noise levels.

3.1.1. Model Data Sensitivity Tolerance
Inverse dynamics computations rely on first finding the model’s
pose. Therefore, given motion capture data, it is essential to
synthesize the pose sequence precisely. We used the HDM to
synthesize treadmill walking and then compute its accuracy. This
study aimed to assess the effect of sensor perturbations on the
results and compare the joint angles and torques found with
our method to those used to generate marker data. We used
an experimental process similar to that employed in Remy and
Thelen (2009). In this experiment, both steps were tested by
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FIGURE 7 | Trajectory reconstruction. Trajectories of selected degrees of freedom from the perturbation study. Solid lines show ground truth calculated from the

motion capture data. Dashed lines show recovered data. Simulated spring forces make the computed data lag behind and smooth the ground truth.

FIGURE 8 | Comparing ground forces between the model and the Wii force plate. (Top) Two Wii force plates serve as accurate calibration reference. A subject stood

on the two plates and then changed stances, balancing first on the left foot and next on the right. (Bottom) The comparison between the measurement systems is

surprisingly good, during the stance phases. The 10% difference between the Wii measured ground forces and the computed forces can be reconciled by including

the model’s residual balance forces.

studying eight steps of marker data captured from treadmill
walking. The movement lasts a little longer than 4 s, giving us
260 frames of data. For this computation, we used data arbitrarily
sampled at 60 Hz.

We used a preliminary pass through the motion capture
data to generate synthesized “ground truth” marker, pose, and

torque. After using the physics-based inverse kinematics to
compute joint angles, we constrained the body to use inverse
dynamics to reproduce the joint angles with internal torques (and
residual forces at the waist segment). As the model performed
the movement, we recorded the global position of the marker
attachment points. We also recorded the forces used and the
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FIGURE 9 | Reaching in a virtual reality environment. (A) A subject reaches to touch virtual targets seen in a HMD. The subject’s reach is unconstrained. (B) The

subject reaches to the different numbered targets on separate trials. (C) The average integrated torque over 10 trials per reach shows that the method reliably

discriminates between movement costs for the further and higher locations.

resulting joint angles. Thus we had synthetic “ground truth” data
directly from the model. The model is capable of falling over,
when it did not, we recorded the test as a success.

Using the synthetic marker data, we analyzed the process by
perturbing all marker positions at each frame in time along all
three axes with mean-centered Gaussian noise of a controlled
standard deviation. Applying physics-based pose-fitting followed
by inverse dynamics produced a new set of virtual marker
positions, joint angles, and torques. The results are shown in
Figure 6.

Gaussian perturbations render the marker data dynamically
inconsistent. This dynamic inconsistency also pushes a
constrained system toward singularity, making it more
challenging to solve numerically. We included very high
noise levels to see if they would slow the system down or prevent
it from finding any solution. In all cases, the system analyzed the
perturbed data and found poses to fit the marker data.

After running through an inverse kinematics pass, an inverse
dynamics pass for each trial runs, we compared the marker
attachment points, joint angles, and joint torques from the
second pass to the synthetic ground truth data. Figure 6 shows
the mean error across all degrees of freedom from eight steps
walking. Although the perturbations make the marker data
dynamically inconsistent, small amounts of noise have minimal
effect on the computed measurements. Figures 6A,B standard
error deviations show that functional effects are minimal up to
8 mm. A±1 mm PhaseSpace marker position accuracy translates
in our model into an average joint angle error of 0.02 radians
and average force errors of 3 Newtons, which is acceptable for
our experiments.

There is a systematic error in both the marker positions and
joint angles caused by the fact that the constraints behave like
springs. The spring-like behavior causes the marker positions
and joint angles to lag behind their targets by a small amount
and dampens the overall movement. This lag and damping
are apparent in Figure 7 comparing individual trajectories for
selected dimensions of the joint angles and torques. As shown
in Figure 7, the data follow ground truth very well under low
noise conditions.

3.1.2. Residual Torques/Forces and Ground Forces
In the classical inverse dynamic area, discrepancies between the
model and humans that created the data necessitate non-realistic
“residual” forces to keep the model from falling over when
dynamically reproducing most movements. The HDM includes a
joint to the model’s waist to constrain it to reproduce orientation
deviations found during the pose-fitting pass. To minimize the
effect of these external forces, we used torque limits on the
amount of stabilizing torque available.

