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Abstract
Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the

growth and viability of HCC cells. Reptin is involved in several chromatin remodeling com-

plexes, some of which are involved in the detection and repair of DNA damage, but data on

Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objec-

tive was to study the effects of Reptin silencing on the repair of DNA double-strand breaks

(DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 μM, 30 min) or γ irradiation

(4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respec-

tively. These values were significantly reduced by 35 and 65 % after Reptin silencing with

inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5

fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects

in activation and/or recruitment of repair proteins were not due to a decreased number of

DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B

cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was signifi-

cantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained

unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered.

Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs.

The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Fi-

nally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth

and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs.

Our data, combined with those of the literature suggests that it operates at least in part by

regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of

Reptin in HCC could be a factor of resistance to treatment, consistent with the observed

overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.

Introduction
The ability of tumor cells to repair DNA damage and particularly double strand breaks (DSB)
is a major determinant of cancer progression and of resistance to treatment. Understanding

PLOSONE | DOI:10.1371/journal.pone.0123333 April 15, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Raymond A-A, Benhamouche S, Neaud V,
Di Martino J, Javary J, Rosenbaum J (2015) Reptin
Regulates DNA Double Strand Breaks Repair in
Human Hepatocellular Carcinoma. PLoS ONE 10(4):
e0123333. doi:10.1371/journal.pone.0123333

Academic Editor: Brendan D Price, Dana-Farber/
Harvard Cancer Institute, UNITED STATES

Received: July 19, 2014

Accepted: March 2, 2015

Published: April 15, 2015

Copyright: © 2015 Raymond et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The study was supported by grants from
Equipe Labélisée Ligue Contre le Cancer 2011 to
Jean Rosenbaum (http://www.ligue-cancer.net/),
Institut National du Cancer grant PLBIO10- 155 to JR
(http://www.e-cancer.fr/), and Grant “Institut National
du Cancer - Direction Générale de l'Offre de Soins -
Institut National de la Santé et de la Recherche
Médicale 6046” to JR (http://www.e-cancer.fr/). AAR
was supported by a fellowship from Institut National
du Cancer (http://www.e-cancer.fr/), SB by a
fellowship from Fondation pour la Recherche

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0123333&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ligue-cancer.net/
http://www.e-cancer.fr/
http://www.e-cancer.fr/
http://www.e-cancer.fr/


the many mechanisms involved is therefore very important in order to find new ways to im-
prove cancer therapy. Reptin (RUVBL2) is a highly conserved essential protein. It belongs to
the very large AAA+ (ATPases Associated with various cellular Activities) ATPase family [1,2].
We have previously shown that Reptin is overexpressed in the majority of human hepatocellu-
lar carcinomas (HCC) where a high level of expression was associated with a poor prognosis
following surgery [3]. We also demonstrated the role of Reptin in HCC progression since its
overexpression favored the growth of human xenografts in mice [3], whereas its silencing in
vitro or in tumors led to cell growth arrest associated with induced senescence [3,4]. An overex-
pression of Reptin has been reported in several other cancer types like colon [5], stomach [6]
and kidney [7] (and see also reviews [8,9]). Similarly, anti-proliferative effects of Reptin silenc-
ing have been shown in tumor cells derived from gastric [6] and kidney cancer [7]. Reptin is a
pleiotropic protein endowed with many functions relevant to DNA damage repair. For in-
stance, Reptin, together with its homolog protein Pontin, is part of several chromatin remodel-
ing complexes involved at some stage in DNA damage sensing or repair such as INO80 [10],
Tip60 [11], Swr1 [12] and YY1 [13]. However, whereas the role of Pontin in DSB repair has
been studied in some detail [14], data on the role of Reptin are scarce. Thus in this study, we
evaluated the effect of Reptin silencing on the cellular response to DSB in human HCC cells.

