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Abstract
We present an expression measure of a gene, devised to predict the level of gene expression from relative

codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes.
Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has
been defined to provide an intuitively meaningful measure of an extent of the codon preference in a
gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their
likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our
efforts to quantitatively predict gene expression levels in E. coli met with a high level of success.
Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection
in favour of the shorter genes to be expressed at higher level. The agreement of our result with high
protein abundances, microarray data and radioactive data demonstrates that the genomic expression
profile available in our method can be applied in a meaningful way to the study of cell physiology and
also for more detailed studies of particular genes of interest.
Keywords: codon usage; gene expression; predicted highly expressed genes; Escherichia coli

1. Introduction

Regulation of gene expression plays a central role in
defining cell fate and controlling organ formation.
Genomic function can be understood at the nucleo-
tide level, but, the complexity and diversity of
genomic function, leading to an emergent picture of
the genome as an interacting system with many
degrees of freedom, bring experimental and theoreti-
cal challenges to the quantitative measurement of the
biological state, many of which are of statistical nature.
Genes encode proteins, and proteins perform

functions in the cell. Hence a gene takes part in bio-
logical function only if it is expressed, i.e. the protein
produced from it is present in the cell. Gene regu-
lation takes place during transcription, the process
by which the cell reads the information contained in
a gene and copies it to the messenger RNA which is
subsequently used to make a functional protein. This
is a most fundamental level of biological process
which involves the interaction of DNA and proteins.
Its regulation takes place through the binding of pro-
teins to DNA at specific loci in the vicinity of the gene
to be regulated. The transcription of one gene may be
enhanced or reduced by the expression of the gene
itself. The process is complex and not yet understood
completely. Genes with high expression levels include
those required for an organism’s viability and the
ability to identify these genes is crucial for drug
development. Certainly the high cost and technical
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expertise required is an obstacle to many investigators
who are interested in pursuing such studies. Although
a variety of software tools and technologies have been
developed for gene expression studies, a universal
standard making these studies more suitable for com-
parative analysis and for inter-operability with other
information sources is yet to emerge. Large-scale,
high-throughput experimental methods require
material and information processing systems to
match. The analysis of high-throughput gene
expression data is in an early stage of development.
Development of advance technology for whole
genome expression studies is thus becoming increas-
ingly recognized. Predicting expression level of genes
through computational methods is appealing because
it circumvents expensive and difficult experiment.

In recent years there has been increasing
reports1–23,43,44 on predicted highly expressed
genes in several micro-organisms which provide a
wealth of information about gene expression. It is
suggested that the essential genes primarily include
the ensembles of highly expressed genes that
encode proteins [transcription/translational factors
(TF), ribosomal proteins (RP), proteases and chaper-
ons (CH), degradation, cellular localization, biosyn-
thesis, metabolism, photosynthesis, respiration and
glycolysis, etc] vital for cell physiology. Perhaps, the
essential functions of these gene products correspond
to the biased amino acid composition that might
minimize the substantial biosynthesis energy costs
indicating the high biological significance of these
genes. Besides other mechanisms, it is also suggested
that codon bias can influence gene expression by
optimization of the translational rate and thus,
highly expressed genes can be characterized on the
basis of biased codon usages compared with average
genes. In several previous studies,3,7–13,17 a number
of different patterns of codon usage have been
hypothesized and many indices have been proposed
to measure the degree of codon bias. Among these,
the codon adaptation index (CAI) has been widely
applied to the prediction of highly expressed genes
in various organisms.3,15,16,24–27 CAI was proposed
as a measure of codon usage in a gene relative to
that in a reference set of genes.3 The previous
studies suggest that CAI index correlates better with
expression level of a gene than other codon usage
indices, such as the effective number of codons,7

codon bias index,8 the frequency of optimal
codons,9 intrinsic codon bias index,10 maximum like-
lihood codon bias,11 synonymous codon bias orderli-
ness,12 and measure independent of length and
composition (MILC),13 etc. The parameters under-
lying the CAI model rely on the codon composition
of only a limited set of highly expressed genes and
are based on a fairly simple assumption that the

functional class of genes are highly expressed. To
define the parameters in the CAI model, Sharp and
Li3 considered the codon frequency of only 24
highly expressed genes of which 50% were genes of
RPs and the rest mostly metabolic enzymes. A
related method, the codon usage model, is based on
similar principles, but the parameters are based on a
somewhat broader set of highly expressed genes. In
application of this model, Karlin and coworkers17–23

have shown that it is a reasonable assumption that
for RP genes, CH and TF are highly expressed. Gene
expressivity is strongly correlated with protein abun-
dances. A number of studies have also revealed that
codon compositions in highly expressed genes are
influenced by tRNA abundances.1–6 Generally,
highly expressed genes, producing abundant proteins,
use a subset of optimal codons which are recognized
by the most abundant tRNA species. It is well estab-
lished that highly expressed genes have strongly
biased usage of alternative synonymous codons and
that of preferred codons, which are thought to be
translated most efficiently by the most abundant
tRNAs, and the lowly expressed genes have less
biased codon usage patterns.1,2 The observations
strongly suggest that natural selection has shaped
the codon usage pattern accommodating optimal
gene expression levels for most situations of its
habitat, energy sources, and life cycle. Codon usages
vary considerably within and between organisms.
The effect of natural selection on codon usage quan-
tifies the level of gene expression. However, the result-
ing bias in the codon usage has two main
components. One is the correlation with tRNA avail-
ability and the other is non-random choices
between pyrimidines for third base. A critical analysis
of codon usage in a gene shows that mutational bias
also plays a role in codon selection. Several studies
have analysed the relationship between the GC-
content of isochors and the expression patterns of
the genes they contain.28 The G + C composition
resulting from mutational bias has been hypothesized
to determine the major trends in codon usage of high
or low G + C organisms. Within a genome, codon bias
tends to be much stronger in highly expressed gene
than in genes expressed at lower levels, suggesting
that there might be some selective advantage to con-
centrate essential genes on GC rich domains of the
genome. Surprisingly, to address this important
issue, some studies have also given conflicting
results.29–33 Several papers reported very weak corre-
lations, either negative or positive between the GC-
content and gene expression. The discrepancy
among the studies might be due to the methods
used to measure the expression parameter of the
data sets analysed or the differences in the way corre-
lations were computed.
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In fact, the characterization of regulatory elements
underlying gene expression is largely an unsolved
problem. The hypothesis that codon usage modulates
gene expression has been accepted in general. Many
researches in this field have formulated their own
measures, which has led to a large number of avail-
able methods3,7–12,17 for gene expressivity analysis.
Unfortunately, these methods are not universally
applicable as they exhibit strong artefacts of their
formulation with varying sequence length, or
overall codon bias, or codon bias discrepancy. Our
aim is to develop a measure that will be free from
any such possible artefacts and we attempt here to
verify the usefulness of such a measure by employing
it to predict gene expressivity in Escherichia coli
(E. coli).

2. Materials and methods

The genome sequence for E. coli K-12 MG1655 is
obtained from Genebank accession no. NC_000913.
All ORF (open reading frames) listed as coding for
proteins (confirmed and hypothetical) are con-
sidered in this study. Our approach in estimating
gene expression level is related to codon usage differ-
ence of a gene with respect to biased nucleotide
composition at the three codon sites. Let f(x,y,z) be
the normalized codon frequency for the codon
triplet (x,y,z) of a gene. Then the relative codon
bias (RCB) of a codon triplet (x,y,z) in a gene is
defined as

dxyz ¼
f ðx; y; zÞ � f1ðxÞf2ðyÞf3ðzÞ

f1ðxÞf2ðyÞf3ðzÞ
; ð1Þ

where f1(x) is the normalized frequency of x at the first
codon position, f2(y) is the normalized frequency of y
at the second codon position, and f3(z) is the normal-
ized frequency of z at the third codon position of the
gene. The frequencies f1, f2, f3 have been derived
from the set of codon samples of a gene and the nor-
malization of frequency is done over the gene length
in codons, in an attempt to compensate for the
expected increase of RCB with the total number of
codons. We quantify the degree of codon bias of a
gene in such a way that comparisons can be made
both within and between genomes. As defined
earlier, dxyz contains somewhat more quantitative
information than others, since it considers codon
usage as well as the base compositional bias. Then
the expression measure of a gene is

RCBS ¼
YL

i¼1

ð1þ di
xyzÞ

 !1=L

�1; ð2Þ

where di
xyz is the codon usage difference of ith codon of

a gene. L is the number of codons in the gene.
RCB is the difference of observed frequency of a

codon from the expected frequency under the
hypothesis of random codon usage where the base
composition were biased at three sites as that in the
sequence under study, divided by the expected fre-
quency. RCBS is the overall score of a gene indicating
the influence of RCB of each codon in a gene. Our
analysis is based on the hypothesis that RCB reflects
the level of gene expression. The expression measure
of a gene in this approach is denoted by RCBS. RCBS
value close to 0 indicates a lack of bias for the
codons and is thus useful for comparing different
sets of genes.

