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Abstract. cAMP and cGMP are important secondary messen‑
gers involved in cell regulation and metabolism driven by the 
G protein‑coupled receptor. cAMP is converted via adenylyl 
cyclase (AC) and activates protein kinase A to phosphorylate 
intracellular proteins that mediate specific responses. cAMP 
signaling serves a role at multiple steps in tumorigenesis. The 
level of cAMP is increased in association with cancer cell 
formation through activation of AC‑stimulatory G protein by 
mutation. Phosphodiesterases (PDEs) hydrolyze cAMP and 
cGMP to AMP and GMP. PDEs are composed of 11 families, 
and each can hydrolyze cAMP and cGMP or both cAMP and 
cGMP. PDEs perform various roles depending on their loca‑
tion and expression site, and are involved in several diseases, 
including male erectile dysfunction, pulmonary hypertension, 
Alzheimer's disease and schizophrenia. PDE11A is the 11th 
member of the PDE family and is characterized by four splice 
variants with varying tissue expression and N‑terminal regula‑
tory regions. Among tissues, the expression of PDE11A was 
highest in the prostate, and it was also expressed in hepatic 

skeletal muscle, pituitary, pancreas and kidney. PDE11A is the 
first PDE associated with an adrenocortical tumor associated 
genetic condition. In several studies, three PDE11A muta‑
tions have been reported in patients with Cushing syndrome 
with primary pigmented nodular adrenocortical disease or 
isolated micronodular adrenocortical disease without other 
genetic defects. It has been reported that an increase in 
PDE11A expression affects the proliferation of glioblastoma 
and worsens patient prognosis. The present mini‑review 
summarizes the location of PDE11A expression, the impact of 
structural differences and disease relevance.
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1. Introduction

Molecular and genetic studies of the endocrine system have 
progressed rapidly over the past few decades. Cyclic adenosine 
monophosphate (cAMP) is the most important secondary 
messenger involved in endocrine system development and 
function. Dysregulation of cAMP expression and signaling 
perturbs the endocrine physiology and causes disease. cAMP 
production and degradation is mediated by ACs and phos‑
phodiesterases (PDEs) respectively (1‑5). PDEs hydrolyze the 
phosphate bonds of cyclic nucleotides; 11 PDE gene families 
have been identified based on amino acid sequences, biochem‑
ical properties, and inhibitor profiles (6,7). PDEs may share 
a catalytic function but differ in subcellular localization and 
tissue expression status (7). PDEs hydrolyze cAMP and cyclic 
guanosine monophosphate (cGMP) to AMP and GMP. PDEs 
may degrade cAMP (PDE4, 7, 8), cGMP (PDE5, 6, 9), or both 
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(PDE1, 2, 3, 10, 11) (1,8‑10). Thus, PDEs perform various roles 
depending on their location and expression status. For example, 
inhibitors of PDE5 serve as therapeutic agents for male erectile 
dysfunction and pulmonary hypertension (11,12). PDE9A and 
PDE10A are widely distributed throughout the central nervous 
system (CNS); modulation of their expression usefully treats 
Alzheimer's disease (13) and schizophrenia (14‑16). PDE11A 
degrades both cAMP and cGMP (17‑21). PDE11A features four 
splice variants (1‑4) varying in terms of tissue expression and 
the N‑terminal regulatory regions. The N‑terminal domain 
is regulatory in nature and the C‑terminal domain catalytic. 
The longest isoforms of PDE11A in the mouse and human 
share ~95% protein sequence homology. The PDE11A level 
is highest in the prostate (22) of the various splice variants, 
PDE11A1 and PDE11A3 are found in the spleen (23,24) and 
PDE11A4 in the hippocampus (25). PDE11A is also expressed 
in the liver, skeletal muscle, pituitary gland, pancreas, and 
kidneys (18,19,22). Thus, PDE11A expression and structural 
characteristics vary by tissue location. This mini‑review 
summarizes the locations of PDE11A expression, the effects 
of structural differences, and disease involvement.

