
Photoreceptor apoptosis is a common cause of blindness 
[1,2]. In this condition, elements of the inner retina survive in 
a state of deafferentation. One therapeutic approach for this 
condition is to attempt to restore visually evoked patterns of 
electrophysiological activity to the surviving neurons in the 
hope that they will propagate to the brain. Implanted elec-
tronic devices that directly excite surviving neurons of the 
inner retina according to the pattern of light exposure restore 
some sight in such patients [3,4]. Nanophotovoltaic strategies, 
such as optogenetics [5-7], azobenzene photoswitches [8-11], 
or even quantum-dot conjugated carbon-nanotubes [12], 
have been proposed as alternative approaches to rendering 
the surviving inner retina light sensitive without having to 
implant complex electronic devices in such a delicate portion 
of the central nervous system (CNS).

Although the inner retina appears to be relatively well 
preserved in the dystrophic retina of humans and animal 

models, deafferentation induces remodeling of retinal circuits 
[13-15] and hyperactivity in retinal ganglion cells (RGCs) 
[16-18] characterized by bursts of action potentials recurring 
at regular (about 10 Hz) intervals. These oscillations traveling 
across the RGC syncytium at speeds of 3–8 mm/s [19,20] are 
driven by fluctuations in the voltage membrane of one type 
of amacrine cells (ACs), AII (AII ACs), electrically coupled 
to ON cone bipolar cells [21,22]. Application of meclofenamic 
acid (MFA), a potent gap junction blocker, can decouple AII 
ACs from ON cone bipolar cells leading to the removal of the 
hyperactive spiking of RGCs [23,24]. Using MFA to remove 
this pathological hyperactivity in partially rehabilitated 
retinas has been reported to improve the bioelectric signal 
generated by one optogenetic actuator (channelrhodopsin) 
when expressed in RGCs [25,26]. Here, we set out to test 
the generalizability of that finding to ask whether it can be 
extended to a therapeutic intervention using a photopigment 
(human rod opsin) with a quite different mode of action and 
targeted for expression elsewhere in the retinal circuitry (ON 
bipolar cells) [27].
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Purpose: Retinal dystrophy through outer photoreceptor cell death affects 1 in 2,500 people worldwide with severe 
impairment of vision in advanced stages of the disease. Optogenetic strategies to restore visual function to animal 
models of retinal degeneration by introducing photopigments to neurons spared degeneration in the inner retina have 
been explored, with variable degrees of success. It has recently been shown that the non-steroidal anti-inflammatory 
and non-selective gap-junction blocker meclofenamic acid (MFA) can enhance the visual responses produced by an 
optogenetic actuator (channelrhodopsin) expressed in retinal ganglion cells (RGCs) in the degenerate retina. Here, we 
set out to determine whether MFA could also enhance photoreception by another optogenetic strategy in which ectopic 
human rod opsin is expressed in ON bipolar cells.
Methods: We used in vitro multielectrode array (MEA) recordings to characterize the light responses of RGCs in the 
rd1 mouse model of advanced retinal degeneration following intravitreal injection of an adenoassociated virus (AAV2) 
driving the expression of human rod opsin under a minimal grm6 promoter active in ON bipolar cells.
Results: We found treated retinas were light responsive over five decades of irradiance (from 1011 to 1015 photons/cm2/s) 
with individual RGCs covering up to four decades. Application of MFA reduced the spontaneous firing rate of the 
visually responsive neurons under light- and dark-adapted conditions. The change in the firing rate produced by the 2 s 
light pulses was increased across all intensities following MFA treatment, and there was a concomitant increase in the 
signal to noise ratio for the visual response. Restored light responses were abolished by agents inhibiting glutamatergic 
or gamma-aminobutyric acid (GABA)ergic signaling in the MFA-treated preparation.
Conclusions: These results confirm the potential of MFA to inhibit spontaneous activity and enhance the signal to noise 
ratio of visual responses in optogenetic therapies to restore sight.
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METHODS