Material and Methods

Cell culture, siRNA transfection and expression of a Reptin shRNA
The human hepatocellular carcinoma cell lines HuH7 [15] and Hep3B [16] were grown in Dul-
becco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum in a 5%
CO2 atmosphere at 37°C. Cells were authenticated using short tandem repeat analysis and test-
ed for mycoplasma contamination on a regular basis. For Reptin silencing, cells were trans-
fected with a siRNA targeting Reptin mRNA, which specificity has been exhaustively tested
previously [4]. A siRNA targeting firefly luciferase mRNA, GL2, was used as control. In other
experiments, we used cells stably transduced with a lentiviral vector allowing conditional,
doxycycline-dependent expression of Reptin shRNA, as described previously [3,17].

Induction of DNA damage
To induce DNA double-strand breaks, cells were treated with 25 μM etoposide (Sigma Aldrich)
for 30 minutes before analysis, or exposed to 4 Gy gamma radiation (Gammacell 3000 Elan ir-
radiator) and incubated 2 hours in a 5% CO2 atmosphere at 37°C before analysis.

Flow cytometry analysis
After trypsinization and two washes with Phosphate Buffer Saline (PBS), cells were fixed and
permeabilized with the BD Cytofix/Cytoperm buffer (BD Biosciences) for 20 minutes on ice.
Cells were then washed with BD Perm/Wash buffer (BD Biosciences) and hybridized for
1 hour in the dark at 4°C with an Alexa 488–conjugated mouse monoclonal anti- γH2AX anti-
body or an Alexa 488-conjugated mouse IgG1κ isotype control (560445 and 557782, BD Phar-
mingen) diluted at a ratio of 1:100 in BD Perm/Wash buffer. Cells were then rinsed twice with
PBS, and for some experiments stained with DAPI (0.5μg/mL in PBS) during 15 minutes, be-
fore analysis on a BD FACSCanto II Flow Cytometer (BD Biosciences).

Western blot and immunoprecipitation
Cells were lysed in a 1% SDS PBS solution supplemented with protease inhibitor cocktail
(Roche). Western blot was done as described previously [17]. All blots were analyzed with the
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Odyssey system (Li-Cor Biosciences). The following antibodies were used; mouse monoclonal
anti-Reptin (BD Biosciences #612482), anti-phospho-Histone H2A.X (Ser139) (Cell Signaling
#9718), mouse monoclonal anti-DNA-PKcs (Thermo Scientific #Ab-4), polyclonal rabbit anti-
ATM (Abcam #ab10939), rabbit monoclonal anti-phospho-Chk2 (Thr68) (Cell Signaling
#2197), mouse monoclonal anti-Chk2 (Cell Signaling #3440), rabbit polyclonal anti-53BP1
(Novus Biologicals #NB100-904), and mouse monoclonal anti-BRCA1 (Santa Cruz s#c6954).
After blotting, membranes were stained with SYPRO Ruby Protein Blot Stain (Invitrogen) and
scanned with the Molecular Imager PharosFX (Bio-Rad) for the quantification of protein load-
ing. Specific antibody signals were normalized on total protein amount on each entire lane.

For immunoprecipitation, cells were washed in PBS, and lysed in PBS with 1% Triton X-
100, Complete x1 (Roche), PhoStop x1 (Roche) and sonicated for 30 seconds on ice. Two milli-
grams of proteins were incubated overnight at 4°C with 6 μg of the anti-Reptin rabbit polyclon-
al antibody (ab 137834) from Abcam and 30μL of Dynabeads Protein A (Life Technologies).
The beads were washed 4 times with lysis buffer and eluted with Laemmli sample buffer. Elu-
ates were separated on a 3–12% SDS-PAGE for Western blotting.