2. cAMP/cGMP‑dependent signaling

cAMP and cGMP are important secondary messengers 
involved in cell regulation and metabolism (6) driven by the 
GPCR. AC catalyzes conversion of ATP (Adenosine triphos‑
phate) to cAMP and inorganic pyrophosphate; cAMP activates 
protein kinase A (PKA), which in turn phosphorylates intra‑
cellular proteins that mediate specific responses (26). cAMP 
activation is triggered by adrenocorticotropic hormone bound 
to the adrenocorticotropic hormone receptor; this in turn 
induces dissociation of the Gsα subunit (encoded by the GNAS 
gene) from G‑protein, AC activation, cAMP generation, and 
PKA activation. PKA is a tetrameric complex of two regulatory 
subunits (PRKACA and PRKACB). The latter is responsible 
for phosphorylation of various enzymes and transcription 
factors, including the cAMP response element‑binding protein 
(CREB) (Fig. 1). cAMP signaling plays roles during several 
steps of tumorigenesis. Inactivation of germline mutations in 
the alpha regulatory subunit gene of PKA induces the Carney 
complex (27‑32) (an autosomal‑dominant disease character‑
ized by cardiac myxoma, schwannoma, and endocrine tumors; 
Carney complex is one of the most common types of primary 
pigmentary crystalline adrenocortical disease associated 
hyperplasia) (33). Such mutations are also implicated in cancer 
cell formation via activation of the stimulatory G protein of 
AC, increasing the cAMP level (34). Similar to cAMP, cGMP 
is degraded by class I phosphodiesterase in metazoans, some of 
which are activated by cGMP binding to the GAF domain (35). 
Cyclic GMP signaling is not observed in eubacteria, plants, 
and yeast but is found in vertebrates. Besides that, It was also 
found in Drosophila and Caenorhabditis elegans with cGMP 
signaling, which is mediated by cGMP regulatory protein 
kinase G, possibly Ras guanine nucleotide exchange factor, 
and ion channels, is similar to that of vertebrates. Furthermore, 
these regulators contain the cyclic nucleotide‑binding domain 
instead of the GAF domain (36,37). In metazoans, cGMP is 
synthesized by two guanylyl cyclases, one membrane‑bound 
and the other soluble, and has a common phylogenetic precursor. 

Although no close homologs of this protein have been found 
in Dictyostelium, Dictyostelium guanylyl cyclases  (38), 
guanylyl cyclases A and soluble guanylyl cyclases are similar 
to AC. guanylyl cyclases A has a dozen ubiquitous topologies 
on metazoan AC, whereas soluble guanylyl cyclases is just 
homologous to a small family of soluble AC present in verte‑
brates and bacteria (39,40). Upregulation of cGMP levels by 
PDEs induces activation of PKG, which promotes vasodilation 
and increases blood flow, particularly in the brain (41). cAMP 
also contributes to tumorigenesis via PDE (6), which increases 
cAMP and cGMP levels (1,8‑10), resulting in sustained activa‑
tion of the cAMP/PKA cascade. PDE is expressed in many 
different cancer cells, which may also host PDE mutations 
(examples PDE11A R804H, and R867G (6,42,43). An asso‑
ciation between PDE genetic changes and tumorigenesis has 
been noted, particularly in the prostate, testis, and adrenal 
cortex (44,45). Hence, mutations in PDE and circulation of 
cAMP and cGMP are essential not only for human development 
but also for cancer and many diseases.

