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	 Background:	 Myosin phosphatase target subunit 1 (MYPT1) serves as a subgroup of myosin phosphatases, and is frequent-
ly low-expressed in human cancers. However, little is known about the effects of MYPT1 in gastric cancer (GC).

	 Material/Methods:	 In our study, MYPT1 expression was detected by quantitative real-time reverse transcription PCR (qRT-PCR) 
in GC tissues, different advanced pathological stages of GC tissues, and preoperative and postoperative pa-
tients. Kaplan-Meier analysis was used to measure the overall survival of GC patients. MYPT1 expression was 
analyzed by qRT-PCR and Western blot assays in GES-1 cells and GC cells. Cell proliferation, cycle, and migra-
tion and invasion abilities were detected by CCK-8, flow cytometry, and Transwell assays. E-cadherin, TIMP-2, 
MMP-2, MMP-9 RhoA, and p-RhoA expressions were assessed by qRT-PCR and Western blot assays in treated 
SNU-5 cells.

	 Results:	 Our results indicated that MYPT1 was down-regulated in GC tissues and cells, and is related to clinical stag-
es and overall survival of GC. Functional research demonstrated that overexpression of MYPT1 can inhibit cell 
proliferation, cell cycle progression, and migration and invasion of GC cells. Many studies on mechanisms re-
ported that overexpression of MYPT1 dramatically improved the expression levels of cell cycle-related genes 
(Cyclin D1 and c-myc), significantly increased epithelial marker (E-cadherin) expression, and decreased inva-
sion-associated genes (TIMP-2 and MMP-2) expressions in SNU-5 cells. In addition, we found that MYPT1 sup-
pressed RhoA phosphorylation.

	 Conclusions:	 We verified that MYPT1 inhibits GC cell proliferation and metastasis by regulating RhoA phosphorylation.
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Background

Gastric cancer (GC) is one of the most common malignant tu-
mors, with the third highest mortality rate of cancer in the 
world [1,2]. In China, the morbidity and mortality of GC ranks 
high on the list of malignant tumors, and there are more than 
400 000 new-onset cases each year [3,4]. At present, diag-
nosing and treating GC are becoming quite advanced [5–7]. 
However, there are no symptoms, or only mild symptoms, in 
the early stages of GC [8,9]. Patients lacking early diagnostic 
biomarkers are often diagnosed late and cannot be treated at 
the optimal time [9]. The main treatments for GC patients are 
surgical resection and chemoradiation [10,11]. However, the 
5-year survival rate of GC is only 40% because of frequent re-
currence [12,13]. At present, the lack of diagnostic biomarkers, 
prognostic indicators, and effective therapeutic targets seri-
ously limits effective treatment of GC. Therefore, it is impor-
tant for the mechanism researches of the development of GC. 
Recently, accumulating evidence has shown that the altera-
tion of MYPT1 expression is involved in tumorigenesis [14–16].

The myosin phosphatase-targeting protein (MYPT) family mainly 
includes MYPT1, MYPT2, MYPT3, MBS85, and TIMAP, which serve 
as targeted and regulated subunits and can confirm the sub-
strate-specificity of the type 1 phosphatase subunit (PP1cd) [17]. 
MYPT1, MYPT2, and MBS85 genes contain c-terminal leucine 
zipper domain, which can regulate the depolymerization and 
the protein interaction [18]. The MYPT family also can be regu-
lated by phosphorylation activated by different protein kinas-
es. For example, MYPT1, MYPT2, and MBS85 phosphorylated 
by Rho kinase finally can inhibit phosphatase activity in the 
process of smooth muscle contraction and Ca2+ sensitivity [19].