Viral injections: Adult C3H mice were used in this study. 
All animal experiments and care were conducted in accor-
dance with the UK Animals (Scientific Procedures) Act of 
1986 (UK) and approved by the University of Manchester 
ethical review committee. Animals were kept in a 12 h:12 
h light-dark cycle at a temperature of 22 °C with food and 
water available ad libitum. Experiments were undertaken in 
mice between 8 and 12 weeks after intravitreal injection of 
adenoassociated virus (AAV) vector administered in mice 
anaesthetized with ketamine (80 mg/kg, Narketan-10, 100 
mg/ml, Ventoquinol, Buckingham, UK) and xylazine (8 mg/
kg, Rompun 2% w/v, Bayer, Kansas City, KS) between 8 and 
10 weeks of age. Each eye was injected with 3 µl of virus (1013 
genomic counts) containing a rod opsin (AAV2-ITR-grm6-
RHO-polyA-WPRE-ITR) expression construct, in combina-
tion with 0.5 ml of glycosidic enzyme solution containing 
0.125 units each of hyaluronan lyase and heparinase III (E.C. 
4.2.2.1 and E.C. 4.2.2.8; Sigma, Irvine, UK).

Electrophysiological recordings: The mice were euthanized 
by cervical dislocation and immediately enucleated. Retinal 
dissections were performed under fluorescent white light in 
carboxygenated (95% O2/5% CO2) artificial cerebrospinal 
fluid (aCSF, concentration in mM: 118 NaCl, 25 NaHCO3, 1 
NaH2PO4, 3 KCl, 1 MgCl2, 2 CaCl2, 10 C6H12O6, 0.5 L-gluta-
mine; Sigma-Aldrich).

While the eyes were maintained with a pair of thick 
forceps, the edge of the cornea was pierced with a hypo-
dermic needle (23 gauge, Microlance, Becton Dickinson, 
Franklin Lakes, NJ). Then, the cornea was sheared along 
the ora serrata with vannas scissors (WPI, Worcester, MA), 
and the lens was gently removed from the eye cup. In these 
animals, the retina was often stuck to the lens (possibly due 
to digestion of the internal limiting membrane (ILM) by the 
enzymes injected with the virus or inflammation secondary 
to the intravitreal injection). Therefore, the retina had to be 
isolated from the lens with two pairs of Dumont #5 forceps 
(WPI) by delicately pulling at the ora serrata.

The retina was incised multiple times at the edges 
to maximize planarization and then mounted ganglion 
cell layer (GCL) down on a transparent 256 channel Multi 
Electrode Array (MEA; 256MEA200/30iR-ITO; Multi 
Channel Systems GmbH, Reutlingen, Germany). A Cyclo-
pore membrane (5 μm pores; Whatman Plc, Little Chalfont, 
UK) held the retina in place while weighted down by two 
stainless steel anchors (about 0.75 g each) bearing a frame-
work of parallel polyimide-coated fused silica capillaries 
(TSP320450, Polymicro Technologies, MOLEX LLC, Lisle 
IL).

Electrophysiological signals were sampled at 25 kHz 
using MC_Rack software through a USB-MEA256 amplifier 
(Multi Channel Systems). To record the extracellular action 
potentials, the electrophysiological signals were filtered (200 
Hz high pass, Butterworth second order) and thresholded 
(4 standard deviations below the noise level) online. Raw, 
un-thresholded, un-filtered data files of 1 min durations were 
collected between the application of each pharmacological 
agent to monitor the impact on the local field potentials. 
The explanted retina was perfused with carboxygenated 
aCSF at 2.2 ml/min supplemented with 4 µM 9-cis-retinal 
(Sigma Aldrich) using a peristaltic pump (120 U, Watson 
Marlow, Falmouth, UK) and maintained at 32 °C using a 
TC01 controller (Multi Channel Systems) that regulated the 
temperature of the copper plate below the MEA.

Pharmacology: Blocking of various synapses was achieved 
by bath applying various pharmacological substances 
dissolved in aCSF, which superfused the explanted retina 
as described. Gap junctions were blocked with 50 µM MFA 
(Sigma Aldrich) that was applied for 30 min before the data 
were recorded. Glutamatergic signaling was blocked using 
a combination of three compounds: 100 µM 6,7-dinitro-
quinoxaline-2,3-dione (DNQX; Tocris Bioscience, Bristol, 
UK) was used to block the α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA)-type glutamatergic 
synapses, 100 µM DL-AP5 (Tocris Bioscience) was used 
to block the N-methyl-D-aspartate (NMDA) glutamatergic 
synapses, and 150 µM DL-AP4 (Tocris Bioscience) was used 
to block the metabotropic (mGluR6) synapses. As an mGluR6 
agonist, DL-AP4 did not allow the investigation of synapses 
downstream of the transfected ON bipolar cells. Gamma-
aminobutyric acid (GABA)a and GABAc receptors were 
antagonized with 20 µM picrotoxin and 50 µM 1,2,5,6-tetra-
hydropyridin-4-yl)methylphosphinic acid (TPMPA), respec-
tively (Tocris Bioscience).