The fully configured system could be tested against an
objective set of measurements.We comparedHDMdata together
with ground force data from a pair of balance boards. Figure 8
shows the calibration of the ground force computed from our
method compared to those taken from WiiTM force plates. A
subject standing on two force plates varied their stance from one
being supported exclusively by leg standing on one plate and
then shifted their weight to the other leg supported by the other
plate. For this simple movement of transitioning from standing
on one foot or the other, residual angular torques of 30 Nm
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FIGURE 10 | Comparison of efforts while walking with/without arm swing. (A)

In a preliminary test of our design, the energetic cost of normal walking is

compared to the case where the arms are constrained from swinging. Our

hypothesis is that if subjects are instructed to walk without moving their arms,

they will accomplish this by using muscle co-contraction and that this effect

can be realized in the HDM with stationary markers that keep the arms vertical.

(B) The increased cost measured by the HDM is 6.1%, extremely close to the

6% result obtained by Ortega et al. (2008).

were sufficient to keep the dynamic model quite close to its
target trajectory.

The residual torques are very modest, being within ±5% of
the maximum excursion. The correspondence is a little better
as the faux vestibular balance forces are not factored into the
comparison. Note also that we cannot expect the correspondence
to be exact during the phase between the two stances as there
is no attempt in the model in this test to make the dynamics of
the changing stance match that of the force plates. To generate
independent movements, such as grasping might need additional
accuracy (Sentis et al., 2010), but for estimating a subject’s
energetic cost, the accuracy is well within range.

Figure 8 also shows the comparison results between the
sensor-measured ground forces for the right and left feet (red
and green lines) with the computed ground forces found through
physics-based inverse dynamics (blue and pink lines). During
the bipedal stance phase, the forces come surprisingly close. The
most significant discrepancies come during the transition from
one foot to the other. These discrepancies can be blamed mainly
on poor collision detection resulting from an abstract model of
the foot.

3.2. HDM Experimental Evaluation
The previous demonstrations report on tests of the fundamental
performance of the system. This section focuses on three tests

FIGURE 11 | Movement control using dynamic synergies. (A) Body

configuration using all marker constraints. Note the similarity to the sparsely

constrained pose. (B) Body configuration using constraints on only the head,

hands, and feet. In many cases, the pose found using a full set of marker

constraints is quite close to that found by a sparse set of constraints. These

two images show almost no differences between using a full or a sparse set of

marker constraints.

of the HDM’s ability to fit experimental data. The first test uses
a subject carrying out successively more difficult reaches in a
virtual reality environment to test whether the model’s estimate
of movement costs correlates with increasing task difficulty. The
second test simulates data from an issue facing movements in
an aging population. Do aging subjects’ reduced use of arm
swing while walking incur a movement cost, and does the HDM’s
estimate correspond to laboratory treadmill data? The final test
demonstrates an essential property of the model concerning its
degrees of freedom. The critical observation is that virtues of
their interconnections constrain the degree of freedom of the
model; thus, the control of a posture can be achieved with
a significantly reduced set of crucial marker positions. This
property has implications for movement control programs.

3.2.1. Experiment 1: Whole Body Reaching
The movement accuracy test is encouraging, but the importance
of the method depends on its usefulness to capture the energetic
cost of whole-body movements in a complex experimental
setting. One such venue is a three-dimensional Virtual Reality
(VR) environment. The advantage of the VR environment for
studying human movements is that the dimensions and the
dynamic variations of the parametric quantities describing the
setting can be varied with full experimental control.

In this experiment, we studied how a subject chose whole-
body movements in reaching targets. Figure 9 demonstrates the
experimental setup. The subject wears the PhaseSpace motion
capture suit and the nVisor head-mounted stereo display. In each
trail, the subject starts from a particular starting position marked
with tape on the lab floor, approaches a target suspended in 3D
space, and finally touches it.
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FIGURE 12 | Comparison of joint angles along the selected degree of freedom. Solid lines show joint angles recovered based on the full marker set. Dashed lines

show joint angels recovered based on a reduced marker set.

Tests were able to establish that, just focusing on integrated
net torque and avoiding stiffness, the relative cost of a movement
recorded by our system reliably discriminates the energetic costs
of the movement in the way hypothesized. The hypothesized cost
of reaching for and touching each target was ranked based on
distance and height relative to the subject. Note that target 2 is the
least expensive as the subject does not have to crouch or extend
significantly to touch it. Targets 5 through 8 are more costly than
targets 1 through 4 as they require that the subject take a step
to touch them. These results were expected, but the point was to
show that the overall setting and model could produce reliable
torque estimates.

This demonstration shows that the model can be used in
any setting where the cost of a movement is hypothesized to be
a constituent factor. We develop this technique further in the
next demonstration.