MYPT1 is mainly involved in the RhoA/ROCK signaling path-
way, and RhoA/ROCK kinase can regulate MYPT1, MYPT2, and 
MBS85 expression through phosphorylation, while the phos-
phorylation sites of MYPT1 induced by ROCK are mainly Thr696 
and Thr853 [20,21]. The roles and mechanisms of MYPT1 in 
smooth muscle cell contraction or non-myocyte movement are: 
ROCK1/2 and ZIPK inhibit MYPT1 activity through promoting 
the phosphorylation of the T696 and T853 sites in MYPT1; CPI-
17 and PH-1 can directly inhibit MYPT1, release Ca2+, activate 
myosin through myosin light chain kinase (MLCK), and then 
induce smooth muscle cell contraction or non-smooth muscle 
cell migration [22–24]. In addition, PKA and PKG can promote 
phosphorylation of Ser668, Ser692, Ser695, and Ser852 sites 
in MYPT1 to activate its activity. Telokin can directly activate 
MYPT1, MYPT1 activation can inhibit myosin light streptoki-
nase, and then relax smooth muscle cells [25,26].

The MYPT family play important roles in the development of 
diseases such as cancer, hypertension, and Parkinson’s disease 
[27–29]. Studies have indicated that MYPT1 plays vital roles 

in the development and progression of cancers, such as cell 
cycle, migration, and invasion [16,30–33]. The compounds of 
MYPT1 and protein phosphatase 1 (PP1) can dephosphorylate 
the receptor interacting protein, and inhibit the activation of 
proteins [34,35]. MYPT1 can reduce the vasodilatation reac-
tion mediated by nitrogen oxide through changing the gener-
ation of MYPT1 LZ+ [36]. MYPT1 has many different binding 
sites and subcellular interactions, and resistance or activa-
tion of MYPT1 expression may be a therapeutic target for tu-
mors [37]. In this study, we demonstrated the expression lev-
el of MYPT1 in GC tissues and cells, and the relationship with 
clinical stages and overall survival of GC. We also verified the 
roles of MYPT1 in GC cell proliferation, cell cycle progression, 
migration, and invasion. Furthermore, we proved the mech-
anisms of MYPT1 in GC, such as the regulation of MYPT1 on 
cell cycle-related genes (Cyclin D1 and c-myc) expressions, the 
regulation of MYPT1 on invasion-associated genes (E-cadherin, 
TIMP-2, MMP-2, and MMP-9), and the regulation of MYPT1 on 
RhoA phosphorylation. We found that MYPT1 may be a novel 
therapeutic target for the treatment of GC.

Material and Methods

Clinical samples

Gastric cancer tissue samples and adjacent normal tissues (5 
cm away from the tumor) from 68 GC patients were collect-
ed from Tongde Hospital of Zhejiang Province from February 
2011 to June 2016. Informed consent was obtained from all 
GC patients, and ethics approval was granted by the Ethics 
Committee of Tongde Hospital of Zhejiang Province. All tis-
sues were immediately put in liquid nitrogen after removal 
from GC patients, and stored at –80°C until used.

Peripheral blood from 43 GC patients was extracted before and 
14 d after surgery. We collected 5 ml of blood and allowed it 
to clot at room temperature for 30 min to 2 h. Serum was iso-
lated from all blood samples using a two-step centrifugation 
protocol (2000 g for 10 min at 4°C, 12 000 g for 10 min at 
4°C). After separation, serum samples were added into RNase 
DNase-free tubes and stored at –80°C.

Cell culture

Gastric epithelial cell (GES-1) and GC cell lines (SNU-5, MKN-
45, BGC-823, SGC-7901, AGS, and HGC-27) were purchased 
from the Shanghai Institute of Biochemistry and Cell Biology, 
Chinese Academy of Sciences (Shanghai, China). All cells were 
inoculated into a sterile culture bottle, and incubated in RPMI-
1640 medium (HyClone, Cat. No. SH30027) with 10% fetal 
bovine serum (FBS, Cat. 10082-147, Gibco/Life Technologies, 
Norwalk, CT), 100 U/mL penicillin and 100 U/mL streptomycin 
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(Invitrogen, Carlsbad, CA, Cat. No. 15140-12) at 37°C and 5% 
CO2 saturation. The culture medium was replaced every 2–3 d. 
Cells were digested with 0.25% trypsin ion when cell fusion 
reached to 80%–90%, and were inoculated to culture bottles 
(25 cm2) with 5×105 cells.