Light stimulation: Full-field light stimuli were delivered to the 
GCL from below with a violet (420 nm ʎ max) light-emitting 
diode (LED; M420L3, Thorlabs, Ely, UK) or a more powerful 
blue (470 nm ʎ max) LED (PhlatLight, Luminus Devices, 
Sunnyvale, CA). At full brightness, the violet LED displayed 
an irradiance (in photons/cm2/s) of 3 × 1013 for rod opsin while 
the blue LED displayed an irradiance of 1.66 × 1015 for rod 
opsin. The blue LED was used only to apply the strongest 
stimulus. Delicate mixing of colors was regulated with 12 
bit pulse width modulation in an Arduino Due (Arduino, 
Ivrea, Italy) controlled by custom scripts written in LabView 
(National Instruments, Austin, TX). Overall brightness was 
reduced by up to four orders of magnitudes with a circular 
neutral-density (ND) rotor (100FS04DV.4, Newport, Irvine 
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CA) controlled by a NSC200 controller system (Newport 
Corp.).

Response analysis: Spike files (.MCD) were merged offline in 
MC_DataTool (Multi Channel Systems), and the waveforms 
were sorted in Offline Sorter (Plexon, Dallas, TX). Spike-
times were observed in NeuroExplorer (Nex, Herndon, VA) 
and then further analyzed in Matlab (The Mathworks, Natick, 
MA), using a set of custom written scripts.

Light-driven responses were classified as positive when 
the average spike count in the 2 s following stimulus onset 
was higher than the average spike count in the 2 s preceding 
the stimulus plus two times the standard deviation (95% 
confidence interval) in at least six out of seven trials. Trial 
bin count (TBC) figures were generated in Matlab and then 
imported as enhanced metafiles into CorelDraw X3 (Corel, 
Ottawa, Canada). Peri-stimulus time histograms (PSTHs) 
were generated in Matlab, imported as number matrices into 
Prism 6 (Graphpad, La Jolla, CA) where they were gener-
ated as graphs, and then imported as enhanced metafiles into 
Corel Draw.

Response onset latency was calculated from the average 
PSTH in 200 ms bins (unsmoothed) while response offset 
latency was calculated from an average PSTH in 3 ms bins 
and smoothed twice using a sliding window of 1,000 bins. 
Onset was determined when the averaged PSTH crossed 
the response threshold while offset was determined as the 
last point above the response threshold in the 18 s following 
stimulus extinction. The change in the firing rate (ΔFR) was 
calculated by subtracting µBL from µS with µBL corre-
sponding to the average firing rate (across seven trials) in the 
2 s immediately preceding the stimulus and µS corresponding 
to the average maximal firing rate in the 2 s immediately 
following the stimulus. The signal to noise ratio (SNR) was 
calculated with the following equation:

SNR = μS-μBL/μS +μBL

This equation deviates somewhat from other measures 
of SNR that divide a measure of the signal by the standard 
deviation of the noise. In preparations where MFA was 
applied, some neurons were silent resulting in a baseline of 
0 spikes/s and an infinitely high SNR value. This equation 
caps the SNR value at 1, allowing us to perform appropriate 
statistical analyses.

Power spectral density (PSD) analysis was performed in 
Matlab on the spontaneous firing over a 2 min period using a 
Hanning window and 1,024 fast Fourier transform points. To 
detect narrow-band peak frequencies, the PSD was normal-
ized over the surface area and subjected to an empirically 
established threshold of 9%.