3.2.2. Experiment 2: The Cost of Stiff Arm Walking
Once the joint stiffness parameters were adjusted appropriately,
can it reproduce the results of a stiffness modulating experiment?
The experiment we tried was to replicate that of Ortega et al.
(2008). They showed that arresting the arm swing during
treadmill walking incurred an increased metabolic cost of 6%.
Our hypothesis was that to reproduce this result we could modify
our walking data for the model so that the arms were clamped by
the sides with stiff stationary markers.

To test this feasibility, we used one of our HDM walking data
sets in a test situation. The cost of walking was computed with
a modification designed to model the experimental protocol in
Ortega et al. (2008). To simulate their experiment, we modified
the model data so the arms could swing with the walking gait
for the standard case, but for the restricted case, the arms were
constrained by markers that move with the stride but are not

allowed to swing. Since the arms under restricted situations could
not balance the leg movements, we expected the energetic cost
to be higher. As shown in Figure 10, the result was that the
constrained walk was about 6%more expensive than the standard
walk, which was essentially the value obtained by the Farley
lab (Ortega et al., 2008). The use of the HDM in imitating this
experiment shows off the model’s utility; no elaborate tuning was
necessary to obtain the preliminary result other than restraining
the arms. It should be appreciated, that the model experiment
required only hours to program, whereas the human experiment
takes many days to set up, and the corresponding measure of cost
is delicate.

3.2.3. Experiment 3: Controlling Poses Using

Reduced Marker Sets
Human pose sequences from simple single-behavior motions
lie on a very low-dimensional linear subspace (Barbič et al.,
2004). Previous research showed that for many movements, with
suitable internal stiffness, it is only necessary to control the
location of a reduced set consisting of the head, hands, and feet
markers (Liu et al., 2006). This observation is the centerpiece
of uncontrolled manifold theory, which restrict control to a
subspace of the degrees of freedom, leaving the rest to the
natural system dynamics (Scholz and Schöner, 1999; Torres-
Oviedo and Ting, 2007). An obvious comes from ice skating.
Pairs spinning on the ice would use one set of makers while
jumping would use another set. Another example is using a
subset of the markers to constrain the dynamics still produces
reasonable walking gaits. This property could also have been
expected from studies of muscle synergies, which show that
muscle contractions coordinate in movement generation (Ting
and Macpherson, 2005; Ting, 2007). As described above, the
HDM uses 41 markers, which means a pose is represented
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by a 123-dimension coordinate system. Our test compares the
generated pose using a reduced marker set with the one using
the full marker set.Tests of movement accuracy revealed that
the dynamics engine was able to function with significant fewer
numbers of markers. Another benefit is that fewer markers can
make interpolating across drop-outs in the data easier.

Figure 11 shows a qualitative comparison between a pose
found using the whole marker set (on the left) and one found
using only head, hands, and feet (on the right). To achieve the
reduced marker pose, we started the model in an upright stance
with the arms by the side, and then the reduced set markers
are moved slowly along trajectories that leave them in the final
posture. The straight arms take advantage of the elbow joint
angle limitation.

Joint limits on the knees and elbows and general joint stiffness
naturally bias the physics engine to find a pose that is very close
to the fully constrained pose. Body inertia and joint stiffness
naturally clean up minor noise and occlusions in the captured
marker data. The resulting joint angles in transit allow the
specification of the complete set of dynamic torques. To test this
feature of HDM quantitatively, the recovered joints angles while
walking according to the reducedmarker set were compared with
those from the full marker set. Figure 12 illustrates the recovered
joints angles are quite similar with the original joints angles.

This result has important general implications. First of all,
the finding suggests that the kinematic plan for movements
can be compressed into a subset of formative trajectories,
leaving the remaining degrees of freedom interpolated using the
body’s dynamic constraint. Another aspect of this observation
is that the reduced set can be used to adjust movements to
individual circumstances, again leaving the detailed interpolation
to the dynamics.

4. CONCLUSION AND DISCUSSION

This paper provides a method of building a humanoid model on
top of a physical engine that can analyze and synthesize human
movements. Its 48 degrees of freedom and generalized spring
constraints allow models of scale that are robust to disturbances.
In addition to being an analytical tool for experiments, it can
also generate movements from a kinematic plan. The system has
several features:

1. It utilizes the realizations of constraints as implicit springs.
The spring parameters exhibit many advantageous properties.
They stabilize the simulation, pushing a constrained system
away from singularities, and reducing constraint error.