Plasmid construct and transfection

To construct the pcDNA3.1-MYPT1 expression vector, the com-
plete sequence of human MYPT1 gene was synthesized and 
inserted into a pcDNA3.1 (+) vector (GenePharma, Shanghai, 
China). SNU-5 cells (5×105 cells) at the logarithmic phase were 
inoculated in 6-well plates and incubated for 12 h. Then, cells 
were transfected with pcDNA3.1 and pcDNA3.1-MYPT1 plasmid 
using Lipofectamine 2000 reagent (Invitrogen, cat. no. 11668-
019) and Opti-MEM reduced serum medium (Life Technologies), 
according to the manufacturer’s instructions, when the cell fu-
sion rate reached to 80%.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from the treated SNU-5 cells by us-
ing TRIzol reagent (Invitrogen).

The RNA concentration was quantitated by using the OD val-
ue. Then total RNA (1 μg) was used to synthesize comple-
mentary DNA (cDNA) using the high-capacity cDNA reverse 
transcription Kit (cat. no. 4368814) in a total volume of 20 μl 
according to manufacturer’s instructions. RT-qPCR reactions 
were performed using SYBR Green (Applied Biosystems, cat 
#4368577) in a total volume of 20 μl according to the man-
ufacturer’s instructions. The reaction process was as follows: 
95°C for 10 min, 95°C for 15 s for 40 cycles, and 60°C for 60 s. 
The results were measured on a ABI 7500 real-time PCR instru-
ment (Applied Biosystems, Carlsbad, CA). The relative mRNA 
expression levels were analyzed using 2–DDCt method [38]. The 
primers were as follows: 
MYPT1: 5’-GAGCCTCCGGTGGTGAAG-3’ (forward),
5’-GGCAGTGAGTCCGTCCAC-3’ (reverse);
Cyclin D1: 5’-CTTCCTGTCCTACTACCGCC-3’ (forward),
5’-CTCCTCCTCTTCCTCCTCCT-3’ (reverse);
c-myc: 5’-AGCATACATCCTGTCCGTCC-3’ (forward), 
5’-CAAGAGTTCCGTAGCTGTTCA-3’ (reverse);
E-cadherin: 5’-ACT GAT TTT CCC ACG GAC CT-3’ (forward),
5’-CTC CTC GCT TTC CAT GTG TG-3’ (reverse); 
TIMP-2: 5’-TTCAAAGGGCCTGAGAAGGA-3’ (forward),
5’-TCAGGCTCTTCTTCTGGGTG-3’ (reverse);
MMP-2: 5’-GATACCCCTTTGACGGTAAGGA-3’ (forward),
5’-CCTTCTCCCAAGGTCCATAGC-3’ (reverse);
MMP-9: 5’-TTCAGGGAGACGCCCATTTC-3’ (forward), 
5’-AAACCGAGTTGGAACCACGA-3’ (reverse);
GAPDH: 5’-GCC ATC ACA GCA ACA CAG AA-3’ (forward),
5’-GCC ATA CCA GTA AGC TTG CC-3’ (reverse).

Western blot assay

Total protein was extracted from the treated SNU-5 cells us-
ing RIPA lysis buffer (100–200 μL lysate, cat# 89901; Thermo 
Scientific, Rockford, IL, USA). Protein was quantified using a 
BCA protein quantification kit (23225, Pierce, Rockford, IL, 
USA). Then, 30 μg protein was separated using 10% SDS-
polyacrylamide gel electrophoresis (SDS-PAGE, 150V, 90 
min), and transferred onto a polyvinylidene difluoride (PVDF, 
Millipore, Billerica, MA) membrane (100 V, 90 min). The PVDF 
membrane was blocked with 5% non-fat dried milk in TBST 
solution for 1 h at room temperature, and incubated with 
primary antibodies at 4°C overnight. The next day, the PVDF 
membrane was washed 3 times with TBST solution (10 min/
time), and incubated with secondary antibody (cat. number 
LK2003L, Sungene Biotech Co., Ltd, China) for 1 h at room tem-
perature. The protein was detected using an enhanced che-
miluminescence (ECL) substrate kit (Thermo scientific Pierce) 
and ImageJ software (NIH, Bethesda, Maryland, USA). The 
gray values of objective proteins and internal reference were 
analyzed by Quantity One V4.6.2 software (Bio-Rad, USA). 
The primary antibodies were anti-GAPDH antibody (Dilution 
1: 2000; Abcam, ab8245), anti-Bax antibody (Dilution 1: 1000; 
Abcam, ab32503), anti-MYPT1 antibody (Dilution 1: 1000; BD 
Biosciences, Cat 612164), anti-Cyclin D1 antibody (Dilution 
1: 1000; Cell Signaling Technology, cat. 2922), anti-c-myc an-
tibody (Dilution 1: 1500; Abcam, ab32072), anti-E-cadherin 
antibody (Dilution 1: 1000; Cell Signaling Technology, Cat# 
3195S), anti-TIMP-2 antibody (Dilution 1: 1000; Abcam, cat. 
no. ab180630), anti-MMP-2 antibody (Dilution 1: 1000; Cat. 
No. PF023, Millipore, Darmstadt, Germany), anti-MMP-9 anti-
body (Dilution 1: 50; Santa Cruz, cat # sc-21733), anti-p-RhoA 
antibody (Dilution 1: 1000; Abcam, ab41435), anti-RhoA anti-
body (Dilution 1: 2000; Abcam, cat. no. ab187027).