Histology: Immunohistochemistry (IHC) was performed as 
described [5]. Briefly, infected eyecups were fixed in 4% 
paraformaldehyde (PFA) for 24 h at 4 °C, washed in 0.01 M 
PBS (MFCD00131855, Sigma Aldritch, Irvine, UK), cryo-
protected in 30% sucrose, and horizontally sectioned (8–10 
µm thickness from the ventral to the dorsal side) on a cryo-
stat (Leica Microsystems, Wetzlar, Germany). The sections 
were background blocked with PBS and 0.2% Triton X-100 
containing 10% donkey serum (D9663; Sigma-Aldrich) for 1 
h at room temperature. Primary antibody (rabbit anti-human 
rhodopsin, Ab112576, 1:200 dilution; Abcam, Cambridge, 
UK) in blocking buffer (PBS with 0.2% Triton X-100 and 
2.5% donkey serum) was applied for 2 h at room temperature. 
Secondary antibody (Alexa Fluor® 546 donkey anti-rabbit 
immunoglobulin G (H+L) antibody, lot: 1,504,518, 1:200 
dilution; Life Technologies, Warrington, UK) was applied 
for 2 h at room temperature. Slides were mounted with 
4',6-diamidino-2-phenylindole (DAPI) containing mounting 
medium (Vectashield, Vector Laboratories Ltd., Peterbor-
ough, UK) to stain the cell nuclei. Retinal sections were 
analyzed under an Olympus BX51 upright microscope using 
a 20X Plan Fln objectives and captured using a CoolSNAP 
ES camera (Photometrics, Tucson, AZ) through MetaVue 
software (Molecular Devices Ltd., Wokingham, UK). Images 
were taken under specific band pass filter sets, and color-
combined images were used for further processing using 
ImageJ.

RESULTS

Spontaneous variations in the spiking rate and local field 
potential (LFP) are typically observed in the degenerated 
retina [19,25]. We found such variations in the recordings of 
the rd1 retinas maintained in the dark. Thus, a visual inspec-
tion of the raw extracellular signal from the multielectrode 
array revealed marked modulations in local voltage and 
irregular spontaneous spike firing (see Figure 1A, top for a 
representative example). PSD analysis for spiking activity 
revealed variations over a wide range of frequencies, peaking 
around 4 Hz (see Figure 1B for a representative example and 
Figure 1C-E for population; n = 9 retinas, Wilcoxon matched-
pairs signed-rank test, p = 0.0078). As previously reported, 
bath application of 50 μM MFA suppressed rhythmic compo-
nents (see Figure 1A bottom for a representative example; 
Figure 1C, Wilcoxon matched-pairs signed-rank test across 
a population of 417 RGCs from nine retinas, p<0.0001) and 
dramatically reduced the spontaneous firing rate (Figure 1D; 
Wilcoxon matched-pairs signed-rank test across a population 
of 417 cells from nine retinas, p<0.0001).
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Figure 1. Impact of MFA on spontaneous and response firing. A: Example raw traces of extracellular activity showing the same channel 
under control (artificial cerebrospinal fluid [aCSF]) and meclofenamic acid (MFA) conditions. B: Power spectral density (PSD) of spiking 
in (A). C-D: Bar graphs representing the average (± standard error of the mean [SEM]) raw overall power (C) and spontaneous firing rate 
(D) of all recorded retinal ganglion cells (RGCs); n = 417 cells. E: Distribution of the peak frequencies of all recorded RGCs crossing a 
normalized power threshold of 9%. Insert: Fraction of RGCs with a maximum normalized power value exceeding 9%; n = 9 retinas. F-G: 
Retinal section from adult C3H rd1 mouse treated with adenoassociated virus (AAV2)-grm6-Rho and fluorescently tagged for rhodopsin 
(F) and nucleic acid (G). The signal from the rhodopsin antibody is present in the outer portion of the inner nuclear layer (INL), where the 
cell bodies of ON bipolar cells reside [32]. H-K: Example trial bin counts (TBCs; H, J) and peri-stimulus time histogram (PSTH; J, K) of 
cells in aCSF (H, I) and MFA (J, K) conditions responding to a 2 s stimulus (epoch indicated by dotted box and square-wave diagrams) 
at an irradiance of 1013 photons/cm2/s from a dark background. L-M: Example TBC (L) and PSTH (M) of the melanopsin-mediated light 
response in the untreated retina to a stimulus of irradiance of 1014 photons/cm2/s. DAPI = 4',6-diamidino-2-phenylindole; GCL = ganglion 
cell layer; IPL = inner plexiform layer. ** p= 0.0078, **** p<0.0001.
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Viral transfection following intravitreal injection of 
AAV2-grm6-Rho is expected to drive expression of human 
rod opsin in ON bipolar cells [28-30]. Consistent with this 
expectation, immunohistochemical analysis of the treated 
retinas revealed immunoreactivity for human rhodopsin in 
the inner nuclear layer (Figure 1F-G), where the cell bodies 
of the ON bipolar cells reside [31].