Metabolic labeling
This was performed essentially as described previously [17]. Briefly, HuH7 cells were incubated
in methionine/cysteine-free medium for 1 h before pulse labeling with 150 μCi/mL EX-
PRE35S35S Protein Labeling Mix (Perkin Elmer, Courtaboeuf, France) for 30 min at 37°C. Cells
were washed with medium supplemented with 2 mM cysteine/methionine, and cultured for
various times in this chase medium. Cells were then scraped in lysis buffer (5 PBS with 1% Tri-
ton X-100, Complete x1, Roche) and sonicated for 30 s on ice. Immunoprecipitation was car-
ried out as above. Eluates were separated on a 3–12% SDS-PAGE. The gel was stained with
Coomassie blue, destained in water, impregnated with ENHANCE, dried, and exposed to
Amersham XP film at -80°C. Autoradiography signals were quantified using Image J [18] and
normalized using the intensity of the DNA-PKcs signal on Coomassie Blue staining
similarly quantified.

MTS assay
Cell proliferation assays were performed using tetrazolium compound based CellTiter 96
AQueous One Solution Cell Proliferation (MTS) assay (Promega). Cells were exposed to etopo-
side or gamma radiation at 72 hours after seeding of cells transfected with siRNA targeting
Reptin mRNA or the control siGL2 siRNA. MTS assay was performed according to the manu-
facturer’s instruction at 24, 72, 96 and 120 hours after seeding.

Clonogenicity assay
Cells were seeded at 800 cells/well in 12-well plates. After 4 days of doxycycline treatment, cells
were treated or not with etoposide or irradiated. Following incubation at 37°C for 11 days, the
cells were fixed with 1% formaldehyde in ice-cold phosphate-buffered saline (PBS) and stained
with 0.05% crystal violet. Colonies with>10 cells were counted under a Olympus IMT-
2 microscope.

Immunofluorescence
Cells were grown on coverslips. Control cells or cells irradiated with 4 Gy or treated with 25μM
etoposide were processed 2 hours post-irradiation or 30 minutes after etoposide treatment.
Cells were fixed in 4% paraformaldehyde in PBS for 10 minutes at room temperature,
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permeabilized with 0.1% Triton X100 in PBS and blocked for 30 minutes at 37°C in 4% BSA in
PBS. Incubations with anti-53BP1 rabbit polyclonal antibody (1:200, NB100–904, Novus),
anti-BRCA1 monoclonal mouse antibody (1:50, sc-6954), or anti-phospho-Histone H2A.X
(Ser139) (1:400, 9718, Cell Signaling) and Alexa Fluor 547 donkey anti-rabbit (1:200,
FP-SA4000, Molecular Probes) or Alexa Fluor 488 goat anti-mouse (1:200, FP-SA4000, Molec-
ular Probes) secondary antibody were performed for 1 hour at room temperature. Washes
were performed in PBS, slides were counterstained with DAPI and eventually mounted in
Fluoromount-G (Molecular Probes) before observation and photo capture under an epi-
fluorescence microscope (magnification x63). The number of foci was measured using ImageJ
using at least 200 cells per experimental condition. High-resolution pictures were taken with a
Leica SP5 laser confocal microscope.

Neutral Comet Assay
Neutral Comet assays were performed with the Trevigen’s CometAssay Kit as described in the
manufacturer’s instructions. Cells were analyzed 30 minutes after etoposide treatment or 2h
after γ irradiation. Briefly, 400 000 cells were embedded in 1 mL of LMAgarose and 50 μl were
deposited on comet slides. The slides were incubated 1 hour at 4°C in lysis solution, then im-
mersed in freshly prepared neutral electrophoresis buffer (Tris Base 1 M, sodium acetate 3 M,
pH 9.0) for 30 minutes at 4°C in the dark. Electrophoresis was carried out for 1 hour at 20 V in
electrophoresis solution. Slides were then stained with SYBR Green I. DNA strand breakage
was expressed as “comet tail moment”. Tail moment was measured for at least 100 cells per
sample. Tail DNA content was analyzed with the CometScore software (TriTek Corp).