Proliferation assay

SNU-5 cells (5×104 cells/mL) in the logarithmic phase were 
seeded into 96-well plates in 200 μL of medium and transfect-
ed with pcDNA3.1 and pcDNA3.1-MYPT1 for 48 h at 37°C with 
5% CO2. To detect cell proliferation, 10 μL of Cell Counting Kit-
8 (CCK-8; Dojindo Laboratories, Kumamoto, Japan) was added 
to each well. After 3 h, the absorbance was detected at 450 
nm using a Thermo Multiskan Ex plate reader (Thermo Fisher, 
United Kingdom).

Flow cytometric analysis

The SNU-5 cells (6×107 cells) at the logarithmic phase were 
seeded into 6-well plates and were transfected with pcDNA3.1 
and pcDNA3.1-MYPT1 for 48 h in an incubator (37°C, 5% CO2). 
Cells were collected and treated with pre-cooled 70% ethanol 
(1 ml), and then the treated cells were treated with 500 μL 
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phosphate-buffered saline (PBS, cat#AM9625) containing prop-
idium iodide (PI. Cat. P4170, Sigma-Aldrich, USA, 50 μg/mL), 
RNase A (100 μg/mL, Cat# 109169), and 0.2%Triton X-100 
(Sigma-Aldrich, cat. no. T8787) in the dark for 30 min. Finally, 
the results were obtained by using a flow cytometer, and cell 
cycle analysis was performed by FlowJo software (Tree Star, 
Ashland, OR).

Transwell assay

Cell migration and invasion were confirmed by detecting the 
ability of cells to move to another place. The cells at the log-
arithmic phase were digested, washed with PBS twice, and 
suspended in RPMI-1640 medium without FBS, and the con-
centration was adjusted to 2×105 cells/ml. Cells suspensions 
(100 μL) were added to the polycarbonate membrane of the 

upper chamber with (for the invasion assay) or without (for 
the migration assay) Matrigel (BD Bioscience, San Diego, CA).

The bottom chamber was filled with complete medium (500 μL). 
The cells were incubated at 37°C for 24 h. Cells on the bottom 
of the coated Transwell chamber were washed twice, fixed with 
4% paraformaldehyde (Cat#P6148) for 30 min, and stained with 
0.1% crystal violet (no. C3886-100G0; Sigma-Aldrich, St. Louis, 
MO) for 15 min at room temperature. After drying, the number 
of migrated or invaded cells was analyzed from 5 randomly se-
lected fields under a microscope at a magnification of ×100.

Statistical analysis

All the experimental results are presented as mean ±SD of at 
least 3 independent experiments. The data were analyzed by 
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Figure 1. �Relative MYPT1 expression in GC and the relationship with overall survival of GC. (A) The mRNA expression level of 
MYPT1 was detected by qRT-PCR assay in GC tissues and corresponding non-tumor tissues (n=68, *** P<0.001). (B) MYPT1 
expression was measured by qRT-PCR assay in different advanced pathological stages normal (N0, n=43), I & II phase (N1 
and N2, n=33), III and IV phase (N3 and N4, n=35), * P<0.05, ** P<0.01. (C) Based on MYPT1 expression in GC tissues, the 
overall survival of GC patients was calculated by Kaplan-Meier analysis (P=0.009). (D) MYPT1 expression was analyzed by 
qRT-PCR assay in preoperative and postoperative patient serum (n=43, P=0.0032).
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using IBM SPSS Version 20 with the t test. Statistical signifi-
cance was defined as P<0.05.