Previous studies have reported that ectopic expression 
200 of human rod opsin in ON bipolar cells of the rd/rd 
retina allows light-evoked changes in firing at the RGC level 
to be recorded [27,28]. We studied the effect of MFA on 18 
RGCs (from the AAV2-grm6-Rho–treated retinas) showing a 
significant response (firing rate during stimulus >2 standard 
deviations over the mean baseline on at least six of the seven 
stimulus presentations) to a 2 s 1013 photons/cm2/s full-field 
stimulus under perfusion with aCSF (shown for a representa-
tive single unit in Figure 1H-I). Under the influence of MFA, 
the light responses appeared more obvious, with bursts of 
spikes following the stimulus presentation in the neurons with 
low baseline activity (a representative unit is shown in Figure 
1J-K). This effect was apparent across the population of light-
responsive units with the mean peak change in the firing rate 
statistically significantly larger in the MFA-treated retinas 
(Figure 2G; n = 18 RGCs; Sidak’s multiple comparisons test, 
p = 0.0079). This effect translated into a substantial increase 
in the SNR (see the Methods section) of the visual response 
following the application of MFA (Figure 2H; n = 18 RGCs, 
Sidak’s multiple comparisons test, p<0.0001).

To exclude the possibility that MFA simply increases 
the likelihood of observing endogenous, melanopsin-driven 
visual responses, we applied the same protocol to age matched 
control retinas. MFA effectively silenced firing in these prep-
arations leaving mean ± SEM spontaneous activity at 0.67 
spikes/s. The 2 s 1013 photons/cm2/s full-field stimulus had no 
noticeable effect on firing. Thus, we did not find any units 
that met the response criterion (firing rate during stimulus 
>2 standard deviations over mean baseline on at least six of 
the seven trials). Two units responded when we increased the 
stimulus intensity to 1014 photons/cm2/s, with extremely slow 
on and offset kinetics typical of melanopsin-driven responses 
and quite different from the typical response of treated retinas 
(a representative unit is shown in Figure 1L-M).

To explore the impact of MFA on responses over a wide 
range of light levels, we adjusted the intensity of the 2 s flash 
over six decades from 3 × 1010 to 1.66 × 1015 photons/cm2/s. 
We found examples of units responding over at least four 
decades of light intensity under the aCSF and MFA condi-
tions (Figure 2A-D). There were no convincing responses at 
the lowest light intensity. At higher intensities, the response 

profile appeared to vary between units and across stimulus 
intensities. In all cases, there was an increase in firing asso-
ciated with the stimulus, but this could be preceded by a 
suppression of firing (e.g., see Figure 2A,C, Cell #147_01b at 
higher intensities). The response latency for the increase in 
firing also varied although, as previously reported, in some 
instances it was <500 ms (Figure 2E). MFA increased the 
response firing rate and the SNR across the intensity range 
(Figure 2G-H; n = 18 RGCs, two-way ANOVA with post-
hoc Sidak’s multiple comparisons test; four stars indicate 
p<0.0001; for ΔFR, p values were 0.0462, 0.0041, and 0.0079 
for irradiances at log 12, 13, and 14 photons/cm2/s) without 
statistically significantly affecting the onset latency (Figure 
2F; Mann–Whitney test across 15 RGCs, p = 0.2842).

Any optogenetic therapy must aim to function under 
light-adapted conditions if it is to support dynamic vision. 
We have previously reported that rod opsin can provide such 
activity, and that was the case in the preparations studied 
here. Thus, of 18 visually responsive units, we found that 
nine had a statistically significant modulation in firing when 
presented with a 2 s 50X or 100X intensity step against a 
steady 1012 photons/cm2/s background (representative units 
shown in Figure 3A,B). Therefore, we wished to determine 
whether the stabilizing effects of MFA were also active under 
light-adapted conditions. We found that MFA reduced the 
spontaneous firing rate and minimized the periodic activity 
in the light-responsive units across two background light 
intensities (Figure 2C,D; n = 9 RGCs, two-way ANOVA with 
Bonferroni's multiple comparisons test, p<0.0001, vertical 
asterisks). Although the firing rate was not statistically 
significantly affected by background light (Friedman tests; 
p = 0.3476 and p = 0.3761 for MFA and aCSF, respectively), 
oscillatory power was statistically significantly reduced 
with background irradiance under MFA (Figure 2D; n = 9 
RGCs, Friedman test with Dunn’s multiple comparisons test; 
p = 0.0006 and p<0.0001 for log 10 and 11 photons/cm2/s, 
respectively).