3. Results

Our data set includes 4174 complete protein
coding sequences from E. coli. Expression profiles of
the genes are determined by calculating the score of
RCB (RCBS value) for each gene and their distributions
are shown in Fig. 1. The majority of genes (63%) have
RCBS values lying between 0.2 and 0.4, and the mean
and median values are 0.3870 and 0.3295, respect-
ively. Only �18% genes have RCBS values .0.5. The
analysis of RCBS values among different gene class
shows that the gene classes (RP, CH, TF), which serve
the representatives of highly expressed genes have
RCBS . 0.5 in most of the cases. This suggests that
significantly stronger codon bias is a result for

Figure 1. Distribution of RCBS for all coding genes in the genome of
E. coli.
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translational efficiency as well. This finding is consist-
ent with others,3,17,18 as most of the previous
expression measures have considered those as repre-
sentative standards for highly expressed genes in
their calculation. There is also experimental evidence
in support of RP, CH and TF as standard derivatives
for the highly expressed genes as it is observed that
many RPs augmented by abundant TF and CH pro-
teins are needed to assure properly translated, modi-
fied and folded protein products which expedite and
regulate cellular activities in most prokaryotic
genomes. Our data support the proposition that
each genome has evolved a codon usage pattern
accommodating gene expression level, and RCBS
value .0.5 exhibits favourable codon usage. So, we
chose this index as an effective expression measure
on the basis that it has been shown to correlate
highly to expression levels and the predicted
expression level based on RCBS (RCBS . 0.5) values
suggests that almost 18% of genes in the E. coli
genome qualify as highly expressed genes. In our
study, the genes are segregated into different func-
tional categories such as metabolism, information
transfer, regulation, transport, cell process, cell struc-
ture, location of gene products, extra-chromosomal,
DNA sites and cryptic genes in accordance with
Munich Information Center for Protein Sequence
(MIPS) classification. Functional analysis shows that
highly expressed genes involved in the location of
gene products are the largest functional class followed
by genes involved in information transfer, metab-
olism, cell structure, cell process, extra-chromosomal,
regulation and transport function, respectively. A
total of 750 genes are identified as highly expressed
genes in E. coli with 163 genes involved in energy
metabolism, 75 genes involved in translation, 34
genes in transcription, and 29 in CH and folding
(Supplementary Table SI). In addition, the functional
class of amino acid biosynthesis, nucleotide biosyn-
thesis, fatty acid biosynthesis and other cofactor and
small molecule, etc includes 67 highly expressed
genes. Besides, there are several (�185) genes encod-
ing predicted proteins and 15 other genes of
unknown function, which are thought to be highly
expressed genes in our approach. We observe that 24
genes encoding predicted proteins and 12 genes
encoding proteins of unknown function are highly
expressed genes with RCBS . 1.0. The highly expressed
genes of E. coli with RCBS . 1.0 are reported in
Supplementary Table SII (hypothetical protein or pre-
dicted protein genes are not listed). Of these, 11
encode proteins that function in energy metabolism,
18 are RP genes, 11 encode TF and the remaining
encode proteins that function in different cell process.

In order to compare our results, we have also calcu-
lated CAI values for the same genes. Fig. 2 shows the

relationship between RCBS and CAI values. Here, the
CAI scores have been calculated according to the orig-
inal publication of Sharp and Li,3 which stem from 24
highly expressed genes. It can be clearly seen that for
genes with high CAI values (.0.5), there is strong cor-
relation between them (r ¼ 0.4614). But for proteins
with CAI values significantly ,0.3, correlation is worse
(r ¼ 20.0572). The novel method of quantitatively
predicting gene expressivity is then compared with
the other widely accepted measure of Karlin and
Marzek.17 In Fig. 3, we plot RCBS values against E(g)
of Karlin et al.18 The correlation is surprisingly good
with r ¼ 0.6706, P , 0.001. We analyse further the
relationship between the length of the coding
regions and the expression level of genes. In Fig. 4
we plot RCBS as a function of the gene length. We
observe that shorter genes assume the higher value
of RCBS while longer genes tend to have lower RCBS.

Figure 3. RCBS plotted against E(g)18 for E. coli genes.

Figure 2. RCBS plotted against CAI for E. coli genes.
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There is a strong correlation between RCBS and gene
length (r2 ¼ 0.65878 and x2 ¼ 0.0149). This effect
is not due to systematic bias of gene size. To investi-
gate the effect of protein length on gene expression
as measured by RCBS, the data is split into three
groups: short (L , 150), intermediate (150 , L ,

300) and long (L . 300). Several observations can
be made. Genes are sorted according to their
expression level. It should be noted that genes of the
same expression level may have wide variation in
length and also that genes of the same length may
have a wide range of RCBS. We observe that the esti-
mate of expression level, as derived from RCBS,
ranges from a low value to high value for each of
the three length groups. It is evident from our data
that RCBS ranges from 0.245 to 3.416 for L , 150,
whereas it ranges from 0.123 to 0.907 for 150 ,

L , 300 and from 0.079 to 1.328 for L . 300. It is
noted that the selective pressure on codon usage
appears to be lower in genes encoding long rather
than short proteins. Our studies, although less exten-
sive, suggest that selection on codon usage as well as
sequence composition is primarily responsible for
RCBS. For a simple explanation, we select a set of E.
coli sequences of equal length and randomize the
above sequences 500 times, keeping their (i) codon
usage; and (ii) sequence composition conserved.
RCBS calculated for those sequences are found to
vary in a wide range. We repeat the experiment on
different sets of genes with varying length. The
results are summarized in Supplementary Tables SIIA
and SIIB. Supplementary Table SIIA describes the
results of 14 arbitrary nucleotide sequences of different
length, each randomized 500 times. In Supplementary
Table SIIB, we present the results of the same

experiment on a few selected genes of different
length. We observe that the smaller sequences have a
greater probability of resulting in high value of RCBS
(.0.5), but there is nothing to prevent longer
sequences from having high RCBS. Although the
values for shorter sequences are more variable due to
sampling effect, the intrinsic effect of gene length on
RCBS reduces with the increase in length. A thorough
exploration of theoretical values of RCBS suggests that
RCBS can be an effective measure of gene expression,
as its value depends on codon usage pattern along
with DNA compositional bias of a gene.

In order to test the RCBS as an expression level pre-
dictor, we chose to compare our results with the
experiments. We collected data sets (listed in
Supplementary Tables SIII and SIV) which consist of
mRNA or protein abundance data obtained by differ-
ent methods—mostly cDNA microarrays27,34,35 or 2D
gel electrophoresis data36–39 for abundances of many
E. coli proteins are available for comparison with the
predicted levels of expression. In Fig. 5, we compare
the predicted levels of expression in E. coli with 2D
gel patterns34 and expression measure E(g) of Karlin
et al.18 The relationship between RCBS values and
mRNA levels seen in Fig. 5 agrees better than with
the findings of Karlin et al.18 The correlation
between expression level (as relative molecular abun-
dance) and RCBS value is found to be 0.4533 whereas
that with E(g) value is 0 .2618. Among the 20 most
abundant proteins, 17 were identified as highly
expressed genes with three exceptions for metE, folA
and ilvE. The results are in good agreement with
those predicted by E(g). Among the 20 least
abundant proteins, only three mismatch with our

Figure 4. RCBS plotted against the length of 4174 genes from the
E. coli genome.

Figure 5. RCBS (+) and E(g) (*) plotted against relative molecular
abundance of 96 genes from E. coli genome.18 RMB denotes
relative molecular abundance. X-axis is taken in logarithmic
scale.
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predicted results whereas there are seven mismatches
with the results of Karlin et al.18 Although pck, nusb,
vals, args, rpll, thrs, leus are less abundant, according
to 2D gel patterns, the high E(g) values of Karlin
et al.18 support naming the genes highly expressed.
But our data support only nusb, vals and rpll to be
highly expressive genes. Of the remaining 55 proteins
22 were identified as highly expressed genes. This
agreement with molecular abundance data supports
our predicted results better than others. In a step
forward we compare RCBS and the concentrations of
various proteins in E. coli along with their CAI
values24 (Supplementary Table SIV). Concentration is
expressed as the number of protein molecules per
cell. Concentration being used as a measure of gene
expression, we find that our result is surprisingly
good. The RCBS values along with the CAI values are
plotted against the logarithm of concentration in
Fig. 6. The predicted gene expression level using
RCBS value is found to correlate well with the
protein concentration data24 (r ¼ 0.708211). The
correlation is better than the quantitative measure
of CAI (r ¼ 0.615546). It suggests that a quantitative
estimate of the expression level by RCBS values per-
forms better than other indices of expression
measure. Thus, regardless of the state of cell growth,
one can measure the relative expression level for
each gene under various growth conditions, different
genetic states or over a time course during environ-
mental change.