3. Phosphodiesterase family

PDEs regulate cAMP and cGMP production and are essen‑
tial enzymes. PDEs are found in various tissues where they 
perform different roles. PDE features 11 different isoforms 
(Fig. 2). The four PDE1 isoforms (PDE1A, PDE1B, PDE1B1‑2, 
and PDE1C1‑2) are found in the brain, sperm, kidney, liver, 
pancreas, and thyroid gland (46‑48); the heart (49); immune 
cells (50); and the olfactory epithelium (51) respectively, and 
regulate both cAMP and cGMP action. The PDEs play roles in 
vascular smooth muscle contraction and proliferation, sperm 
function, dopamine signaling, and immune cell activation. 
The common PDE1 subtype inhibitors include Vinpocetine, 
IC224 (PDE1A), SCH51866, 8‑MeoM‑IBMX (PDE1B), 
Zaprinast (PDE1B1‑2), and Sildenafil (PDE1C1‑2). PDE2A1‑3 
is expressed in the adrenal glomerulosa  (52). The PDE2 
proteins regulate both cAMP and cGMP actions and control 
aldosterone and ACTH secretion and long‑term memory. 
Common PDE2A inhibitors include EHNA, BAY60‑7550, 
PDP, and IC933. PDE3 includes PDE3A1‑3 and PDE3B. The 
former is expressed in the heart  (53), adipocytes, oocytes, 
cardiac and vascular smooth muscle, myocardium, and plate‑
lets (54). PDE3B is expressed in heart muscle (55), the immune 
system (56), endothelial cells (mediating permeability and cell 
proliferation) (57), the brain (58) and the liver (59). PDE3A and 
PDE3B regulate both cAMP and cGMP production; PDE3A 
controls cardiac contraction, platelet aggregation, vascular 
smooth muscle contraction, cell maturation, and renin release. 
PDE3B modulates lipolysis, glycogenolysis, insulin secretion, 
and heart function. Common PDE3 inhibitors include amri‑
none, cilostazol, milrinone, and enoximone. In addition, many 
inhibitors have been reported to modulate PDEs (Table I). 
PDE4 includes PDE4A, PDE4B, PDE4C, and PDE4D. PDE4 
is expressed in the heart and small intestine (60), immune 
cells (61), and the brain (62). Unlike PDEs 1, 2, and 3, PDE4 
exhibits a higher affinity for cAMP than cGMP and controls 
brain function, monocyte and macrophage activation, neutro‑
phil infiltration, vascular smooth muscle proliferation, fertility, 
and heart β‑adrenergic signaling and excitatory/contract 
coupling. PDE5 includes PDE5A1‑3 expressed in the lung, 
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Figure 1. General cyclic AMP signaling pathway. cAMP is a nucleotide that acts as an important secondary transporter in numerous signal transmission 
pathways. The generation of cAMP is regulated by AC in a G‑protein‑dependent manner. The decomposition of cAMP is regulated by PDE. cAMP is involved 
in several signal transmission pathways, including controlling ion channel operation and PKA activity. When PKA is activated, phosphorylation of CREB 
activates the transcription of various target genes. This regulates various cell functions, including cell proliferation and differentiation, gene transcription, and 
protein expression. AC, adenylyl cyclase; CREB, cAMP reactive element binding protein; GPCR, G‑protein‑coupled receptor; PDE, phosphodiesterase; PKA, 
protein kinase A.

Figure 2. Structure and function of the PDE family. All PDEs regulate the levels of cAMP and cGMP or cAMP/cGMP. There are ~21 PDE classes in humans 
and mice. Based on structural similarities, such as sequence homogeneity, protein substrate specificity, dynamic properties, endogenous resection, and enzyme 
properties, it is classified into 11 different isoforms based on sensitivity to inhibitors. PDE shares a catalytic domain with a common COOH end. Different 
domains (CaM, cGMP binding, UCR, PAS and target domains) exist for each family. PDE, phosphodiesterase; CaM, calmodulin; PAS, Per‑Arnt‑Sim; UCR, 
upstream conserved region.
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penis, smooth muscle (28), platelets (63), brain (64) and cardiac 
muscle (65). Both PDE5 enzymes regulate cGMP; the nitrous 
oxide (NO)/cGMP effects in vascular smooth muscle, platelets, 
and the lower urinary tract; and the cardiac stress response. 
PDE6 includes PDE6A, PDE6B, and PDE6C expressed in 
photoreceptors (66) and the pineal gland (67). PDE6 regulates 
cGMP action, controls the cGMP concentrations of rod and 
cone photoreceptors, and is the primary effector enzyme of 
the phototransduction cascade. PDE7 features PDE7A1‑2 and 
PDE7B1‑3 found in immune cells (68), skeletal and cardiac 
muscles (69) and the brain (70). PDE7 modulates the cAMP 
activity and plays an important role in the regulation of human 
T cell function. PDE8 includes PDE8A1‑5 and PDE8B1‑3 
found in immune cells  (71), the heart  (72), the ovary and 
testes (73), the thyroid gland (74), placenta, brain (75) and the 
adrenal gland (76). Both PDE8s regulate cAMP activation and 
TSH levels, adrenal steroid production, luteinizing hormone 
signaling, and steroidogenesis in Leydig cells, and activate 
T cells. PDE9 includes PDE9A1‑6 expressed in the kidney, 
spleen, gut, and prostate (77). PDE9 regulates cGMP activation 
to play a role in energy balance. PDE10 includes PDE10A1‑2 
expressed in the brain, testis, and thyroid (78). PDE10 regu‑
lates both cAMP and cGMP actions and plays roles in striatal 
activation and behavioral activity. PDE11 includes PDE11A1‑4 
of the testis, pituitary gland, heart, kidney, liver  (18,19), 