2. It calculates the movements’ energetic cost to provide
the capability to compare different movement scenarios.
Achieving this goal can be tricky, owing to the lack of
systems that can provide independent cost measures. The
HDM achieved an excellent correspondence with force
plates, as shown in the experiment to measure the human’s
stance change.

3. It produces correlations with similar tests with human
subjects, such as our research with stiff-arm walking. Once we
have vetted the system in many such areas, it can be used as

a predictive tool, as in the experiment showing the different
costs of reaching targets. We have developed a large-scale
three-dimensional tracing experiment in virtual reality (Liu
et al., 2019) to elicit natural whole-body movements under
common goals. Our future work is to analyze the energetic
cost using the HDM.

4. It shows that such a model can play a valuable role in studying
the kinematic-plan model’s consequences. In particular, the
reduced degree of freedom control demonstration supports
the uncontrolled manifold view wherein a subset of crucial
degrees of freedom can direct a movement with the
uncontrolled degrees of freedom interpolating the movement
using the system’s dynamics (Carpenter, 1968; Latash, 2008).

One way of illustrating the method’s robustness is to combine
a kinematic data set from the source with another set of
dynamic parameters. So far, we have explored the HMD
capability of using data from two other laboratories. One
source is Carnegie Mellon University’s graphics laboratory’s
motion capture database10. The other source is the motion
data from the Hayhoe laboratory at the University of Texas
psychology department, motion capture data from subjects
traversing rough outdoor terrain. In tests, the data gathered
with a different motion capture device is combined with
the inertial data from another model to make a composite.
We could use our dynamics calculation to compute joint
torques for the hybrid system by adopting the imported
database’s marker conventions. Although the estimate is thus
done for a synthetic pairing of kinematic data and dynamic
parameters, this combination, the integration is stable and leads
to identifiable torques.

Besides its use of a mechanism for interpreting experiments,
the system can also serve as an adjunct for theorizing
about the human system’s organization concerning its space-
time performance since many of these issues are open.
While an enormous amount of research in human motor
control has produced ever more refined subsystem components’
elucidations, a comprehensive theory at the level of large-scale
dynamics is still unsettled.

One question is a description of how the motor cortex can
code information to drive the high temporal bandwidths of
the spinal cord circuitry. Several possibilities were debated at
the Neural Control of Movement conference in 2013 without
definitive results. We have emphasized that the motor cortex
communicates a coded kinematic plan together with stiffness
settings that play an essential role in shaping the dynamics in
muscle spindles (Blum et al., 2020).

Studies with kinematics coded with temporal basis functions
have shown that a kinematic plan can be coded to reduce the
bandwidth needed by a factor of ∼103 Hz (Iyer and Ballard,
2011; Won et al., 2020). More recently, sparse coding has
been used to solve this problem (Glanz et al., 2021), despite
unnecessary caution of its applicability to cortical motor areas
(Beyeler et al., 2019). A tack that is still open would be our
large sets of kinematic data to attempt to model cell responses

10CMU Graphics Lab Motion Capture Database: http://mocap.cs.cmu.edu/
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in cortical area M1 to see if they turn out to be correlated
with Graziano’s data. The expectation would be that cells might
have an informational interpretation analogous to the one
used for oriented calls in the striate cortex. The facility with
which the HDM system can collect motor data would allow
a ready exploration of motor coding strategies similar to the
visual domain. Being able to store movement segments would
obviate the need to use an unlikely option to generate dynamic
codes in the cortex neurally. This observation finds support in
neural recordings that show movements generated cortically in
discrete phases (Zimnik and Churchland, 2021), and the Boston
Dynamics Atlas robot also uses a look-up strategy (Feng et al.,
2014).

Regarding the uncontrolled manifold concept, a critical
insight was the use of reduced degrees of freedom constraints in
computing the dynamics. If the limitations are near the number
of DOFs of the system, the torque recovery can quickly become
numerically unstable. However, between 20 and 41 markers in
the HDM provide sufficient constraints to integrate the dynamic
equations reliably by allowing the system’s natural dynamics to
interpolate the motion appropriately.

In summary, the method has several advantages over
alternative methods:

1. It can be easily implemented in a single robust framework of
the physics engine. Using the physics engine for multiple tasks
allows a unique human model to be used from start to finish,
rather than being forced to use the conventions built into a
commercial package.

2. The method is fast. The simulation engine is designed
for performance, making it possible to analyze movement
captured in real-time and create interactive experiments with
stimuli dependent on the feedback results.