In Fig. 7 we plotted radioactive data and microarray
data against RCBS (Supplementary Table SV) for 117
genes as identified by heat shock treatment.35

Among these, 26 genes show high (RCBS . 0.5), 84

genes moderate (0.2 , RCBS , 0.5) and only seven
genes show a low (RCBS , 0.2) level of expression.
Despite the fact that the quality of experimental
data seems to be a very important factor, we
observe a good correlation between RCBS and micro-
array (radioactive) data (rmicro ¼ 0.2415, rradio ¼

0.2098).
In another analysis we compared our expression

measure (RCBS) with the genomic expression profiles
of the E. coli genome growing on rich (Luria broth
glucose) and on minimal culture (glucose) medium
(Supplementary Tables SVA and SVB).34 Of the 76
genes expressed at significantly higher levels on
Luria broth plus glucose medium, 54 genes show a
high expression level in our expression measure,
whereas only 12 genes out of 107 genes expressed
on minimal glucose medium have a high level of
expression. We observe that the correlation co-
efficient of minimal culture data with RCBS (r ¼
0.3011) is good, but very much worse for Luria
broth glucose data. The agreement of predicted and
actual protein expression level varied greatly
between all examined combinations of prediction
method and data set. The discrepancy is thought to
lie in the quality of experimental data. The prelimi-
nary analysis on the quality of experimental data
shows that these kinds of experiments are inherently
noisy and of low reproducibility. The reproducibility
of microarray data can be evaluated through the com-
putation of correlation coefficients within and among
the data sets from different microarray experiments.
Two data sets from different sources can be chosen
for analysis in this study. In the first, the data set was
obtained from ExpressDB and the comparison made
between expression levels in E. coli grown to either
mid-log phase (LP) or stationary phase (SP). In the

Figure 6. CAI (+) and RCBS (*) plotted against protein
concentration of 45 genes from the E. coli genome.24 X-axis is
taken in logarithmic scale.

Figure 7. Radioactive data (+) and microarray data (*)35 plotted
against RCBS for E. coli genes. Y-axis is taken in logarithmic scale.
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second, the data set was obtained from the ASAP
database, where E. coli is cultured in lysogeny broth
(LB). It can clearly be seen that the pair wise corre-
lation coefficient among the gene expression levels
from different experiments (rLP-SP ¼ 0.52, rLB-LP ¼

0.017, rLB-SP ¼ 20.039)34 vary broadly indicating
the very noisy nature of microarray experiments and
their lack of accuracy. The quality of experimental
data seems to be a very important factor in this
kind of analysis. Large variances may reduce the sig-
nificance of statistical tests and might hide interesting
trends in complex data. Microarray data tend to suffer
from noise introduced at each step of different exper-
imental protocols, while protein abundance data and
mRNA expression level do not agree well in all cases.
The other probable reason for incoherent results is
that prediction of gene expression from genomic
data, based solely on codon usage, is oversimplified.
Other factors, such as promoter strength and gene
copy number should also be taken into account.

We now discuss our results in more detail for differ-
ent functional classes of genes. The highly expressed
genes are then classified into different functional cat-
egories, e.g. RPs, CH and degradation proteins, tran-
scription and TF, energy metabolism, electron
transport, recombination and repair, outer mem-
brane proteins, aminoacyl tRNA synthetases, etc.
(The distribution of highly expressed genes of differ-
ent functional class in the genomes of E. coli is dis-
played in Supplementary Table SI.) All, but one RP,
the major CH/degradation proteins and translation/
transcription processing factors attain high expression
levels. Supplementary Table SII presents the 52 genes
with the highest predicted expression levels in E. coli.
The gene for trp operon ladder peptide trpL involved
in amino acid (tryptophan) biosynthesis attains the
highest RCBS value 3.42, among all E. coli genes.

3.1. RP genes
RPs are very important in cell biology as thus provide

a range of activities required for all steps of protein bio-
synthesis. Following the analysis based on the definition
RCBS and Equation (1) and (2), we observe that vir-
tually all RP genes qualify as highly expressed genes.
The genes encoding RPs, which are expected to be
expressed at high levels during rapid cell growth, were
identified with RCBS values .0.5 (Table 1). All but
one RP in E. coli are expressed at significantly higher
levels; the only exception is rimK, RP S6 modification
protein, where it is thought to contribute to the ribo-
some maturation and modification. The RCBS values
for highly expressed RP genes range from 0.50 to
1.77. In fact, all RP genes in E. coli do not reach the
top expression level. Seventeen out of 56 are among
the highest 86 highly expressed genes. The highest

expression level occurs for L34, with an RCBS value of
1.77. The RPs are the major component, together
with the ancillary proteins, involved in protein syn-
thesis. The genes coding for RPs, protein synthesis
factors and RNA polymerase subunits are all inter-
mingled and organized into a small number of
operons. We observe that the genes for some major
translational or transcription processing factors, includ-
ing tufA, tufB, fusA, fkpA, slyD, rpoB and rpoC, which are
within or near the large RP operon, are predicted as
highly expressed genes. Although RPs play an exclusive
role in determining ribosome structure, several are
multifunctional. RplA, rplD and rplT, the 50S ribosomal
subunit proteins (L1, L4 and L20 respectively), and
rpsH, the 30S ribosomal subunit protein S8 have a regu-
latory role. The S1 gene, a giant RP gene (labelled as
rpsA) is essential to E. coli and putatively contributes
to the initiation of protein synthesis. S9 (rpsI) partici-
pates in certain repair activities, and S16 (rpsP) acts as
an endonucleases.

3.2. Genes for transcription/translation processing
factors

There are �100 genes encoding enzymes, factors
and structural components that make up the transla-
tional apparatus. Out of these100 genes 75 are
identified as highly expressed genes with RCBS
values .0.5. Thus the majority of genes involved in
translation are predicted to have a high expression
level. Of these 75 translational genes, which are
expressed at higher level, 55 encoded RPs. Highly
expressed genes for transcription/translation proces-
sing factors are reported in Table 1 and can be com-
pared with the data available.18

There are �260 known genes that encode factors
involved in translation and ribosome modification
including the initiation and elongation factors, 34 of
which are indicated to be at a higher expression
level. As with RPs, genes coding for elongation
factors (efp, yeip, fusA, tsf, tufA, tufB), ribosome recy-
cling factor ( frr) and translation initiation factor
(infA) register as highly expressed genes which play
important roles in translation. The expression level
of infB, fused protein chain initiation factor is moder-
ately high (RCBS ¼ 0.49017). The regulation of infB
which is downstream and co-transcribed with moder-
ately expressed TF gene nusA (RCBS ¼ 0.46579), is
complex and is thought to be the result of auto regu-
lation of the extent of the read through at upstream
terminators by moderately expressed nusA. The
expression level of infB is higher than nusA. The
elongation factor efp has been shown to be essential
in E. coli for protein synthesis and viability. The
expression levels of other elongation factors ( fusA,
tsf, tufA, tufB) are gradually higher. Interestingly, the
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Table 1. RCBS of the highly expressed genes of different functional class in the E. coli genome

Functional class Gene RCBS Gene RCBS Gene RCBS Gene RCBS

Ribosomal rplN 0.50496 rpsJ 0.74635 rplS 0.87367 rpmA 1.08922
rpsD 0.56061 rplX 0.75111 sra 0.88011 rpmC 1.09439
rpsS 0.60728 rpsF 0.75859 rplI 0.90076 rplO 1.16165
rpsM 0.61255 rplD 0.76302 rpmB 0.90877 rpsI 1.24694
rpsG 0.62318 rplM 0.79227 rpsN 0.91121 rpmG 1.2494
rplF 0.62913 rplC 0.79299 rplP 0.92341 rpsT 1.24983
rplE 0.67119 rplQ 0.80176 rpsP 0.92858 rplL 1.3063
rpsH 0.67126 rpsB 0.80995 rplY 0.9446 rplT 1.3222
rpsK 0.67627 rpsA 0.81499 rpsL 0.95959 rpsO 1.32324
rpsE 0.7021 rplJ 0.82165 rplW 1.00068 rpmJ 1.49921
rplB 0.71682 rpsC 0.84223 rpmD 1.00368 rpsU 1.60846
rplV 0.7302 rplK 0.84341 rpsQ 1.03424 rpmI 1.66876
rplR 0.7344 rplA 0.84538 rpmF 1.04844 rpmH 1.77046
rplU 0.73917 rpmE 0.85618 rpsR 1.05606 – –