prostate, adrenal gland, and colon (22), but only the A4 splice 
mutant is expressed in adrenal tissue. PDE11A regulates both 
cAMP and cGMP actions and is involved in spermatogenesis. 
PDE11A4 was recently found in the hippocampus  (23,79). 
Besides that, all PDEs are expressed somewhere in the CNS 
and hydrolyze cAMP and cGMP to perform their respective 
roles (Fig. 3A) (80). However, when the central nervous system 
is damaged, the increase of PDEs expression activates immune 
cells and decreases the regeneration of neuronal cells, resulting 
in the death of neural cells (Fig. 3B) (81). Therefore, all PDE 
families can perform their respective roles depending on the 
expression site, and all PDEs also can contribute to the growth 
and development of nerve cells and cancer cells.

4. PDE11A and tumors

cAMP and cGMP are important GPCR‑driven secondary 
messengers controlling cellular regulation and metabolism. 
cAMP is formed by the actions of AC and PDE and medi‑
ates cellular responses by activating PKA to phosphorylate 
intracellular proteins (4,5). In addition, the cAMP has been 
implicated in various tumorigenesis due to either increasing 
expression levels by activating the stimulatory G protein of 
AC or degraded by PDE11A. PDE11A encoded on chromo‑
some 2q31.2 is highly polymorphic and was also the first PDE 

Table I. Inhibitors commonly used for PDEs.

Family	 Type	C ommonly used inhibitors

PDE1	 PDE1A	 Vinpocetine, IC224, SCH51866, 8‑MeoM‑IBMX
	 PDE1B	
	 PDE1B1‑2	 Zaprinast
	 PDE1C1‑2	 Sildenafil
PDE2	 PDE2A1‑3	 EHNA, BAY60‑7550, PDP, IC933
PDE3	 PDE3A1‑3	� Milrinone, Tolafentrine, Cilostazol, Cilostamide, Trequinsin, OPC‑33540, Dihydropyridazinone, 

Lixazinone
	 PDE3B	
PDE4	 PDE4A	� Cilomilast, Rolipram, Ro20‑1724, Roflumilast, AWD12281, V11294A, SCH35159, Denbufylline, 

Arofylline, Tolafentrine, Zardaverine
	 PDE4B	
	 PDE4C	
	 PDE4D	
PDE5	 PDE5A1‑3	 Sildenafil, Tadalafil, DA8159, E402, Vardenafil, Zaprinast, DMPPO, Dipyridamole
PDE6	 PDE6A	 Zaprinast, Dypyridamole, Sildenafil, Verdenafil, Tadalafil
	 PDE6B	
	 PDE6C	
PDE7	 PDE7A1‑2	 BRL 50481, IC242, Dipyridamole, BMS‑586353, Thiadiazoles
	 PDE7B1‑3	
PDE8	 PDE8A1‑5	D ipyridamole
	 PDE8B1‑3	
PDE9	 PDE9A1‑6	 BAY 73‑669, SCH51866, Zaprinast
PDE10	 PDE10A1‑2	 Papaverine, Zaprinast, Dipyridamole, PQ‑10
PDE11	 PDE11A1‑4	D ipyridamole, Zaprinast