3. The software is free. Freely accessible code, such as ODE,
is useful because it facilitates comparison and collaboration
in research. Fourth, the method handles multiple ground
contacts and noisy data challenging to related approaches.
Kinematic loops do not require any special treatment. The
method is robust even to large perturbations making data
dynamically inconsistent.

4. The tunable parameters (CFM), couched in the physics
framework, are intuitive. It is more straightforward to specify
the importance of a constraint in force and mass rather than
arbitrary gains and weightings. We illustrate these advantages
by using ODE to analyze and reproduce movement recorded
from optical motion capture.

There are several ways to improve the system in the future,
and the following two are the most important among them.
One limitation of our method for computing torque is that it
is insensitive to muscle stiffness, which is both passive and can
be actively modulated (Atkeson and Schaal, 1997; Awrejcewicz
et al., 2012). Increasing stiffness will increase the overall net
movement energetic cost and needs to be taken into account.
The observation somewhat ameliorates this issue that subjects
will try to minimize energetic costs in most natural tasks and
thus exploit natural dynamics whenever they can, reducing high

levels of co-contraction (Carpenter, 1968; Shadmehr and Arbib,
1992; Sternad and Sternad, 2009). However, the ubiquitous use of
spring as a constraint means opening up the possibility of adding
springs to the joint degrees of freedom to model stiffness. These
could also have parametric programmable spring constants to
model muscle co-contraction. The second feature that could be
added is an improved system to keep the human model upright.
Any of the three human sources of this needed information—
visual, vestibular, and proprioception—would be candidates for
this practical constraint. At present, the HDM uses a faux system
of rotational torques at the center of gravity, but these could easily
be replaced with more appropriate ankle torques.

AUTHOR CONTRIBUTIONS

JC created the initial protocol of the dynamic model and did
some primary validations. LL further developed the model,
conducted the experiments, and wrote the paper. DB designed
the experiments and worked with LL on the overall paper editing
and scientific presentation.

FUNDING

This research was supported by the National Institutes of Health
EY05729.

ACKNOWLEDGMENTS

Thanks to John Matthis and Leif Johnson for helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2021.723428/full#supplementary-material

REFERENCES

Andriacchi, T. P., and Alexander, E. J. (2000). Studies of human

locomotion: past, present and future. J. Biomech. 33, 1217–1224.

doi: 10.1016/S0021-9290(00)00061-0

Atkeson, C. G., and Schaal, S. (1997). “Robot learning from demonstration,” in

ICML, Vol. 97 (Vienna), 12–20. Available online at: https://link.springer.com/

chapter/10.1007/978-3-7091-6874-5_4

Awrejcewicz, J., Kudra, G., and Zagrodny, B. (2012). Nonlinearity of muscle

stiffness. Theor. Appl. Mech. Lett. 2:053001. doi: 10.1063/2.1205301

Badler, N. I., Phillips, C. B., and Webber, B. L. (1993). Simulating

Humans: Computer Graphics Animation and Control. New York,

NY: Oxford University Press. doi: 10.1093/oso/9780195073591.

001.0001

Bailly, F., Carpentier, J., and Souéres, P. (2021). “Optimal estimation of the

centroidal dynamics of legged robots,” in ICRA 2021-IEEE International

Conference on Robotics and Automation (Xi’an). Available online at: https://hal.

archives-ouvertes.fr/hal-03193940/document

Bajrami, X., andMurturi, I. (2017). Kinematic model of the seven link biped robot.

IJMET 8, 454–462.

Frontiers in Neurorobotics | www.frontiersin.org 14 September 2021 | Volume 15 | Article 723428

https://www.frontiersin.org/articles/10.3389/fnbot.2021.723428/full#supplementary-material
https://doi.org/10.1016/S0021-9290(00)00061-0
https://link.springer.com/chapter/10.1007/978-3-7091-6874-5_4
https://link.springer.com/chapter/10.1007/978-3-7091-6874-5_4
https://doi.org/10.1063/2.1205301
https://doi.org/10.1093/oso/9780195073591.001.0001
https://hal.archives-ouvertes.fr/hal-03193940/document
https://hal.archives-ouvertes.fr/hal-03193940/document
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Human Dynamic Model
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Springer), 263–272. doi: 10.1007/978-1-4020-8600-7_28

Durandau, G., Farina, D., and Sartori, M. (2017). Robust real-timemusculoskeletal

modeling driven by electromyograms. IEEE Trans. Biomed. Eng. 65, 556–564.