Translational Efp 0.70878 raiA 0.50131 rrfE 1.03184 ssrS 0.70761
Ffs 1.31636 rrfA 1.11799 rrfF 1.02752 tsf 0.85208
Frr 0.77909 rrfB 1.03184 rrfG 1.11995 tufA 0.94012
fusA 0.72335 rrfC 1.11995 rrfH 1.11995 tufB 0.86312
infA 0.7532 rrfD 1.11995 rrlA 1.06128 yeiP 0.52763

Transcriptional alpA 0.64494 glnB 0.81972 pspA 0.71495 rpoZ 0.874
chaB 0.91144 greA 0.61192 pspB 0.77923 sfsB 0.66054
Crl 0.68275 greB 0.52545 relB 0.68232 slmA 0.53879
cspA 1.2802 Hha 0.88747 relE 0.54866 soxR 0.59593
cspC 1.12974 Hns 0.73934 rof 0.65143 soxS 0.60395
cspE 0.87402 metJ 0.5234 rpoB 0.53467 suhB 0.53095
deaD 0.62977 nusB 0.66651 rpoC 0.66692 tdcR 0.60661
flgM 0.58028 nusG 0.62894 rpoD 0.53475 trpR 0.6079
flhC 0.504 osmE 0.55743 rpoH 0.51287 – –

CH and folding ccmD 0.81384 groL 0.90549 hybG 0.62208 secB 0.66081
dksA 0.5747 groS 0.82021 iscA 0.66931 skp 0.85476
dnaK 0.65259 hscB 0.62877 iscX 0.73575 slyD 0.60592
dsbA 0.59085 hslO 0.51531 lolA 0.51362 stpA 0.74434
fklB 0.63123 hslU 0.49623 narJ 0.50787 tig 0.79986
fkpA 0.55943 htpG 0.5791 ppiB 0.65291 – –
fkpB 0.51531 hyaE 0.56129 ppiC 0.70111 – –
fliT 0.51569 hybF 0.51315 rmf 0.96923 – –

Outer membrane csgA 0.73214 ompC 1.03758 slyB 0.59077 yqiG 0.69853
mipA 0.52949 ompF 0.63223 tsx 0.58718 – –
nmpC 0.51413 ompX 0.90683 yddL 0.57797 – –
ompA 0.79079 pagP 0.50225 yqhH 0.53974 – –

Post-translational rimI 0.50362 Def 0.50521 napD 0.65324 npr 0.66442

DNA repair/replication/recombination cspD 0.49781 Hole 0.70777 ihfB 0.58392 rusA 0.53058
dinI 0.66454 hupA 0.97108 priC 0.58088 ssb 0.71106
dinJ 0.57421 hupB 0.74465 rdgC 0.51482 xseB 0.865
fis 0.93575 ihfA 0.55962 recA 0.60858 yebG 0.59001

RNA modification rluB 0.55764 Pnp 0.59733 deaD 0.62977 rbfA 0.72106

DNA degradation rusA 0.53058 xseB 0.865 – – – –

Degradation of Proteins/peptides/glycopeptides hflC 0.4998 degP 0.51382 yhbO 0.53736 yajG 0.55166

Degradation of small molecules Pta 0.58128 frwB 0.57401 tnaC 1.33277 – –

Nucleoprotein and basic protein Hfq 0.51407 Hns 0.73934 skp 0.85476 tpr 1.29474
dps 0.55438 stpA 0.74434 fis 0.93575 – –
ihfB 0.58392 hupB 0.74465 hupA 0.97108 – –

Aminoacyl tRNA synthase aspS 0.52912 lysS 0.54138 pheM 2.38353 valS 0.52017
ygjH 0.5786 – – – – – –

Energy metabolism

Glycolysis eno 0.99727 gapA 0.87498 pfkA 0.67783 pykF 0.62056
fbaA 0.7547 gpmA 0.65413 pgk 0.76595 tpiA 0.80293

TCA cycle mdh 0.55763 sucB 0.51856 sucC 0.50409 sucD 0.62233

Continued
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Table 1. Continued

Functional class Gene RCBS Gene RCBS Gene RCBS Gene RCBS

Pentose phosphate pathway talB 0.58526 tktA 0.63261

ATP synthase atpA 0.64784 atpC 0.51365 atpD 0.64873 atpE 1.08527
atpF 0.60762

Pyruvate dehydronage aceE 0.57263 aceF 0.55269 lpd 0.56421

Aerobic respiration cyoC 0.53164 hyaE 0.56129 nuoA 0.54378 nuoK 0.61103
cyoD 0.61485 nirD 0.70885 nuoI 0.59343

Anaerobic respiration frdC 0.73468 hybG 0.62208 menB 0.60086 pflB 0.75126
frdD 0.72395 hydN 0.69364 narH 0.52986 ubiC 0.52458
glpE 0.54693 hypA 0.67865 narJ 0.50787
hybF 0.51315 hypC 0.56922 yfiD 0.87609

Electron transport ackA 0.61336 Fdx 0.61409 fldA 0.60624 cybC 0.56769

Flagellum biogenesis flgB 0.54626 fliJ 0.67522 fliS 0.52105 fliT 0.51569
fliE 0.66739 fliQ 0.5854

Transport of small molecules nupC 0.50273 potC 0.51092 tsx 0.58718

Salvage of nucleocides and nucleotides Apt 0.73291 deoC 0.63634 upp 0.51826 hpt 0.69492
deoB 0.55136 deoD 0.57449 gpt 0.56649

Central intermediary metabolism citD 0.59133 folX 0.51347 gloA 0.76667 ulaD 0.52297
citE 0.51485 Mutt 0.63455 aspA 0.52318 gcvH 0.72458
fixX 0.60213

Carbohydrate metabolism eda 0.62187 gntK 0.50361 ulaB 0.51605 uxaC 0.57269
gatB 0.53522 Lpd 0.56421 ulaD 0.52297 uxuA 0.59595
paaB 0.60215

Phosphorus metabolism pstA 0.51705 pstS 0.5871 ppa 0.6365 psiF 0.66563
phnG 0.5443

Nitrogen metabolism cynS 0.53274 glnK 0.65458

Sulphur metabolism cysP 0.51334

Amines metabolism eutS 0.57934

Amino acid biosynthesis artM 0.51962 glnH 0.54244 ilvG 1.32851 metJ 0.5234
dapD 0.51627 glnP 0.596 ilvL 1.51982 pheL 2.8411
fliY 0.51995 glyA 0.57258 ilvM 0.84298 sdaC 0.62785
glnA 0.5114 hisL 1.99822 ivbL 1.76046 thrL 1.7054
glnB 0.81972 ilvC 0.54397 leuL 1.93311 trpL 3.41556
trpR 0.60479

Fatty acid biosynthesis accA 0.57451 dgkA 0.55757 fabI 0.54893 ymcE 0.60055
acpS 0.55661 fabA 0.67664 fabZ 0.58465

Nucleotide biosynthesis adk 0.76156 Ndk 0.79214 purC 0.5899 pyrL 1.1651
guaB 0.58481 purA 0.53711

Cofactor and small molecule biosynthesis gapA 0.87498 mioC 0.50538 moaE 0.58446 ubiC 0.52458
glyA 0.57258 moaC 0.50171 ribE 0.59736
menB 0.60086 moaD 0.61154 This 0.78241

Macromolecule biosynthesis accB 0.55326 dgkA 0.55757 grxC 0.79395 mipA 0.52949
acpP 0.82199 fimA 0.57714 hipB 0.62205 nrdH 0.66531
ccmD 0.81384 glgS 0.89234 iscR 0.50455 pagP 0.50225
cybC 0.56769 grxA 0.55662 Lpp 1.632 trxA 0.75124
yfgJ 0.72071