In the absence of MFA, rod opsin expressed in ON bipolar 
cells drives mainly excitatory responses in ganglion cells via 
glutamatergic and GABAergic signaling [27,28]. We finally 
checked that this fundamental circuit was still responsible 
for visual responses in the presence of MFA. We found that 
responses to 2 s stimuli under MFA were abolished by picro-
toxin and TPMPA, antagonists of the GABAa and GABAc 
receptors, respectively (Figure 4B). A cocktail of inhibitors 
of glutamatergic signaling (ACET, L-AP4, and DNQX) had 
each component applied sequentially and in different orders. 
The final cocktail, containing all three blockers, abolished 
all responses to the 2 s stimulus (Figure 4A). Responses were 
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also lost when DNQX was applied earlier in the sequence but 
sometimes survived L-AP4 and ACET alone or in combina-
tion (Data not shown as those occurrences were rare and not 
systematically reproduced across experiments). Together, 
these data are consistent with the hypothesis that the visual 
signal produced by ectopic rod opsin reaches ganglion cells 
via ionotropic glutamate and GABAergic synapses. One 
possible route consistent with these observations and known 
retinal circuitry is shown in Figure 4C.

DISCUSSION

Here, we demonstrated the use of MFA to reduce aberrant 
pathophysiological spiking in the RGC layer of degenerated 
retinas, resulting in an increased SNR for and a ΔFR in the 
light responses originating with rod opsin virally expressed 
in ON bipolar cells. Barrett et al. [25] found a significant 
increase in the SNR and the number of responses with the 
bath application of 40 µM MFA in the degenerated retinas 
of mice genetically engineered to express channelrhodopsin 
in RGCs (mouse line) in response to light stimuli 25.5 µW/

Figure 2. Irradiance sensitivity of retinal ganglion cells from Rh-grm6 transfected retinas. A-B: Average peri-stimulus time histograms 
(PSTH; mean ± standard error of the mean [SEM]) across the trials for two example single units (A and B) as a function of stimulus irradiance 
for artificial cerebrospinal fluid (aCSF; left) and meclofenamic acid (MFA; right) conditions. Dotted box indicates the stimulus epoch. C-D: 
Example trial bin counts (TBCs) of cells in (C and D respective for A and B) for control (left) and MFA (right) conditions. Square-wave 
diagram indicates stimulus epoch. Trials are stacked in decreasing order of stimulus irradiance from top to bottom. E: Perievent raster 
of response to highest intensity for cell in (A) showing the fine timing of the response onset. F: Population data for all responding cells 
displaying onset latency at stimulus irradiance giving the largest response for each cell; n = 15 retinal ganglion cells (RGCs). G-H: Population 
data for all responding cells displaying the mean (± SEM) of the change in the firing rate (ΔFR; G) and the signal to noise ratio (SNR; H) 
across all trials as a function of the stimulus irradiance. Asterisks indicate a statistically significant difference between aCSF and MFA at 
that condition; n = 18 RGCs. * p=0.0462(log12), ** p= 0.0041 (log13), ** p= 0.0079 (log14), **** p<0.0001.
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mm2 in irradiance. As previously reported [27,28], we found 
ectopically expressed rhodopsin to be several orders of 
magnitude more sensitive than channelrhodopsin. Thus, our 
dimmest suprathreshold stimulus had an irradiance of 5.1 
10−4 µW/mm2 (380–447 nm, ʎ max 406 nm, 3 × 1012 photons/
cm2/s) making it almost 50,000 times dimmer than used by 
Barrett et al. [25] to record visual responses evoked by chan-
nelrhodopsin. Although both studies reported an improve-
ment in response discrimination in vitro, these findings do 
not necessarily translate to advanced visual discrimination 
in a treated animal, extending the scope for further in vivo 
and behavioral studies.