RT—qPCR
Real time quantitative PCR was performed using the StepOnePlus Real-Time PCR System (Ap-
plied Biosystems) with B-R SYBR Green SuperMix for iQ (Quanta Biosciences). Primer used
were as follows. For DNA-PKcs, forward 5’-AAAATTGGTACCCCCGACAG-3’, reverse 5’-
TTCTCATGACCCAGGAGTAGC-3’; for ATM, forward 5’-TGCTGACAATCATCACC
AAGTTC-3’, reverse 5’-TCTCCCTTCGTGTCCTGGAA-3’. The specificity of the amplifica-
tion reactions was monitored by melting curve analysis. The threshold cycle (Ct) value for each
gene was normalized to the Ct value for RNA18S5 and all relative levels of expression (2-ΔΔCt)
were calculated [19]. All samples were analyzed at least in triplicate.

Results
In a first series of experiments, DNA DSBs were induced by treatment of cells with etoposide.
Phosphorylation of H2AX on Ser139, which is one of the earliest events following DSB induc-
tion, was used as readout and was analyzed by flow cytometry. These experiments were carried
out in the human HCC cell line HuH7 transfected with an anti-Reptin siRNA, Etoposide treat-
ment induced a 1.94 ± 0.13 fold increase in the phosphorylation of H2AX Reptin depletion by
itself had no effect on H2AX phosphorylation. However, H2AX phosphorylation following eto-
poside was decreased by 35.5% ± 0.2% (p<0.001) when Reptin was depleted (Fig 1A), and this
was identical when analyzed with Western blot (Fig 1C). Similar results were obtained when
DSBs were induced by γ irradiation. H2AX phosphorylation was significantly stimulated by
2.0 ± 0.02 fold by irradiation, but Reptin depletion reduced the stimulation by 65.5 ± 7.1%
(p<0.001) (Fig 1B). FACS analysis showed similar results in another HCC cell line, Hep3B
(S1 Fig). Finally, the changes in H2AX phosphorylation following etoposide or γ-irradiation
were independently confirmed in both HuH7 and Hep3B cells using immunofluorescence and
fluorescent foci quantitative analysis (Fig 1D and S2 Fig). In this experiment, we also followed
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Fig 1. Reptin depletion impairs H2AX phosphorylation at serine 139 (γH2AX) after DNA damage. (A) and (B) HuH7 cells were transfected with a control
or a Reptin siRNA. After 3 days, they were then treated with etoposide (ETO, 25 μM) (A) or exposed to gamma radiation (IRR, 4 Gy) (B), stained for γ-H2AX
and analyzed by flow cytometry. The bar graphs show the mean of 3 experiments (*** p<0.001 by One-way ANOVA followed by Bonferroni test). (C) and (D)
HuH7 cells stably expressing a doxycycline-inducible Reptin shRNA were treated with doxycycline (sh Reptin +) or left untreated (sh Reptin-) for 4 days.
Extracts from HuH7 cells treated with etoposide as in (A) were analyzed byWestern blot with an anti-phospho-H2AX antibody (C). Data were normalized
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the kinetics of the disappearance of γH2AX foci. As shown on Fig 1C and S2 Fig, at every time
point, H2AX phosphorylation was decreased in Reptin-depleted cells as compared to control
cells. In addition, the disappearance of the foci, as assessed by the change in the percentage
of cells with foci, was significantly slower when Reptin was silenced. This was shown for HuH7
cells for both etoposide and irradiation (Fig 1D). For Hep3B cells, it was significant for etopo-
side although there was only a trend after irradiation (S2 Fig).

Because cell sensitivity to DNA damaging agents may vary according to the cell cycle status,
with cells in G1 being less sensitive [20–22], we checked how Reptin silencing affected cell
cycle progression. We found that Reptin silencing had no dramatic effect on cell cycle progres-
sion as assessed by flow cytometry following DNA labeling. There was no significant change in
HuH7 (S3 Fig), and a small but significant reduction of cells in G1 in Hep3B cells, at the ex-
pense of an increase in cells in G2/M (S3 Fig). In addition, double staining with DAPI and
anti- γH2AX showed that the majority of γH2AX-positive cells were in the G2/M phase in
both control and Reptin-depleted cells, with no significant difference between the 2 conditions
(S3 Fig).