Results

MYPT1 was down-regulated in GC

To explore MYPT1 expression levels in GC, we used qRT-PCR 
assay to measure its expression in 68 pairs of GC (tumor tis-
sues) and adjacent non-cancerous tissues (normal tissues). 
The results indicated that the mRNA expression level of MYPT1 
was significantly decreased in GC tissues compared with nor-
mal tissues (P<0.001, Figure 1A). Furthermore, we found that 
MYPT1 expression was significantly decreased in phase I and 
II (N1 and N2, n=33) compared with normal tissues (N0, n=43) 
(P<0.05); and was significantly down-regulated in phase III and 
IV (N3 and N4, n=35) compared with phase I and II (N1 and 
N2, n=33) (P<0.01, Figure 1B).

MYPT1 expression was related to overall survival of GC

To further explore the correlation between MYPT1 expression 
and GC survival, Kaplan-Meier analysis was used to assess the 
overall survival of GC patients according to MYPT1 expression. 
The results revealed that GC patients with high MYPT1 expres-
sion had a dramatically longer survival time compared with 
those with low MYPT1 expression (P=0.009, Figure 1C). In ad-
dition, we found that MYPT1 expression was higher in post-
operative patients than in preoperative patients (P=0.0032, 
Figure 1D). Therefore, MYPT1 expression was associated with 
survival and prognosis.

Overexpression of MYPT1 inhibits GC cell proliferation

According to the above observations, we then demonstrated 
the function and mechanism of MYPT1 in GC. Firstly, MYPT1 
expression was detected in gastric epithelial cell (GES-1) and 
GC cell lines (SNU-5, MKN-45, BGC-823, SGC-7901, AGS, and 
HGC-27). The results revealed that MYPT1 expression was 
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markedly inhibited in 6 GC cell lines compared with the GES-
1 cells (P<0.01, P<0.001, Figure 2A, 2B). We also found that 
MYPT1 expression was lower in SNU-5 cells than in other GC 
cell lines, and we chose to use SNU-5 cells in subsequent ex-
periments. SNU-5 cells were treated with PBS (Blank), pcD-
NA3.1, and pcDNA3.1-MYPT1 for 48 h, respectively. MYPT1 ex-
pression was analyzed in treated SNU-5 cells, and the results 
showed that MYPT1 was highly expressed in the pcDNA3.1-
MYPT1 group compared with the pcDNA3.1 group (P<0.001, 
Figure 2C, 2D). In addition, we proved that overexpression of 
MYPT1 significantly inhibited the proliferation ability of SNU-
5 cells (P<0.05, P<0.001, Figure 2E).

Overexpression of MYPT1 induces SNU-5 cell cycle arrest 
in G1 phase

Cell cycle is connected with cell proliferation. Therefore, we fur-
ther assessed the cell cycle distributions using flow cytometry. 
SNU-5 cells transfected with pcDNA3.1-MYPT1 showed significant 
G1 arrest and S phase reduction compared with the pcDNA3.1 
group (P<0.05, P<0.01, Figure 3A). In addition, we analyzed cell 
cycle-related genes (Cyclin D1 and c-myc) expressions using qRT-
PCR and Western blot assays, and found that overexpression of 
MYPT1 dramatically improved the expression levels of Cyclin D1 
and c-myc in SNU-5 cells (P<0.05, P<0.01, P<0.001, Figure 3B, 3C).