Inner membrane ccmD 0.81384 metI 0.53708 yccF 0.58505 yidH 0.53297
cyoC 0.53164 mscL 0.57954 ydgC 0.55456 yiiR 0.51556
cyoD 0.61485 narH 0.52986 yeaL 0.50064 yijD 0.50746
dgkA 0.55757 nuoA 0.54378 yeaQ 0.71217 yjeO 0.54162
frdC 0.73468 nuoK 0.61103 ygdD 0.62392 yjeT 0.68009
frdD 0.72395 nupC 0.50273 yhdT 0.74646 yncH 0.7111
glnP 0.596 Pal 0.86696 yhhL 0.62656 ynfA 0.60738
lpp 1.632 yaaH 0.7921 yiaB 0.65847
mdtJ 0.61263 ybaN 0.55105 yiaW 0.64364

Continued
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Table 1. Continued

Functional class Gene RCBS Gene RCBS Gene RCBS Gene RCBS

Transport yjdM 0.76533 glnH 0.54244 ptsH 0.93025 csgF 0.54377
yjgA 0.5484 glnP 0.596 potC 0.51092 secG 0.75473
fliY 0.51995 mscL 0.57954 pmrD 0.5388 mokC 0.62148
cyoC 0.53164 sugE 0.51943 yrbC 0.54592 yajC 0.69682
metI 0.53708 mdtI 0.74374 frwB 0.57401 tatA 0.72924
metQ 0.56475 mdtJ 0.61263 fryB 0.70188 tatE 0.71983
feoA 0.76102 chbA 0.55214 yedE 0.50339 cysP 0.51334
gatB 0.53522 chbB 0.65397 ygaH 0.5262 npr 0.66442
gspI 0.54627 nuoI 0.59343 yqaE 1.13838 sdaC 0.62785
crr 0.6849 nupC 0.50273 marB 0.61754

Regulator chpS 0.57732 csrC 0.51672 hipB 0.62205 yfeC 0.5528
cpxP 0.50596 dsrA 1.78721 Spf 1.34529 yiaG 0.51628
csgA 0.73214 dsrB 0.75282 sufE 0.58559 yifE 0.54534
csrA 0.83793 feoC 0.86637 yddM 0.5642 yrbA 0.62229

Table 2. Predicted expression levels of highly expressed prophage genes

Gene Description RCBS

yeeT CP4-44 prophage; predicted protein 0.76113

alpA CP4-57 prophage; DNA-binding transcriptional activator 0.64494

ypjK CP4-57 prophage; predicted inner membrane protein 0.7551

yfjU CP4-57 prophage; predicted inner membrane protein 1.07646

yfjM CP4-57 prophage; predicted protein 0.56069

yafW CP4-6 prophage; antitoxin of the YkfI–YafW toxin–antitoxin system 0.54248

tfaS CPS-53 (KpLE1) prophage; conserved protein 0.60714

yfdT CPS-53 (KpLE1) prophage; predicted protein 0.54524

yfdS CPS-53 (KpLE1) prophage; predicted protein 0.59437

yffM CPZ-55 prophage; predicted protein 0.72955

ninE DLP12 prophage; conserved protein 0.61069

rusA DLP12 prophage; endonuclease RUS 0.53058

emrE DLP12 prophage; multidrug resistance protein 0.65874

borD DLP12 prophage; predicted lipoprotein 0.50128

rzoD DLP12 prophage; predicted lipoprotein 0.98537

essD DLP12 prophage; predicted phage lysis protein 0.77232

ybcO DLP12 prophage; predicted protein 0.56517

ybcW DLP12 prophage; predicted protein 0.67154

ylcG DLP12 prophage; predicted protein 1.05554

yciH e14 prophage; 5-methylcytosine-specific restriction endonuclease B 0.67815

yciX e14 prophage; predicted DNA-binding transcriptional regulator 0.79718

yciO e14 prophage; predicted inner membrane protein 0.50282

rluB e14 prophage; predicted integrase 0.55764

ymiA e14 prophage; predicted protein 1.3517

ylcH hypothetical protein, DLP12 prophage 1.56134

insM KpLE2 phage-like element; iron-dicitrate transporter subunit 0.6455

insA KpLE2 phage-like element; IS1 repressor protein InsA 0.52239

yqiG KpLE2 phage-like element; IS2 insertion element repressor InsA 0.69853

yjhD KpLE2 phage-like element; IS30 transposase 0.6955

relB Qin prophage; bifunctional antitoxin of the RelE–RelB toxin–antitoxin system/transcriptional repressor 0.68232

dicB Qin prophage; cell division inhibition protein 0.66801

Continued
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regulation tufB is partially dependent upon the fis
gene, global DNA binding transcriptional and the fis
gene has significantly higher expression level
(RCBS ¼ 0.93575). Small RNA molecules are very
important in cell biology and can regulate translation.
It is found that genes coding 5S RNAs (rrfA, rrfB, rrfC,
rrfD, rrfE, rrfF, rrfG, rrfH) and 23S RNA (rrlA) have dis-
tinctive RCBS values .1.0. Gene expression is con-
trolled by a regulator that interacts with a specific
sequence of a target RNA. Ffs coding for the 4.5S
sRNA component of signal recognition particle
works with the ffh protein (RCBS ¼ 0.3524) and is
involved in co-translational protein translocation
into and possibly through membranes. SsrS coding
for 6S sRNA inhibits RNA polymerase promoter
binding. It acts as a template for RNA-directed pRNA
synthesis by RNAP and mimics an open promoter.
RaiA codes for cold shock protein associated with
30S ribosomal subunit. Ffs,ssrS and raiA involved in
translational process are predicted to be highly
expressed genes in our approach.

Moreover we identify four other genes which are
involved in the post-translational process and are
expressed at higher level. These are riml coding acety-
lase for 30S ribosomal subunit S18, def coding
peptide deformylase, hypC coding protein required
for maturation hydrogenases 1 and 3, napD coding
for assembly protein for periplasmic nitrate reduc-
tage, and npr coding for phosphohistidinoprotein-
hexose phosphotransferage component of N-regu-
lated peroximal targeting signal (PTS) system.

Transcription is the first stage in gene expression
and the principal step at which it is controlled. The
gene for major cold shock protein (cspA) attains a sig-
nificantly high expression level (RCBS ¼ 1.28). The
gene cspA is a regulator needed for adaptation to aty-
pical conditions and gives a response to temperature

stimulus. CspC coding for other stress proteins and a
member of the cspA family is also a highly expressed
gene. Among other genes involved in the transcription
process RNA polymerase plays a vital role. RNA syn-
thesis is catalysed by the enzyme RNA polymerase.
Transcription starts when RNA polymerase binds to
the promoter. Among the DNA-directed RNA poly-
merase rpoB, rpoC, rpoD, rpoH and rpoZ subunits in
E. coli qualify the high expression level. RNA polymer-
ase must be able to handle situations when transcrip-
tion is blocked, e.g. when DNA is damaged. In the case
of E. coli RNA polymerase, the proteins greA and greB,
which have been predicted to have a high expression
level, release polymerase from elongation arrest. Rho,
transcription termination factor, attains a moderate
expression level (RCBS ¼ 0.4749). Termination and
anti-termination are closely connected and involve
proteins that interact with RNA polymerase. Anti-ter-
mination is used as a control mechanism and controls
the ability of the enzyme to read past a terminator
into genes lying beyond. The nus loci code for proteins
that form part of the transcription apparatus. The
nusA, nusb, nusG functions are concerned solely with
the transmission of transcription. Transcription anti-
termination protein (nusB) and transcription termin-
ation factor (nusG) have high expression levels. NusB
is required for rho-dependent terminators whereas
nusG may be considered with the general assembly
of all the nus factors into a complex with RNA poly-
merase. NusA required for intrinsic terminators has a
moderate expression level (RCBS ¼ 0.4658).