Phosphorylated H2AX serves as a platform for the ordered recruitment of many proteins
that participate to DNA repair. We thus followed the recruitment on chromatin of two such
key proteins, BRCA1 and 53BP1. This was done using immunofluorescence and image analysis
on HuH7 cells undergoing γ irradiation. Irradiation induced a 3-fold increase in the number of
BRCA1 foci and a 7.5 fold increase in the number of 53BP1 foci. Reptin depletion decreased
these values by 62 and 48%, respectively. Total levels of BRCA1 and 53BP1 were not changed
upon Reptin depletion, as shown by Western blot (Fig 2). We also used immunofluorescence
to follow the kinetics of disappearance of 53BP1 foci in HuH7 and Hep3B cells. As for γH2AX
kinetics, there were less 53BP1 foci at every time point following DNA damage upon Reptin si-
lencing (S4 Fig).

In order to analyze the functional consequences of the defective DSB signaling in Reptin-
depleted cells, we analyzed cell viability following γ irradiation, first using the MTS assay. Four
days after transfection with the anti-Reptin siRNA, depletion of Reptin, or γ irradiation alone,
led to a slight decrease in cell growth. However, the combination of γ irradiation and Reptin
depletion was additive to reduce cell growth (Fig 3A). Similar results were obtained when com-
bining etoposide and Reptin depletion (Fig 3B). We further confirmed this result using a colo-
ny formation assay. As shown on Fig 3C, silencing Reptin, etoposide treatment or γ irradiation
all led to a significant impairment in colony formation in HuH7 cells. However, combining
Reptin depletion with DNA damage further reduced clonogenicity. A similar trend was seen
with Hep3B cells but was not statistically significant because the effect of Reptin depletion
alone was already very strong.

We reasoned that the defective phosphorylation of H2AX, and subsequent recruitment of
BRCA1 and 53BP1, might be due to a decreased sensitivity of Reptin-depleted cells to DNA
damage. We thus quantified the number of DSB following etoposide or γ irradiation treatment,
using the COMET assay. Unexpectedly, depletion of Reptin reduced the number of basal DSB
in the absence of DNA damage induction, as assessed by COMET tail moment measurement.
However, treatment with etoposide or γ irradiation induced the same amount of DSB whether
Reptin was depleted or not (Fig 4).

relative to the Sypro Ruby staining of the membrane. The graph on the right shows the mean of 9 experiments (*** p<0.001 by One-way ANOVA followed by
Bonferroni test). (D) Control or Reptin depleted HuH7 cells were treated with etoposide or irradiated, then fixed at different time points and immunostained for
phospho-H2AX. The graphs below show for each treatment the evolution of the number of foci per cell (left) or the fractional decrease of the number of foci,
setting the initial time point as 100% (right).

doi:10.1371/journal.pone.0123333.g001
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We thus hypothesized that H2AX phosphorylation could be reduced because of an up-
stream signaling defect. H2AX phosphorylation following DNA DSB is mainly performed by
DNA-PKcs and ATM (reviewed in [23]). Expression of DNA-PKcs and ATM proteins, as-
sessed by Western blot, was decreased by 52 ± 25% (p = 0.05) and 61 ± 12% (p = 0.01) when
Reptin was depleted (Fig 5A). Phosphorylation on Thr68 of Chk2, another ATM substrate, was
significantly enhanced following irradiation (x 3.63 ± 0.82% p<0.001), but its phosphorylation
remained identical in cells with Reptin depletion, suggesting that although ATM expression is
reduced, its level is not limiting (Fig 5B).