doi: 10.1109/TBME.2017.2704085

Erez, T., Tassa, Y., and Todorov, E. (2015). “Simulation tools for model-based

robotics: comparison of bullet, Havok, Mujoco, Ode and Physx,” in 2015

IEEE international conference on robotics and automation (ICRA) (Seattle),

4397–4404. doi: 10.1109/ICRA.2015.7139807

Faure, F., Debunne, G., Cani-Gascuel, M.-P., and Multon, F. (1997). “Dynamic

analysis of human walking,” in Computer Animation and Simulation’97

(Budapest: Springer), 53–65. doi: 10.1007/978-3-7091-6874-5_4

Feng, S., Whitman, E., Xinjilefu, X., and Atkeson, C. G. (2014). “Optimization

based full body control for the atlas robot,” in 2014 IEEE-RAS International

Conference on Humanoid Robots (Boston, MA; Madrid), 120–127.

doi: 10.1109/HUMANOIDS.2014.7041347

Glanz, R. M., Dooley, J. C., Sokoloff, G., and Blumberg, M. S. (2021). Sensory

coding of limb kinematics in motor cortex across a key developmental

transition. J Neurosci. 41, 6905–6918. doi: 10.1523/JNEUROSCI.0921-2

1.2021

Grizzle, J. W., Chevallereau, C., Ames, A. D., and Sinnet, R. W. (2010). 3D bipedal

robotic walking: models, feedback control, and open problems. IFAC Proc. 43,

505–532. doi: 10.3182/20100901-3-IT-2016.00302

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007). From swimming

to walking with a salamander robot driven by a spinal cord model. Science 315,

1416–1420. doi: 10.1126/science.1138353

Iyer, R., and Ballard, D. (2011). “Humanoid muscle movement representation,”

in 2011 11th IEEE-RAS International Conference on Humanoid Robots (Bled),

409–415. doi: 10.1109/Humanoids.2011.6100892

Johnson, L., and Ballard, D. (2014). “Efficient codes for inverse dynamics during

walking,” in Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 28 (Palo). Available online at: https://www.aaai.org/Library/AAAI/

aaai14contents.php

Khusainov, R., Shimchik, I., Afanasyev, I., and Magid, E. (2016). “3D modelling

of biped robot locomotion with walking primitives approach in simulink

environment,” in Informatics in Control, Automation and Robotics 12th

International Conference, ICINCO 2015 Colmar (Cham: Springer), 287–304.

doi: 10.1007/978-3-319-31898-1_16

Kirk, A. G., O’Brien, J. F., and Forsyth, D. A. (2005). “Skeletal parameter estimation

from optical motion capture data,” in 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05),Vol. 2 (SanDiego, CA),

782–788. doi: 10.1109/CVPR.2005.326

Krishchenko, A., Tkachev, S., and Fetisov, D. (2007). Planar walking

control for a five-link biped robot. Comput. Math. Model. 18, 176–191.

doi: 10.1007/s10598-007-0018-8

Latash, M. L. (2008). Synergy. New York: Oxford University Press.

doi: 10.1093/acprof:oso/9780195333169.001.0001

Lee, S., Park, M., Lee, K., and Lee, J. (2019). Scalable muscle-actuated

human simulation and control. ACM Trans. Graph. 38, 1–13.

doi: 10.1145/3306346.3322972

Lee, T.-T. (1988). “Trajectory planning and control of a 3-link biped robot,”

in IEEE International Conference on Robotics and Automation, 820–823.

doi: 10.1109/ROBOT.1988.12161

Liu, G., Zhang, J., Wang, W., andMcMillan, L. (2006). “Humanmotion estimation

from a reducedmarker set,” in Proceedings of the 2006 Symposium on Interactive

3D Graphics and Games, 35–42. doi: 10.1145/1111411.1111418

Liu, L., Johnson, L., Zohar, O., and Ballard, D. H. (2019). Humans use

similar posture sequences in a whole-body tracing task. Iscience 19, 860–871.

doi: 10.1016/j.isci.2019.08.041

Loeb, G. E., and Tsianos, G. A. (2015). Major remaining gaps in

models of sensorimotor systems. Front. Comput. Neurosci. 9:70.

doi: 10.3389/fncom.2015.00070

Mousavi, P. N., and Bagheri, A. (2007). Mathematical simulation of a seven link

biped robot on various surfaces and zmp considerations. Appl. Math. Model.

31, 18–37. doi: 10.1016/j.apm.2006.06.018

Mu, X., andWu, Q. (2003). Synthesis of a complete sagittal gait cycle for a five-link

biped robot. Robotica 21, 581–587. doi: 10.1017/S0263574702004903

Mu, X., and Wu, Q. (2004). “Sagittal gait synthesis for a five-link biped robot,”

in Proceedings of the 2004 American Control Conference, Vol. 5, Boston

4004–4009.