3.3. CH/degradation protein genes
CH/degradation proteins are vital in cell physiology.

CHs are proteins that assist the non-covalent folding/
unfolding and assembly/disassembly of other

Table 2. Continued

Gene Description RCBS

cspB Qin prophage; cold shock protein 0.52261

cspF Qin prophage; cold shock protein 0.5891

cspI Qin prophage; cold shock protein 0.80085

dicC Qin prophage; DNA-binding transcriptional regulator for DicB 0.69275

ydfK Qin prophage; predicted DNA-binding transcriptional regulator 0.50987

ynfN Qin prophage; predicted protein 0.69704

gnsB Qin prophage; predicted protein 0.82038

ydfD Qin prophage; predicted protein 0.83742

ydfA Qin prophage; predicted protein 0.95351

ydfB Qin prophage; predicted protein 1.34218

essQ Qin prophage; predicted S lysis protein 0.62869

hokD Qin prophage; small toxic polypeptide 0.75743

relE Qin prophage; toxin of the RelE–RelB toxin–antitoxin system 0.54866
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macromolecular structures. One major function of CH
is to prevent both newly synthesized polypeptide
chains and assembled subunits from aggregating
into non-functional structures. Many CHs are heat
shock proteins, that is, proteins expressed in response
to elevated temperatures or other cellular stresses.
The reason for this behaviour is that protein folding
is severely affected by heat and, therefore, some CHs
act to repair the potential damage caused by misfold-
ing. Other CHs are involved in folding newly made
proteins as they are extruded from the ribosome.
Although most newly synthesized proteins can fold
in the absence of CHs, a minority strictly requires
them. DnaK (HSP70), perhaps the best characterized
CH in E. coli, is identified as a highly expressed gene.
The Hsp70 proteins are aided by Hsp40 proteins
(DnaJ in E. coli), which increase the ATP (adenosine tri-
phosphate) consumption rate and activity of the
Hsp70s. But, dnaJ has a low expression level (RCBS ¼
0.3988). It has been noted that increased expression
of Hsp70 proteins in the cell results in a decreased
tendency towards apoptosis. Although a precise
mechanistic understanding has yet to be determined,
it is known that Hsp70s have a high-affinity bound
state to unfolded proteins when bound to adenosine
diphosphate ribosyl, and a low-affinity state when
bound to ATP. It is thought that many Hsp70s crowd
around an unfolded substrate, stabilizing it and pre-
venting aggregation until the unfolded molecule
folds properly, at which time the Hsp70s lose affinity
for the molecule and diffuse away. Other highly
expressed heat shock proteins are groS, groL, hslO
(Hsp33) htpG (Hsp90). GroS and groL are the small
subunits of GroESL. These are the best characterized
heat shock protein complexes in E. coli, identified as
highly expressed genes. HtpG in E. coli is the least
well-understood CH. Hsp90, a molecular CH, might
be essential for activating many signalling proteins
in the eukaryotic cell and is necessary for viability in
eukaryotes. Since it is predicted to be a highly
expressed gene, it is possibly necessary for prokaryotes
as well.

Protein degradation plays an important role in cell
cycle, in signal transduction and in maintaining the
integrity of the proper folded state of a protein. Out of
100 genes involved in macromolecular degradation
only six genes qualify as highly expressed genes. In
Table 1, the predicted expression levels of highly
expressed degradation genes are reported. Among
these the genes encoding xseB (exonuclease VII small
subunit) and rusA (DLP12 prophage, endonuclease
RUS) are enzymes which regulate the degradation of
DNA. These are also involved in DNA repair activity.
Pnp and csrA are the only two proteins qualifying as
highly expressed genes involved in RNA degradation.
Pnp, polynucleotide phosphorylase/polyadenylase, is

fundamental in RNA processing. Polyadenylation plays
an important role in initiating degradation of some
RNAs. Triple mutations that remove Pnp have a strong
effect on stability. Poly(A)polymerase may create a
poly (A) tail that acts as a binding site for the nucleases.
DegP, serine endoprotease (Protease D0) encodes an
enzyme which is involved in protein and peptide degra-
dation and is predicted to be required for global protein
degradation. It responds to temperature stimulus. YhbO,
YajG, a predicted lipoprotein and YhbO, a predicted
intercellular protease are thought to be involved in
degradation of proteins and polysaccharides.

3.4. Aminoacyl tRNA synthetases and modification
genes

There are 37 genes encoding the tRNA synthetases
and other enzymes involved in tRNA modification.
Results have been reported in Table 1. Compared
with 19 PHX genes as predicted by Karlin et al.,18

only three genes register as highly expressed genes
in our expression measure. These include aspartyl
tRNA synthetase (aspS), lysine tRNA synthetase (lysS)
and valyl tRNA synthetase (valS). The gene encoding
glysine tRNA synthetase (glyS) is also predicted to
be a highly expressed gene marginally with RCBS ¼
0.4974. Among other tRNA synthetase genes phes,
glyQ, glnS, leus, serS, pros, tyrS, gltX and metG have
moderate expression levels. PheM, phenylalanyl tRNA
synthetase operon leader peptide registers a high
RCB score with RCBS ¼ 2.1835.

3.5. Outer membrane protein
There are �13 highly expressed genes encoding

outer membrane proteins, as predicted by our
expression measure. The expression levels of these
genes have been displayed in Table 1. These include
outer membrane protein (ompA, ompC, ompF, ompX),
outer membrane lipoprotein (slyB), truncated outer
membrane porin (nmpC), palmitoyl transferase for
Lipid A ( pagP), scaffolding protein for murein synthe-
sizing machinery (mipA) and tsx. Moreover, yqiG, a
predicted outer membrane user protein, yqhH, a pre-
dicted outer membrane lipoprotein, and yddL, a pre-
dicted putative outer membrane protein have been
predicted as highly expressed genes in our analysis.

3.6. Inner membrane protein
Among the genes encoding inner membrane

protein, murein lipoprotein (lpp) has the highest
expression level (RCBS ¼ 0.6320). Other than con-
served inner membrane protein, 34 inner membrane
protein genes have been listed in Table 1 as highly
expressed genes. There are �83 conserved inner
membrane proteins in the E. coli genome. Out of
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those, 17 have been predicted to be highly expressed
genes (Supplementary Table SVII).

3.7. Amino acid biosynthesis
Overall, 20 of the 255 amino acid biosynthesis

genes are expressed at a higher level. The artM, an
arginine transporter subunit, flyM, a cystine transpor-
ter subunit, glnH and glnP, the glutamine transporter
subunits are predicted to be expressed at higher levels.
The glnA gene, which encodes glutamine synthetase,
and glnB, which encodes regulatory protein for
glumine synthetase, are expressed at higher levels.
Interestingly, hisL, his operon ladder peptide; ilvL,
ilvG operon ladder peptide; ivbL, ilvB operon ladder
peptide; leuL, leu operon ladder peptide; pheL, pheA
gene ladder peptide; thrL, thr operon ladder peptide;
and trpl, trp operon ladder peptide are expressed at
higher levels. The monocystronic gene ilvC, which is
depressed exclusively by valine has a high value of
expression score. The dapD product, 2,3,4,5-tetrahy-
dropyridine-2-carboxylate N-succinyl transferage,
which encodes the enzyme for lysine biosynthesis
process via diaminopimelate has a high expression
level.

3.8. Nucleotide biosynthesis
According to MIPS classification, �31 genes encode

enzymes for nucleotide biosynthesis. In our study, we
observe that five genes namely purA, purC, adk, ndk
and guaB encoding enzymes which are involved in
Purine ribonucleotide biosynthesis and pyrL, pyrBI
operon leader peptide for Pyrimidine ribonucleotide
biosynthesis, are highly expressed genes. PyrL has a
significantly high expression level with RCBS ¼ 1.16.

3.9. Genes for energy metabolism and metabolism
of carbon compounds

Of the 392 genes involved in metabolism of carbon
compound, 39 genes have a significantly high
expression level. Of those, 27 are involved in carbo-
hydrate metabolism, 10 are involved in amino acid
metabolism, and two are involved in amines metab-
olism. Lpd is involved both in carbohydrate and
amino acid metabolism. Rest one is involved in
other carbon compound metabolism. No genes
involved in fatty acid metabolism attain a high
expression level, but seven of the 27 genes involved
in fatty acid biosynthesis have a significantly high
expression level. The data presented here indicate
that accA (acetyl-CoA carboxylase), which encodes
one component of acetyl coenzyme A carboxilase is
a highly expressed gene. In addition, ymcE, which is
cold shock protein and aspS also attain a high
expression level. Although less is known about fab
genes except the FadR activation on fabA, we predict

that some of fab genes ( fabA, fabI, fabZ) have a signifi-
cant expression level. This is consistent with genomic
expression profiling obtained from DNA microarray
analysis of Tao et al.34

3.10. Energy metabolism genes
The genes involved in energy metabolism are pri-

marily divided into four groups: glycolysis, pyruvate
dehydronage, the pentose phosphate pathway and
the TCA cycle. Of the 1530 genes that are involved
in energy metabolism, 163 have been predicted to
be highly expressed genes in our approach. Two
basic metabolic pathways glycolysis and TCA cycle
involve eight and four highly expressed genes respect-
ively, whereas the genes in glycolysis and pyruvate
metabolism are predominantly highly expressed
genes. These include the genes for eno, fbaA, gapA,
gpmA, pfkA, pykF, tpiA, pgk.