The mRNA levels of DNA-PKcs and ATM were unchanged when Reptin was depleted, in-
dicating that decreased protein levels were due to a post-transcriptional regulation (Fig 5C).
Since it was previously shown that Reptin and DNA-PKcs could interact in several cell types
[24], we immunoprecipitated Reptin from cell extracts and demonstrated the co-precipitation
of DNA-PKcs by immunoblot (Fig 6A). Conversely, when DNA-PKcs was immunoprecipi-
tated, Reptin could be detected in the precipitate using label-free mass spectrometry (not
shown). We then analyzed DNA-PKcs stability by treating control cells or cells with Reptin si-
lencing (4 days after induction of shRNA) with cycloheximide and measuring the residual
amount of DNA-PKcs over time. These experiments showed that although the initial level of

Fig 2. Reptin depletion reduces the recruitment on chromatin of BRCA1 and 53BP1 after gamma ray irradiation. HuH7 cells stably expressing a
doxycycline-inducible Reptin shRNA were treated with doxycycline (sh Reptin +) or left untreated (sh Reptin-) for 4 days. (A) Representative images of
53BP1 and BRCA1 foci in HuH7 cells detected using immunofluorescence 2h after gamma ray irradiation. (B) The bars represent the mean number of foci
per cell from two independent experiments (>200 cells were counted per experiment). Expression levels of BRCA1 and 53BP1 were assessed byWestern
Blot on whole cell extracts 4 days after doxycycline treatment. A representative picture is shown in (C). The migration positions of molecular weight standards
(in kDa) are indicated on the left. (D) Quantification of 3 Western blot experiments.

doi:10.1371/journal.pone.0123333.g002
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DNA-PKcs protein expression was lower in Reptin depleted cells, the stability of the pool of
protein was the same in control and Reptin depleted conditions, the protein being extremely
stable (S5 Fig). We thus performed metabolic labeling and pulse chase experiments to investi-
gate the stability of newly synthesized DNA-PKcs. We found that in control cells, newly syn-
thesized DNA-PKcs remained completely stable for at least 8 hours. On the other hand, when
Reptin was silenced, DNA-PKcs was clearly destabilized (Fig 6B).

Discussion
The AAA+ ATPase Reptin has been found overexpressed in many cancers (reviewed in [9]) in-
cluding hepatocellular carcinoma and kidney cancer where overexpression was associated with
a poor prognosis [3,7]. Reptin is present in several protein complexes including Tip60 that is a
major actor of DNA damage repair [11]. We thus investigated whether Reptin could regulate
the response to DNA damage in HCC cells. We show here that Reptin is indeed involved in the
repair of DNA DSBs in human HCC cells. RNAi-induced Reptin depletion led to a decreased
phosphorylation of H2AX and subsequent recruitment of BRCA1 and 53BP1. DNA damage
repair was also likely altered as seen with the slower disappearance of γH2AX from the

Fig 3. Reptin depletion and DNA damage cooperate to reduce cell viability. (A) HuH7 cells transfected with a control siRNA were either left untreated
(yellow) or received etoposide (ETO, green) after 3 days. Similarly, cells transfected with an anti-Reptin siRNA (siR2) were untreated (blue) or received
etoposide (red). The effect on cell number was determined at 1, 3, 4 and 5 days after seeding, using the MTS assay. The results are the mean ± SD of 3
independent experiments. After 5 days, the difference between siR2 and siControl without treatment was significant with a p value <0.001 and the difference
between untreated siR2 and treated siR2 was significant with a p value <0.05 (Two-way ANOVA followed by Bonferroni test). (B) Same design as in (A)
except that DNA damage was induced with γ-irradiation (IRR). The figure shows the mean of 2 independent experiments. (C) Clonogenic tests were carried
out as described in Materials and Methods using HuH7 cells stably expressing a doxycycline-inducible Reptin shRNA that were either treated with
doxycycline (sh Rep +) or untreated (sh Rep-). The graph shows the mean of 3 replicates (*** p<0.001 and ** p<0.01 by One-way ANOVA followed by
Bonferroni test).

doi:10.1371/journal.pone.0123333.g003
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chromatin. Ultimately, the altered DNA damage response was associated with decreased cell
viability and ability to form colonies. Similar results were observed following two different
types of DNA damaging and in both HuH7 and Hep3B cells. Hep3B cells were however more
sensitive to the effect of Reptin silencing than HuH7 cells, which may be because the latter lack
functional p53 protein [25]. We and others have previously shown that Reptin silencing by it-
self reduced tumor cell growth [3,4,7,26,27]. It is thus likely that defective DNA repair could
contribute to this effect and lead to the dramatic senescence observed upon Reptin silencing in
liver or kidney cancer cells [4,7,28].