Overexpression of MYPT1 inhibits SNU-5 cell migration 
and invasion

Because we found that overexpression of MYPT1 inhibited GC 
cell proliferation and induced GC cell cycle arrest, we further 
assessed the effect of MYPT1 on migration and invasion, and 
the data showed that overexpression of MYPT1 markedly in-
hibited the migration and invasion capacities of SNU-5 cells 
(P<0.01, P<0.001, Figure 4A, 4B). We also analyzed the influ-
ences of MYPT1 on metastasis-associated genes (E-cadherin, 
TIMP-2, MMP-2, and MMP-9) expressions. As shown in Figure 
4C and 4D, overexpression of MYPT1 remarkably increased 
E-cadherin expression and decreased TIMP-2 and MMP-2 ex-
pressions (P<0.05, P<0.01, P<0.001).

Overexpression of MYPT1 suppresses RhoA 
phosphorylation

Studied have shown that small GTPases, which are onco-
genic genes, have important effects in the tumorigenic pro-
cess [39,40]. RhoA was a major member of the Rho family of 
small GTPases-Ras-like proteins, which is involved in prolifera-
tion, differentiation, migration, and invasion of cancers [41–45]. 
Therefore, we analyzed the effect of MYPT1 on RhoA ex-
pression, and found that p-RhoA expression was obviously 
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Figure 3. �Overexpression of MYPT1 induces SNU-5 cell cycle arrest in G1 phase. (A) The cell cycle was analyzed flow cytometry in 
treated SNU-5 cells, and the values of G1, S, and G2 were shown in the bar graphs (* P<0.05, ** P<0.01). (B) qRT-PCR and 
(C) Western blot assays were performed to analyze the mRNA and protein expression levels of Cyclin D1 and c-myc in treated 
SNU-5 cells (* P<0.05, ** P<0.01, *** P<0.001).
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down-regulated in the pcDNA3.1-MYPT1 group compared with 
the pcDNA3.1 group (P<0.001, Figure 5).

Discussion

GC is one of the most frequently diagnosed cancers and is the 
second leading cause of cancer-related death worldwide [46,47]. 
China has the highest incidence of GC and the highest rates of 
GC mortality [48]. Although several strategies have been pro-
posed for GC screening, most patients are diagnosed at ad-
vanced stage, with dismal outcome [49]. Although several mo-
lecularly targeted drugs have been developed, most advanced 
GC has a poor prognosis [50], and a new appropriate site for 
targeted therapy needs to be found. At present, MYPT1 has 

been established as having a key role in regulating various bi-
ological and pathological processes in a great number of hu-
man diseases [14,51].

ROCK is a serine/threonine kinase that can participate in the 
regulation of cell adhesion, movement, proliferation, differenti-
ation, and apoptosis. Myoglobin phosphatase (MLCP) and my-
osin light chain (MLC) are the 2 main substrates of ROCK [52]. 
MLCP is composed of catalytic domain, MLC-binding subunit, 
and non-catalytic subunits, and the action sites are located 
in the MYPT-1 binding subunit of MLCP [53]. Studies have in-
dicated that myosin phosphatase-RhoA interacting protein 
(M-RIP) can combine Rho A/ROCK and MLCP. MYPT-1 is phos-
phorylated by ROCK, which causes MLCP inactivation; howev-
er, MYPT-1 phosphorylation can lead to MYPT-1 dissociation, 
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Figure 4. �Overexpression of MYPT1 inhibits SNU-5 cell migration and invasion. The migration (A) and invasion (B) abilities of the 
treated SNU-5 cells were measured by Transwell assays (** P<0.01, *** P<0.001). (C) qRT-PCR and (D) Western blot assays 
were performed to detect the mRNA and protein expression levels of E-cadherin, TIMP-2, MMP-2 and MMP-9 in treated SNU-
5 cells (* P<0.05, ** P<0.01, *** P<0.001).
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which can block the dephosphorylation effect of MLCP on 
MLC. Both of them can increase the content of phosphorylat-
ed MLC, and finally result in enhanced contraction of smooth 
muscle [54]. In addition, ROCK can phosphorylate MLCP and 
directly phosphorylate MLC to increase the content of phos-
phorylated MLC [55].

In our study, we found that MYPT1 was significantly decreased 
in GC tissues, corresponding to the TNM stage of GC. We also 
found that GC patients with high MYPT1 expression had a lon-
ger survival time, and MYPT1 expression was higher in post-
operative patients than in preoperative patients. In addition, 
the results indicated that overexpression of MYPT1 can sup-
press RhoA phosphorylation. In functional experiments, we 
have demonstrated that MYPT1 inhibits GC cell proliferation, 
migration, and invasion, and induces GC cell cycle arrest.