Unlike Karlin et al. the proteins involved in the
initial steps of glycolysis ( pgi coding glucophosphate
isomerage and the proteins involved in the initial
steps of TCA cycle (gltA, citrate synthase) are not
highly expressed genes in our observation. Besides
having the most TCA cycle, pyruvate dehydronage
and glycolysis, E. coli genome has several highly
expressed genes of anaerobic and aerobic respiration.
Among NADH dehydrogenase nuo complex nuoA, nuoI
and nuoK are highly expressed genes. Genes encoding
a, b and 1 subunits of F1 sector of membrane bound
ATP synthase and b and c subunits of F0 sector of
membrane bound ATP synthase genes have been pre-
dicted to be highly expressed genes. With respect to
electron transport flavodoxin 1 ( fldA) and cyto-
chrome o ubiquinol oxidase subunit III (cyoC) are
highly expressed gene with RCBS values 0.6062 and
0.5316, respectively. In addition, cytochrome c bio-
genesis protein (ccmD), and cytochrome o ubiquinol
oxidase subunit IV (cyoD) also register high expression
level in our approach.

In marked contrast to Kerlin et al., E. coli has six
highly expressed flagellar genes flgB, fliE, fliJ, fliQ, fliS,
fliT. The flagellum secretion apparatus may be
viewed as part of the CH family essential for bacterial
viability. Assembly of a flagellum is required to export
protein subunits to the outer surface of the cell.
Recent evidence indicates that flagellum regulon can
also influence bacterium–host interactions indepen-
dent of motility.

3.11. Fatty acid biosynthesis
Fatty acid metabolism is crucial because not only

does it provide various fatty acids and phospholipids
necessary for cell growth, but it also serves as a
source of precursors for biosynthesis of secondary
metabolites. The highly expressed genes involved in

No. 1] U. Roymondal et al. 25



fatty acid biosynthesis included genes encoding beta-
hydroxydecanoyl thioester dehydrase ( fabA), NADH-
dependent enoyl-[acyl-carrier-protein] reductase
( fabI), (3R)-hydroxymyristol acyl carrier protein
dehydratase ( fabZ), holo-[acyl-carrier-protein]
synthase 1(acpS), accA, cold shock gene (ymcE).
Besides 3-oxoacyl-[acyl-carrier-protein] synthase I
( fabB) has moderately high value of RCBS (RCBS ¼
0.4954).

3.12. Central intermediary metabolism
Several highly expressed genes in this functional

class are also involved in carbohydrate metabolism.
Besides other genes in this class which are also
involved in nitrogen metabolism, phosphorus metab-
olism, amino acid metabolism, etc., our analysis ident-
ified the key genes involved in central intermediary
metabolism, encoding aspartate ammonia-lyase
(aspA), citrate lyase (citD, citE), glycine cleavage
complex lipoylprotein (gcvH), Ni-dependent glyoxalase
I (gloA), 3-keto-L-gulonate 6-phosphate decarboxylase
(ulaD), D-erythro-7,8-dihydroneopterin triphosphate
20;-epimerase and dihydroneopterin aldolase ( folX)
and D-erythro-7,8-dihydroneopterin triphosphate 20;-
epimerase and dihydroneopterin aldolase (mutT) as
highly expressed genes. FixX, 4Fe-4S ferredoxin-type
protein is also registered as a highly expressed gene
predicted to be involved in central intermediary
metabolism.

3.13. Genomic repair proteins
An event that introduces a deviation from the usual

double-helical structure of DNA is a threat to the
genetic constitution of the cell. The repair system is
thus very important for the survival of the cell. The
repair system can recognize a range of distortions in
DNA as signal for action, and is likely to have several
systems able to deal with DNA damage. Table 1
reports the highly expressed repair proteins in E. coli
genome. Other repair proteins have low to moderate
expression levels. Of the 51 genes involved in DNA
repair, only six genes reach a high expression level.
The principal pathway for recombination repair in E.
coli is identified by the rec genes. recA, predicted to
be highly expressed genes in our approach is not
only involved in recombination–repair activities, but
also has another quite distinct function. It can be acti-
vated by many treatments that damage DNA or
inhibit replication in E. coli. This causes it to trigger a
complex series of phenotype changes called the SOS
response, which involves the expression of many
genes whose products include repair function. The
other highly expressed repair genes in E. coli are
xseB, dinl, yebG, dinJ, rusA. DinI, DNA damage-inducible
protein I, and dinJ, predicted antitoxin of YafQ–DinJ

toxin antitoxin system act on damaged DNA and
involved in repairing damaged DNA. YebG, a conserved
protein regulated by LexA functions as DNA repair.

3.14. Regulatory protein
About 440 genes in E. coli encode regulatory pro-

teins. Among these regulatory proteins 62 genes are
predicted to be highly expressed genes. Several of
the genes in this class also function in translation,
transcription, DNA repair, replication/recombination,
cell process, etc. The predicted expression levels of
several other highly expressed genes of specific regu-
latory proteins are listed in Table 1.

3.15. Biosynthesis of vitamins, cofactors and small
molecules

Vitamin biosynthesis proteins have largely low
expression levels. Only ribE, riboflavin synthetase, is
highly expressed. This is in contrast to the result of
Karlin et al.18 Pathways for the synthesis of vitamins
of which only small amounts are generally needed
to achieve adequate function, record low RCBS
values ranging from 0.1801 to 0.5974. Some of the
enzymes that utilize the vitamins as cofactors are
highly expressed, e.g. accB, acetyl-CoA carboxylase,
BCCP subunit of E. coli is registered as highly expressed
gene in our approach with RCBS ¼ 0.5533. Expression
of the 10 highly expressed genes involved in the bio-
synthesis of cofactors and small molecules are listed
in Table 1.

3.16. Biosynthesis of other macromolecules
Among the genes encoding proteins for macromol-

ecular biosynthesis, lpp attains significantly high RCBS
value (RCBS ¼ 1.6320). In addition to it, other highly
expressed genes involved in macromolecular biosyn-
thesis genes are major type 1 subunit fimbrin
( fimA), DNA-binding transcriptional repressor (iscR)
and truncated cytochrome b562 cytochrome
(cybC). GlsG, a predicted glycogen synthesis protein
and yfgJ, another predicted protein thought to be
involved in macromolecular biosynthesis also attain
the score of high expression level.

Of the 39 cryptic genes in E. coli analysed in our
model, only three register as highly expressed genes.
Those are csgA, a criptic curlin major subunit which
is involved in glycoprotein biosynthesis, mokC, a regu-
latory protein of hokC, and gspl, a putative transport
protein. The expression levels of these genes are 0.7,
0.62 and 0.55, respectively.

Among the genes induced under starvation con-
ditions only dps, Fe-binding and storage protein
(RCBS=0.5544) which provides DNA protection during
starvation proteins, rpoH, RNA polymerase, sigma 32
(sigma H) factor (RCBS ¼ 0.5129) are predicted as
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highly expressed genes in agreement with Karlin et al.18

Other starvation protein genes [otsA (RCBS¼ 0.2349),
otsB (RCBS¼ 0.2700), rpoE (RCBS¼ 0.2781), rpoN
(RCBS ¼ 0.2486), rpoS (RCBS¼ 0.4093), katE (RCBS¼
0.2359), surA (RCBS¼ 0.3936), bolA (RCBS¼
0.4342)] have low to moderate expression levels. The
survival protein surA which is registered as PHX with
E(g) ¼ 1.10 does not qualify as a highly expressed
gene in our approach. Besides, we also observe that a
number of genes encoding prophases are recorded as
highlyexpressedgenes inouranalysis. A phase DNA mol-
ecule is often integrated into the DNA molecule of bac-
terium forming a prophase. A list of highly expressed
genes encoding different prophases in E. coli is displayed
in Table 2.

Apart from these classified genes, a fraction of
poorly characterized genes which are generally anno-
tated based on strong sequence similarity is also
found among predicted highly expressed genes.
Many of these genes encode predicted proteins and
some are poorly characterized hypothetical genes. (A
list of highly expressed genes which are thought to
encode predicted proteins is given in supplementary
Supplementary Table SVII). Our analysis thus provides
strong support for significant roles of these genes
which may be highly relevant for E. coli.

The large data set analysed here shows a clear con-
nection between relative codon usage difference and
gene expression level. Codon frequencies are found
to vary between genes in the same genome and
between genomes. Thus overall nucleotide compo-
sition of the genome which influences codon usage
pattern introduces selective forces acting on highly
expressed genes to improve efficiency of translation.
This is also evident from the observation that
shorter coding sequence has greater RCBS value, i.e.
shorter genes have high expression level4,5,40,41 and
this is consistent with the fact that the cost of produ-
cing a protein is proportional to its length.