The change in the firing rate driven by ectopic rod opsin 
observed in the present study is modest compared with that 
produced by residual cones in young rd1 retinas (up to 200 
spikes/s at P15 [16]) or direct electrical stimulation of RGCs 
in rd1 retinas (up to 60 spikes/s [32]). This result further 

highlights the need to optimize ON bipolar cell transfection 
(more transfected bipolar cells converging on an RGC is 
expected to give a higher response signal), as well as the light 
transduction mechanisms of ectopically expressed photopig-
ments. As the general conclusions of the present analyses are 
based on precise, single RGC responses, the spike sorting 
criteria were stringent, excluding many multiunit waveforms. 
Therefore, these criteria affected the total firing rate, encom-
passing the spontaneous and response firing rates.

Although the responses under the control conditions 
were readily detectable, those under the MFA conditions had 
a consistently higher SNR and ΔFR. The higher SNR and 
increase in detectability are most likely due to the absence 
of aberrant spontaneous activity following decoupling of 
intrinsically oscillating AII ACs from the ON cone bipolar 
cells [21,22]. With the grm6 promoter restricting ectopic rod 
opsin expression to ON bipolar cells [27,28], under the control 

Figure 3. Activity under light-adapted conditions. A: Responses (trial bin counts [TBCs]) of two example retinal ganglion cells (RGCs) to 
50- and 100-fold increases in irradiance (figures to left, ten trials per condition; square-wave diagram below indicates the stimulus epoch). 
B: Peri-stimulus time histogram (PSTH) showing the mean (± standard error of the mean [SEM]) firing rate across each step condition (the 
dotted box indicates the stimulus epoch) for cells in A. C: Average (± SEM) spontaneous firing rate (spikes/s) of the visually responsive 
cells under dark-adapted conditions and at two background light levels (BG; either 10 or 12 log photons/cm2/s; n = 9 RGCs). D: Average (± 
SEM) power spectral density (PSD) of the visually responsive RGCs under dark-adapted and two light-adapted conditions with background 
(BG) of either 10 or 12 log photons/cm2/s (n = 9 RGCs). aCSF = artificial cerebrospinal fluid; MFA = meclofenamic acid. *** p=0.0006, 
**** p<0.0001.
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(aCSF) conditions, the activity of these cells is directly influ-
enced by the intrinsically oscillating membrane potential of 
AII ACs, introducing a level of background noise upon which 
their ectopic light response is presumably superimposed. The 
increase in the SNR and the ΔFR under the MFA conditions 
highlight the potential of this approach to optimize optoge-
netic sight restoration because the SNR is crucial to signal 
processing in the visual system [33,34]. In a wider sense, these 
data confirm the suitability of MFA for reducing spontaneous 
activity in the GCL while targeting other cell types of the 

inner retina for opsin expression, opening the door to other 
types of optogenetic interventions for sight rehabilitation.

Meclofenamate sodium is a U.S. Food and Drug Admin-
istration (FDA)-approved routinely prescribed non-steroidal 
anti-inflammatory drug containing 50 to 100 mg of MFA. 
Oral administration for appropriate dosing in the retina 
may lead to complications [35] while topical ophthalmic 
administration might be a potential strategy [36]. Chronic 
intraretinal administration of MFA may be achieved with 
thermoresponsive hydrogels [37,38], through intravitreal 