PDE, phosphodiesterase.
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associated with an adrenocortical tumor‑associated genetic 
condition. Furthermore, PDE11A degrades not only cAMP but 
also cGMP (82). Besides, several previous studies found that 
PDE11A mutations were mainly expressed in abnormal adrenal 
glands (19,83). Three PDE11A mutations have been reported 
in Cushing syndrome patients with a primary pigmented 
nodular adrenocortical disease or isolated micronodular 
adrenocortical disease without other genetic defects. An asso‑
ciation between the GWA single‑nucleotide polymorphism 
(SNP) of PDE11 and adrenocortical tumors has been also 
confirmed (43). Mutations and relationships of PDE11A have 
been reported in numerous types of cancer, as well as the most 
studied adrenal cortical tumors (https://www.cbioportal.org/). 
The heterozygous inactivation strains of PDE11A in patients 
were identified in non‑secreting adrenal cortical adenoma, 
and heterozygous missense strains were more common in 
Primary bilateral macronodular adrenal hyperplasia (24%) 
and adrenocortical carcinomas (19%) compared to control 
group (5.7%) (84). Furthermore, the p.R867G PDE11A muta‑
tion was found in one patient with familial Primary bilateral 
macronodular adrenal hyperplasia (85). In a Primary bilateral 
macronodular adrenal hyperplasia cohort, the frequency 
of all PDE11A variants was significantly higher in Primary 
bilateral macronodular adrenal hyperplasia patients (28%) 
than in controls (7.2%). The inactivating PDE11A mutation 
(p.R307) was also found in adrenocortical cancer‑associated 
genetic condition patients (19). Not only that, in the New York 

Cancer Project, Horvath et al (43,86) studied 745 patients with 
adrenocortical tumors and found PDE11A sequence changes 
including three truncation mutations (c.171Tdel/fs41X, 
c.919C>T/p.R307X and c.1655_1657TCTdelCCins/fs15X) 
and two missense substitutions [c.2411G>A(R804H) and 
c.2599C>(R867G)] (Fig. 4). Mutations in PDE11A have also 
been reported in testicular germ cell tumors. In 259 patients 
with testicular German cell tumors, 55 PDE11A strains (20 
missense, 4 splice sites, 2 non‑sense sites, 7 synonyms, 22 
introductions, 10 missense strains, 9 transcriptions) were 
identified. Among them, rare mutations (p.F258Y, p.G291R, 
p.V820M, p.R545X, p.K568R) were found. Mutations in 
PDE11A testicular germ cell tumors degrade PDE11A function, 
ultimately increasing the cAMP/cGMP level (87). Mutation 
of PDE11A was also observed in Carney complex, somatic 
dystrophy and various endocrine tumors (kidney, prostate, 
colon, lung and breast) (22,44,82,88,89). In addition, mutations 
in Y727C and E840K of PDE11A have been reported to be 
extremely high expressed in prostate cancer (90). Moreover, 
the role of PDE11A in brain tumors has recently been studied 
and reported due to the brain belongs to an essential part of 
the human body and is responsible for a critical part of the 
CNS (91). All brain cancers are graded from 1 to 4 based on 
how the cancer cells look under the microscope and how well 
they reproduce. The most aggressive and fast‑growing malig‑
nant Grade 4 tumor is called glioblastoma (92). Currently 
open surgery, radiation therapy (93), and chemotherapy (94) 