Interestingly, we observe that besides highly
expressed protein coding genes all tRNA genes (listed
in Table 3) are also registered with very high RCBS
values. This observation suggests that usage of preferred
codons in these and highly expressed genes is positively
correlated and the highly expressed genes use a pre-
ferred set of optimal codons in accordance with their
respective tRNA levels. Moreover, this result might find
another important application in tRNA genes. Besides
measuring expression levels of a gene, RCBS score can
be remarkably used to remove the false positives in
tRNA finding algorithm. Moreover, several genes of
unknown functions with predicted high expression

Table 3. Predicted expression levels of tRNA genes

Gene RCBS Gene RCBS Gene RCBS Gene RCBS

alaX 1.35584 glnW 1.96033 leuP 1.06805 serT 1.15723

alaW 1.35584 glnU 1.96033 leuX 1.18771 serU 1.32755

alaV 1.5556 gltW 1.85009 leuU 1.23093 serW 1.45877

alaU 1.5556 gltU 1.85009 leuZ 1.3515 serX 1.45877

alaT 1.5556 gltT 1.85009 lysT 1.91913 thrW 1.175

argU 1.40468 gltV 1.85009 lysW 1.91913 thrV 1.27061

argX 1.67244 glyW 1.32551 lysY 1.91913 thrT 1.27325

argQ 1.76167 glyV 1.32551 lysZ 1.91913 Thru 1.7256

argZ 1.76167 glyX 1.32551 lysQ 1.91913 trpT 1.62046

argY 1.76167 glyY 1.32551 lysV 1.91913 tyrU 1.00445

argV 1.76167 glyT 1.33638 metY 1.22225 tyrV 1.0433

argW 1.99759 glyU 1.47125 metZ 1.32682 tyrT 1.0433

asnT 1.87865 hisR 1.21868 metW 1.32682 valW 1.37166

asnW 1.87865 ileX 1.41462 metV 1.32682 valT 1.37566

asnU 1.87865 ileV 1.42883 metU 1.36722 valZ 1.37566

asnV 1.87865 ileU 1.42883 metT 1.36722 valU 1.37566

aspU 1.38539 ileT 1.42883 pheV 1.38483 valX 1.37566

aspV 1.38539 ileY 1.45397 pheU 1.38483 valY 1.37566

aspT 1.38539 leuW 1.02415 proL 1.26942 valV 1.6125

cysT 1.35851 leuT 1.03107 prom 1.38923 selC 1.28639

glnX 1.65127 leuV 1.03107 proK 1.44416 – –

glnV 1.65127 leuQ 1.03107 serV 1.14888 – –
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levels may be attractive candidates for experimental
characterization because we assume that they have
important functions in those organisms. Table 4 lists
such gene families of unknown functions. This kind of
analysis is valuable in helping to identify the promising
candidate genes to be focused for further experimental
characterization.

4. Discussion

Our analysis supports that each genome has evolved
codon usage patterns indicating gene expression
levels. The three protein families – RPs, major trans-
lation/transcription processing factors, and CH/
degradation proteins which are fundamental at
many stages of the life style in promoting growth
and stability, have been identified as highly expressed
genes. Although the concept of predicting gene
expression from codon usage was proposed a decade
ago, only recently these methods have been success-
fully applied to the identification of highly expressed
genes in various bacteria and eukaryotic organisms.
But, any such codon usage-based prediction of gene
expression relies on a prior definition of a reference
set, consisting of highly expressed genes. For instance,
CAI listed a set of 27 highly expressed genes for E. coli,
which includes gene encoding 17 RPs, four elongation
factors, four outer membrane protein, recA, and dnaK.
For yeast a set of 24 highly expressed genes has been
taken as a reference set. These include 16 genes
encoding RPs, one for an elongation factor, two
enolase genes, two GA-3-PDH genes, ADH 1, PCK, pyr-
uvate kinase.3 Karlin and coworkers17–23 included
transcription/translation-related factors and CHs in
the reference set, in addition to the RP genes. MILC-
based expression level predictor MELP13 is based on
a reference set consisting of all genes coding for RPs,
longer than 100 codons. Although the composition
of the reference set is based on the functional assign-
ment of the genes, but there is no specific algorithm
to construct a reference set for individual species.
The outcome is highly dependent on the genome
examined. In some instances, in the use of alternative
reference sets results are very poor. In principle it is

not possible to regulate protein expression level by
the judicious use of certain codons. It is worth empha-
sizing that individual genes tend to favour character-
istic codon distributions and there is a strong
connection between protein expressivity and the
degree of codon bias. So, we emphasize that codon
assignment as well as codon preferences should be
taken into account in a single measure which will
have functional feedback between the constraints of
gene expression and microstructure of genomes. To
better understand potential expression levels of
genes, we developed a methodology that relates
codon usage as well as large-scale DNA compositional
biases among gene classes to the expression potential
of individual genes. The CAI3 and codon usage
models13,17 are originally based on somewhat quali-
tative assumptions about the expression levels of rela-
tively few genes. This is our motivation for using a
quantitative measure (RCBS) to recalculate genome-
wide expression data. The new approach begins with
the assumption, based on the argument just pre-
sented; that the general codon usage features
observed in highly expressed genes greatly differ
from that of randomly generated sequences with
their sequence composition conserved. Our prop-
osition is based on the fact that the difference
between the geometric average of normalized fre-
quency of codons ( fxyz) in a sequence of nucleotides
and that of f1(x) � f2(y) � f3(z) is .0.5 of the geo-
metric average of f1(x) � f2(y) � f3(z) for highly
expressed genes. The proposed threshold value (0.5)
of RCBS is investigated for E. coli genome, Yeast
genome and archeal genomes. The data (available
on request) provide the evidence in favour of potential
strength of our expression measure over the others.
The most of the housekeeping genes fall in the cat-
egory of highly expressed genes. The study also ident-
ifies a number of functionally unknown genes as
highly expressed genes based on their codon profile.
Thus, it often seems sufficient that our approach is a
better alternative to the existing expression models.
Surprisingly, we have found that there is a strong
negative correlation between relative codon usage
bias and protein length in contradiction with
others.24,42 Although our primary motivation in
developing this novel method was to compensate
the possible artefacts due to sequence length variabil-
ity, we have observed that highly expressed genes
(identified by RCBS) show negative correlation with
gene length leading to a biological relevance. This is
suggested to be due to more effective translational
selection acting to reduce size of the abundant pro-
teins, to minimize transcriptional and translational
energy costs. Although the longer sequences appear
to be better optimized in terms of having codons for
more abundant tRNAs which increase their

Table 4. Predicted expression levels of highly expressed
hypothetical protein genes

Gene RCBS Gene RCBS Gene RCBS
ytcA 0.51055 ylcI 0.77343 ybhU 1.09738

ybfK 0.51884 yojO 0.84734 ynhF 1.15141

ymjA 0.58644 ygdT 0.85155 ydgU 1.48121

yrhD 0.63276 ypaB 0.92206 ypfM 1.86114

ydbJ 0.63348 yccB 1.07903 ylcH 1.56134
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probability in proper and timely translation, it is easier
for a ribosome to translate a short RNA sequences, as
opposed to decrease in fidelity for longer translation.
Therefore it is likely that there is a natural selection
for the shorter genes to be expressed at higher level.41

To summarize, we have introduced a novel method,
based on codon usage difference with regard to
random base composition at three codon sites, to esti-
mate the level of expression of a gene. In this article, pre-
dictedhighlyexpressedgenes are characterized forE. coli
genome only, but the method equally applies to other
microbes to be reported in separate communication.
By comparing its performance with other commonly
used measures of gene expression, we have established
that RCBS is a generally applicable method, being resist-
ant to species specific and introduces little noise into
measurements. It is remarkable that the present
model usually performs as well as other codon usage
model of Kerlin et al.18 sometime lead to a better corre-
lation with expression data according to several other
measures based on CAI.3 The prediction of expression
level in our approach can be appreciated by comparing
them with the protein abundance data and microarray
data. Thus, our method is effectively complementary
to the experimental procedures of 2D gel electrophor-
esis and DNA microarray analysis in assessing gene
expression levels. In contrast to other existing measures,
our modeldescribes the global enrichment of acodon in
highly expressed genes with no restrictions on compo-
sition of the other codons. Of course, the codon-based
expression indicators yield static value, whereas gene
expression is a dynamic process with very different
expression levels under different conditions. In our
view codon usage pattern of genomes evolves as a
result of interplay between mutational and selective
forces and the proper account of the adaptive response
to the codon assignment can lead to a practical solution
of gene expression.
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