Previous studies have demonstrated that MYPT1 and CPI-17 
can regulate basal LC20 phosphorylation in gastric fundus, mu-
rine gastric antrum, and proximal colon smooth muscles [56]; 
MYPT1 phosphorylation can regulate mammalian mitotic pro-
gression [57]; MYPT1 can affect contractility and microtubule 
acetylation to regulate matrix assembly and integrin adhe-
sions [58]; MYPT1 degradation can promote the development 
of tolerance to nitric oxide in porcine pulmonary artery [59]; 
MYPT1 can affect vascular smooth muscle function and main-
tain blood pressure balance [60]; and phosphorylation of CPI-17 
and MYPT1 can induce Ca2+ sensitization in intestinal smooth 
muscle [61]. In addition, a study showed that MYPT1 can pro-
mote the cycle progression of cancer cells [15]. In the present 
study, we found that MYPT1 expression is related to the de-
velopment of GC; therefore, we suggest that MYPT1 might be 
a potential biomarker and therapeutic strategy for GC.

C-myc is an important regulation factor of the cell cycle, which 
is located in chromosome 8. C-myc can regulate many down-
stream genes, and then regulate the progression of cell cycle 
and apoptosis [62,63]. In the past few decades, it was found 

that C-myc participates in the tumorigenesis of many malig-
nant tumors [64]. In addition, C-myc is strictly regulated in nor-
mal cells and is out of control in tumor cells [65,66]. Cyclin Ds 
are the positive regulatory factors of the cell cycle, and can 
make cells access the S phase. A study proved that cyclin D1, 
which is a representative Cyclin D, has the most direct rela-
tionship with tumors. Overexpression of cyclin D1 can lead to 
G1 phase decrease and division speed acceleration [67]. In our 
study, we demonstrated that MYPT1 dramatically increased 
Cyclin D1 and c-myc expression, and our data indicate that 
MYPT1 inhibits GC cell proliferation and induces GC cell cycle 
arrest by Cyclin D1 and c-myc.

Matrix metalloproteinase (MMP) is secreted by connective tis-
sue and is part of the extracellular matrix degradation Zn2+-
dependent protease family [68]. Studies showed that MMPs, 
such as MMP-2 and MMP-9, play major roles in the physio-
logical and pathological processes of embryonic development, 
cell migration, angiogenesis, wound healing, atherosclerosis, 
malignant tumor infiltration, and metastasis [69–71]. Tissue 
inhibitor of metalloproteinases (TIMPs) is a set of low molec-
ular weight glycoproteins that are widely distributed in tis-
sues and fluids that can be produced and secreted by fibro-
blasts, epithelial cells, and endothelial cells. In addition, TIMPs 
are multifunctional proteins which can inhibit the activity of 
MMPs [72]. TIMPs participate in extracellular matrix remod-
eling and various pathological processes, such as tumor inva-
sion, diffusion metastasis, and tissue fibrosis [73,74]. Previous 
research has shown that E-cadherin plays an important role 
in cellular adhesion in tumors, and its deletion was associat-
ed with tumor metastasis [75]. In our study, we found that 
MYPT1 increased E-cadherin expression and decreased TIMP-
2 and MMP-2 expressions. The results indicate that MYPT1 in-
hibits GC cell migration and invasion by regulating E-cadherin, 
TIMP-2, and MMP-2.

Figure 5. �Overexpression of MYPT1 suppresses RhoA phosphorylation. RhoA and p-RhoA expressions were detected by Western blot 
assay in treated SNU-5 cells, and the relative expression levels were counted from 3 independent experiments (*** P<0.001).
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Conclusions

In summary, MYPT1 expression is associated with TNM stage, 
survival time, and prognosis of GC patients. In addition, MYPT1 
inhibits GC cell proliferation, migration, and invasion via acti-
vating RhoA phosphorylation. This study identifies MYPT1 as 
a novel prognostic marker and candidate drug target for GC.
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