Figure 3. Effects of PDEs on the CNS through cAMP/cGMP regulation. Each protein in the PDE family has a unique location expressed in human tissues, 
but all PDEs are expressed in the CNS. (A) In the CNS, each PDE is involved in angiogenesis and neurogenesis by hydrolyzing cAMP/cGMP, and serves a 
role in lowering the activity of macrophages and T cells. (B) PDE expression increases when the CNS is damaged by disease or injury. Increased PDE causes 
inflammation and neuronal cell death. CNS, central nervous system; PDE, phosphodiesterase.
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are all using for the treatment of glioblastoma. However, they 
are ineffective or have a very high probability of side effects. 
Therefore, to develop an effective treatment strategy for glio‑
blastoma, the studies of analytical methods using molecular 
targeting are necessary. Besides, with the increase of studies 
on the association between PDE11A and the brain, it was 
found in the brain's hippocampus (62), and the deletion of 
PDE11A in the brain has been shown to increase microglial 
activation (25). More specially, recently, PDE11A was also 
found to be highly expressed in glioblastoma. Lee et al (95) 
found that the PDE11A expression level in glioblastomas was 
higher than in normal brains and PDE11A knockdown reduced 
cancer cell proliferation. This suggests that the expression 
of PDE11A can regulate the development of glioblastoma 
in patients. Other PDEs (PDE5, PDE8, and PDE10) are also 
involved in cancer cell proliferation; various mutations have 
been described (96‑98). Therefore, PDE11A and other PDEs 
fail to act as regulators of cAMP and cGMP, affecting the 
growth and development of cancer cells. Furthermore, it is 
thought that alternatives to PDEs related to such mutation can 
play a clear role in CNS and testicular cancer, where PDEs are 
highly expressed.

5. Other diseases cause by PDE11A

PDE11A is expressed in the human testis, pituitary gland, 
heart, kidney, liver, prostate, adrenal gland, colon, and 
hippocampus  (18,19,22,23,79), and is associated with 
tumors and other diseases. Adrenocorticotropin independent 
macronodular adrenocortical hyperplasia (a bilateral tumor) 
is a rare cause of Cushing's syndrome (less than 1% of all 
cases). Several types of adrenocortical tumors that cause the 
Cushing's syndrome were found to be caused by abnormal 
cAMP and could be caused by mutations in PDE11A (86). 
The bilaterality of such benign tumors suggests that a 
genetic factor is in play; Adrenocorticotropin independent 
macronodular adrenocortical hyperplasia has been associ‑
ated with PDE11A mutations (99,100). This mutation was 
also observed in patients with acromegaly. Acromegaly is 
a condition in which the body produces excessive growth 
hormones, causing body tissues and bones to grow faster. 
Mutations of PDE11A (Y727C, R804H, R867G, M878V, 
FS41X) were reported in patients with acromegaly  (101). 
PDE11A also affects brain expression and development. The 

previous paper reported that it might be related to a bipolar 
disorder associated with lithium reactivity (102). Moreover, 
two rare PDE11A pentasensory mutations were found in 
patients with Alzheimer's disease, and PDE11A levels were 
reduced in brain samples (79,103). Expression of PDE11A4 
is 3‑10 fold higher in the ventral hippocampus than in the 
eastern hippocampus. This means that in brain develop‑
ment, it has the potential to modulate behavior by regulating 
cytokine and hippocampal glutamate signaling and protein 
translation. Therefore, it is speculated that the expression 
level of PDE11A4 in the brain may affect schizophrenia and 
neurodevelopment  (23,104). In reality, PDE11A knockout 
can impair protein translation required in abdominal hippo‑
campus formation in the brian hippocampus, inhibiting 
memory integration, and demonstrating reduced expression 
of RSK2 and lower phosphorylation of S6 compared to WT 
mice. Based on these results, it is suggested that PDE11A can 
affect perception and association (105). Besides, PDE11A 
is also implicated in sperm physiology and is primarily 
described in the prostate. More specifically, PDE11A3 local‑
izes to the testis (106), and PDE11A4 is highly expressed 
in the prostate and developing sperm. In addition, fertiliza‑
tion is also related to sperm concentration and motility and 
the percentage of live sperm (107). It is regulated in part 
by cAMP and cGMP (7). Ejaculated sperm from PDE11A 
knockout mice that could regulate both cAMP and cGMP 
showed reduced sperm concentration and rate of progres‑
sion. This suggests that the expression of PDE11A may have 
physiological effects on tissues (107).