Figure 4. Pharmacological dissection of retinal circuits conveying signals from photosensitized bipolar cells. A: Example trial bin count 
(TBC) of light-responsive cell exposed to a 2 s light pulse (irradiance 1013 photons/cm2/s) starting at time 0 s, with the progressive addition of 
drugs blocking glutamatergic signaling (trial order runs from bottom to top, with timing of the addition for individual agents indicated by the 
horizontal lines to left; note that once added the agent was included until the end of the trial, such that for this example the recording ended 
with artificial cerebrospinal fluid (aCSF), meclofenamic acid (MFA), ((S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-
3-yl-methyl)-5-methylpyrimidine-2,4-dione (ACET), L-AP4, and 6,7-dinitroquinoxaline-2,3-dione (DNQX) all included in the recording 
media. B: Example TBC of light-responsive cell exposed to a 2 s light pulse (irradiance 1013 photons/cm2/s) at starting at time 0 s under the 
progressive addition of agents affecting the gamma-aminobutyric acid (GABA)ergic blockade (protocol and depiction as in A). C: A model 
of inner retinal circuitry following ectopic expression of rhodopsin in ON bipolar cells consistent with the pharmacological manipulations 
reported here. MFA blocks gap junctions, inhibiting propagation of oscillations originating in AII amacrine cells (ACs). MFA is also expected 
to block the transfer of signals from ON rod bipolar cells to ON cone bipolar cells via AII ACs but not transfer from ON rod bipolar cells to 
OFF cone bipolar cells or more direct signaling from ON cone bipolar cells. Inclusion of an inhibitory AC between the ON cone bipolar cell 
and the ON RGC allows for sign inversion to produce excitatory responses to light and accounts for the impact of the GABAergic blockade 
(B). CBCs= cone bipolar cells; RGCs = retinal ganglion cells; TPMPA = (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid.
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[39] or suprachoroidal injections [40]. However, this drug 
affects all gap junctions, not just the AII cone–ON bipolar 
cell connection, and they are present between all classes of 
retinal neurons [41] and glia [42] making them heavily impli-
cated in retinal coding [43,44], light adaptation [45,46], and 
cell survival [47]. Chronic retinal exposure to MFA may have 
adverse consequences in the long run. Conversely, a retina 
that lacks gap-junction coupling may prove to be a simpler, 
more stable environment, where engineering coherent light 
responses would be easier.

The widely used antimalarial drug mefloquine may 
prove to be an improvement on MFA as mefloquine has been 
shown to preferentially block CX36 gap junctions at nano-
molar concentrations in N2A neuroblastoma cells [48] and in 
the rabbit retina at micromolar concentrations [49]. Although 
there are reports that the continuous use of mefloquine in 
patients results in secondary effects (such as anxiety, hallu-
cinations, depression, psychoses, poor balance, and seizures 
[50,51]), these effects may not be experienced at the concen-
trations required to promote therapeutic effects in the retina.

RGCs receive input from RGCs, ACs, and bipolar cells, 
via gap junctions for RGCs and ACs [52,53], via all glutamate 
types for bipolar cells (for review, see [54]) and via GABA for 
ACs [55,56]. In the intact retina, rod-mediated vision relies in 
part on gap junction coupling, with the primary rod pathway 
relying on the AII AC to transmit ON signals through sign-
conserving electrical synapses to ON cone bipolar cells 
(a parallel pathway via OFF cone bipolar cells employs a 
sign-inverting chemical synapse) [57,58]. However, there is 
mounting evidence that rod-mediated signals can reach the 
brain without gap-junction connectivity in the retina [59]. 
All the pharmacological experiments in the present study 
had an aCSF + MFA base; therefore, the only input to RGCs 
was from bipolar cells via glutamate neurotransmission and 
from ACs via GABAergic neurotransmission. Rod opsin is 
expected to have a hyperpolarization effect on the membrane 
voltage [60] of ON bipolar cells, where they are expressed 
because of the grm6 promoter in the virus. The fact that most 
of the responses observed here were excitatory suggests a 
disinhibition of RGC firing, with hyperpolarized bipolar cells 
acting upon inhibitory ACs targeting RGCs. This result fits 
with data from our previous study [5] and is corroborated by 
the fact that all responses disappeared under DNQX (AMPA-
glutamate) blockade. We did not see an overall reduction in 
the number of responses following the application of MFA as 
would have been expected had the signal originated primarily 
in ON rod bipolar cells and reached RGCs via AII ACs and 
ON cone bipolar cells. One potential explanation for this 
finding is that the responses originated primarily with rod 

opsin expressed in the ON cone bipolar cells. Figure 4C 
presents a model illustrating this potential route of informa-
tion transfer that is consistent with the ability of ionotropic 
glutamate and GABAergic inhibitors to block restored light 
responses. More complex routes employing OFF cone bipolar 
cells are also conceivable, as is the possibility that reorganiza-
tion in the degenerate retina allows information generated in 
ON rod bipolar cells also to reach RGCs without relying on 
gap-junction connections.

Conclusions: This study supports the view that the non-
steroidal anti-inflammatory and non-selective gap junction 
blocker MFA may have a role in improving the quality of 
vision provided by optogenetic therapies by reducing spon-
taneous activity and thus improving the SNR of the restored 
responses to light.
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