Muybridge, E. (1887). Animal Locomotion. Oxford: Da Capo Press.

Ortega, J. D., Fehlman, L. A., and Farley, C. T. (2008). Effects of aging and arm

swing on the metabolic cost of stability in human walking. J. Biomech. oxford,

41, 3303–3308. doi: 10.1016/j.jbiomech.2008.06.039

Rajagopal, A., Dembia, C. L., DeMers, M. S., Delp, D. D., Hicks, J. L.,

and Delp, S. L. (2016). Full-body musculoskeletal model for muscle-

driven simulation of human gait. IEEE Trans. Biomed. Eng. 63, 2068–2079.

doi: 10.1109/TBME.2016.2586891

Remy, C. D., and Thelen, D. G. (2009). Optimal estimation of dynamically

consistent kinematics and kinetics for forward dynamic simulation of gait. J.

Biomech. Eng. 131:031005. doi: 10.1115/1.3005148

Scholz, J. P., and Schöner, G. (1999). The uncontrolled manifold concept:

identifying control variables for a functional task. Exp. Brain Res. 126, 289–306.

doi: 10.1007/s002210050738

Schulman, J., Ho, J., Lee, C., and Abbeel, P. (2016). “Learning from demonstrations

through the use of non-rigid registration,” in Robotics Research, edsM. InabaM.

and P. Corke (Cham: Springer), 339–354. doi: 10.1007/978-3-319-28872-7_20

Sentis, L., Park, J., and Khatib, O. (2010). Compliant control of multicontact and

center-of-mass behaviors in humanoid robots. IEEE Trans. Robot. 26, 483–501.

doi: 10.1109/TRO.2010.2043757

Frontiers in Neurorobotics | www.frontiersin.org 15 September 2021 | Volume 15 | Article 723428

https://www.researchgate.net/publication/221474944_Segmenting_Motion_Capture_Data_into_Distinct_Behaviors
https://www.researchgate.net/publication/221474944_Segmenting_Motion_Capture_Data_into_Distinct_Behaviors
https://doi.org/10.1371/journal.pcbi.1006908
https://doi.org/10.7554/eLife.55177
https://doi.org/10.1007/s00422-012-0531-5
https://doi.org/10.1002/jor.1100010109
https://doi.org/10.1371/journal.pone.0056013
https://doi.org/10.1097/00005072-196804000-00011
https://doi.org/10.1016/j.ifacol.2018.11.571
https://doi.org/10.1007/978-3-642-34710-8_32
https://doi.org/10.1007/11919476_49
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1371/journal.pcbi.1008493
https://doi.org/10.1007/978-1-4020-8600-7_28
https://doi.org/10.1109/TBME.2017.2704085
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1007/978-3-7091-6874-5_4
https://doi.org/10.1109/HUMANOIDS.2014.7041347
https://doi.org/10.1523/JNEUROSCI.0921-21.2021
https://doi.org/10.3182/20100901-3-IT-2016.00302
https://doi.org/10.1126/science.1138353
https://doi.org/10.1109/Humanoids.2011.6100892
https://www.aaai.org/Library/AAAI/aaai14contents.php
https://www.aaai.org/Library/AAAI/aaai14contents.php
https://doi.org/10.1007/978-3-319-31898-1_16
https://doi.org/10.1109/CVPR.2005.326
https://doi.org/10.1007/s10598-007-0018-8
https://doi.org/10.1093/acprof:oso/9780195333169.001.0001
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1109/ROBOT.1988.12161
https://doi.org/10.1145/1111411.1111418
https://doi.org/10.1016/j.isci.2019.08.041
https://doi.org/10.3389/fncom.2015.00070
https://doi.org/10.1016/j.apm.2006.06.018
https://doi.org/10.1017/S0263574702004903
https://doi.org/10.1016/j.jbiomech.2008.06.039
https://doi.org/10.1109/TBME.2016.2586891
https://doi.org/10.1115/1.3005148
https://doi.org/10.1007/s002210050738
https://doi.org/10.1007/978-3-319-28872-7_20
https://doi.org/10.1109/TRO.2010.2043757
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Human Dynamic Model

Seth, A., Sherman, M., Reinbolt, J. A., and Delp, S. L. (2011). Opensim: a

musculoskeletal modeling and simulation framework for in silico investigations

and exchange. Proc. Iutam 2, 212–232. doi: 10.1016/j.piutam.2011.04.021

Shadmehr, R., and Arbib, M. A. (1992). A mathematical analysis of the force-

stiffness characteristics of muscles in control of a single joint system. Biol.