6. Further focus for PDE11A

PDE11A hydrolyzes cAMP and cGMP to AMP and 
GMP  (82). cAMP and cGMP are essential secondary 
messengers involved in the development and function of 
the immune and endocrine systems (82). cAMP signaling 
is mediated by AC activity triggered by the GPCR; PKA 
is activated and phosphorylates intracellular proteins (4,5), 
controlling cellular responses, development, and function. 
cAMP and cGMP signaling pathways are closely associ‑
ated with tumorigenesis  (31,32). Germline mutational 
inactivation of the alpha regulatory subunit gene of Protein 
Kinase CAMP‑Dependent Type I Regulatory Subunit Alpha 
triggers Carney complex (27,28) (an autosomal‑dominant 

Figure 4. Mutations of PDE11A by domain. PDE11A consists of long DNA (4,300 kb) and contains >20 exons. PDE11A has up to 1‑4 variants and has a GAF 
domain which binds to small molecules such as cGMP or is involved in protein‑protein interactions. All variants contain exons 8‑23 and the C‑terminal 
contains a catalytic domain. Mutations of PDE11A have been reported in several cancer types. F205L, A349T, Y727C, R804H and R867G have been reported in 
adrenocortical cancer, and R307X, Y727C, R804H, R867G and M878V have been reported in adrenocortical adenomas. Other mutations have been reported in 
acth‑independent macronodular adrenal hyperplasia, including A349T, D609N, H664G and R867G (42,43). GAF, cGMP specific phosphodiesterases‑Adenylyl 
cyclases‑FhlA; PDE, phosphodiesterase.
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disease characterized by cardiac myxomas and endocrine 
tumors). cAMP and cGMP contribute to tumorigenesis by 
affecting PDE action. PDE increases the intracellular levels 
of cAMP and cGMP, resulting in sustained activation of the 
cAMP and cGMP/PKA cascade. PDE expression is high in 
several types of cancer cells; PDE mutations were observed. 
The PDE isoforms fall into 11 families that share catalytic 
functions but differ in terms of subcellular localization and 
tissue expression. For example, PDEs that degrade both 
cAMP and cGMP include PDE1, 2, 3, 10, and 11; PDEs that 
degrade only cAMP include PDE4, 7, and 8; and PDEs that 
degrade only cGMP include PDE5, 6, and 9 (1,8‑10) The 
roles of the various PDE isoforms vary in different human 
tissues. PDE11A features four splice variants. PDE11A 
expression is highest in the prostate, but the enzyme is also 
expressed in the spleen, hippocampus, liver, skeletal muscle, 
pituitary, pancreas, and kidney (18,19). PDE11A regulates 
both cAMP and cGMP levels  (82), is expressed in many 
cancer cells, and several mutations have been defined. Three 
PDE11A truncations and two substitution mutations were 
identified in 745 patients (43,86). In addition, the PDE11A 
level was enhanced in glioblastomas and PDE11A knock‑
down inhibited cancer proliferation. High‑level PDE11A 
expression (and mutations) have been observed in various 
endocrine tumors in the kidney, prostate, colon, lung, and 
breast. The relationships between genetic PDE11A changes 
and tumors of the prostate, testis, and adrenal glands are 
under study. It is already clear that PDE11A and other PDEs 
are expressed by many cancers and are essential for cancer 
cell growth. Thus, the identification of PDE11A and other 
PDE‑related targets may aid the treatment of refractory 
cancers. Moreover, the expression of PDE11A in sperm 
affects sperm production, motility, and survival. This 
suggests that PDE11A and all other PDE families may be 
involved in physiology and development in various tissues 
by regulating cAMP and cGMP depending on the location 
and intensity of expression. Besides, the effect of PDE11A 
on the development of cancer cells also has sufficient poten‑
tial as a new therapeutic strategy in brain tumors and other 
cancers.
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