Cybern. 66, 463–477. doi: 10.1007/BF00204111

Sternad, D., and Sternad, D. (2009). Progress in Motor Control. Springer.

doi: 10.1007/978-0-387-77064-2

Ting, L. H. (2007). Dimensional reduction in sensorimotor systems: a framework

for understanding muscle coordination of posture. Prog. Brain Res. 165,

299–321. doi: 10.1016/S0079-6123(06)65019-X

Ting, L. H., and Macpherson, J. M. (2005). A limited set of muscle synergies

for force control during a postural task. J. Neurophysiol. 93, 609–613.

doi: 10.1152/jn.00681.2004

Torres-Oviedo, G., and Ting, L. H. (2007). Muscle synergies characterizing human

postural responses. J. Neurophysiol. 98, 2144–2156. doi: 10.1152/jn.01360.2006

Tournier, M., Wu, X., Courty, N., Arnaud, E., and Reveret, L. (2009).

“Motion compression using principal geodesics analysis,” in Computer

Graphics Forum, Vol. 28 (Wiley), 355–364. doi: 10.1111/j.1467-8659.2009.0

1375.x

van der Kooij, H., van Asseldonk, E., and van der Helm, F. C. (2005).

Comparison of different methods to identify and quantify balance

control. J. Neurosci. Methods 145, 175–203. doi: 10.1016/j.jneumeth.2005.

01.003

Welch, T. D., and Ting, L. H. (2014). Mechanisms of motor adaptation in

reactive balance control. PLoS ONE 9:e96440. doi: 10.1371/journal.pone.0

096440

Wolpert, D. M., and Landy, M. S. (2012). Motor control is decision-making. Curr.

Opin. Neurobiol. 22, 996–1003. doi: 10.1016/j.conb.2012.05.003

Won, J., Gopinath, D., and Hodgins, J. (2020). A scalable approach to control

diverse behaviors for physically simulated characters.ACMTrans. Graph. 39:33.

doi: 10.1145/3386569.3392381

Zimnik, A. J., and Churchland, M. M. (2021). Independent generation

of sequence elements by motor cortex. Nat. Neurosci. 24, 412–424.

doi: 10.1038/s41593-021-00798-5

Zordan, V. B., and Hodgins, J. K. (2002). “Motion capture-driven

simulations that hit and react,” in Proceedings of the 2002 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (New

York, NY), 89–96. doi: 10.1145/545261.545276

Zordan, V. B., and Van Der Horst, N. C. (2003). “Mapping optical motion

capture data to skeletal motion using a physical model,” in Proceedings of

the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation

(Goslar), 245–250. Available online at: https://dl.acm.org/doi/proceedings/10.

5555/846276

Conflict of Interest: JC is employed by company Google Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Liu, Cooper and Ballard. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 16 September 2021 | Volume 15 | Article 723428

https://doi.org/10.1016/j.piutam.2011.04.021
https://doi.org/10.1007/BF00204111
https://doi.org/10.1007/978-0-387-77064-2
https://doi.org/10.1016/S0079-6123(06)65019-X
https://doi.org/10.1152/jn.00681.2004
https://doi.org/10.1152/jn.01360.2006
https://doi.org/10.1111/j.1467-8659.2009.01375.x
https://doi.org/10.1016/j.jneumeth.2005.01.003
https://doi.org/10.1371/journal.pone.0096440
https://doi.org/10.1016/j.conb.2012.05.003
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1038/s41593-021-00798-5
https://doi.org/10.1145/545261.545276
https://dl.acm.org/doi/proceedings/10.5555/846276
https://dl.acm.org/doi/proceedings/10.5555/846276
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Computational Modeling: Human Dynamic Model
	1. Introduction
	2. Methods—Model Design and Operation
	2.1. Body Structural Details
	2.2. Data Fitting
	2.3. Pose Fitting
	2.4. Inverse Dynamics
	2.4.1. Residual Torques/Forces

	2.5. Method Summary

	3. Results—HDM Basic Capabilities
	3.1. HDM Accuracy
	3.1.1. Model Data Sensitivity Tolerance
	3.1.2. Residual Torques/Forces and Ground Forces

	3.2. HDM Experimental Evaluation
	3.2.1. Experiment 1: Whole Body Reaching
	3.2.2. Experiment 2: The Cost of Stiff Arm Walking
	3.2.3. Experiment 3: Controlling Poses Using Reduced Marker Sets


	4. Conclusion and Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