A few studies have addressed the role of Reptin in the DNA damage response in tumor cells
and led to different results. Thus Reptin depletion did not change the amount of γH2AX fol-
lowing γ irradiation in prostate PC3 cells, although this was not precisely quantified [29]. On
the other hand, Reptin depletion did not decrease but rather enhanced the γH2AX response to
UV irradiation in HeLa cells [30]. This may represent a difference because of the nature of the
DNA lesions or a cell type specific feature. There are also a few data in non-tumor cells. Thus,
the normal human fibroblast cells MRC5 showed an hyperphosphorylation of H2AX upon γ

Fig 4. Reptin depletion does not reduce the number of double strand breaks. HuH7 cells were treated as in Fig 1. The neutral COMET assay was used
to assess DNA double-strand breaks that were quantified using calculation of the comet tail moment. Bars represent the mean ±SD from 3 independent
experiments (>140 cells were counted per experiment). Left, etoposide treatment, right, γ irradiation. * p<0.05, ** p<0.01 and *** p<0.001 by One-way
ANOVA followed by Bonferroni test. Representative COMET images are shown below.

doi:10.1371/journal.pone.0123333.g004
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irradiation when Reptin was silenced [31] whereas mutant zebrafish that have an undetectable
expression of Reptin exhibit a spontaneous hyperphosphorylation of H2AX in the brain [32].
There may thus be differences between tumor and non-transformed cells where Reptin is ex-
pressed at lower levels.

Since Reptin silencing did not alter the number of DSBs, we hypothesized that the decreased
γH2AX response was consecutive to a decreased activity of the kinases that phosphorylate it.
Upon DSB induction, H2AX is mostly phosphorylated by DNA-PKcs and ATM, two members
of the PIKK family [23]. We found that the total level of these kinases was decreased by more

Fig 5. Effect of Reptin depletion on signaling intermediates upstream of H2AX phosphorylation. (A) Protein expression of DNA-PKcs and ATM after
Reptin depletion were analyzed byWestern Blot on whole cell extracts 4 days after Reptin silencing with doxycycline (sh Rep +) (n = 6 and n = 3 for
DNA-PKcs and ATM, respectively: * p<0.05 by Mann andWhitney test) (B) Phosphorylation of CHK2 after Reptin depletion and 2h after gamma ray
irradiation (+ IRR) was detected byWestern Blot and normalized on total CHK2 (n = 4: *** p<0.001 by One-way ANOVA followed by Bonferroni test) (C)
RNA was extracted 4 days after Reptin silencing and expression of DNA-PKcs and ATMmRNAs was analyzed by RT-qPCR. (n = 3).

doi:10.1371/journal.pone.0123333.g005
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Fig 6. Reptin interacts with DNA-PKcs and regulates its stability. (A) Interaction between Reptin and
DNA-PKcs was tested by immunoprecipitation. The migration positions of molecular weight standards (in
kDa) are indicated on the left. The faint band seen in the IgG lane with the Reptin antibody corresponds to
traces of IgG heavy chains. The picture is representative of 3 similar experiments. (B) Metabolic labeling and
pulse chase. HuH7 cells stably expressing a doxycycline-inducible Reptin shRNA were treated (sh Reptin) or
not (Control) with doxycycline. After 4 days, they were labeled with EXPRE35S35S as described in Materials
and Methods. Following the indicated periods of chase, DNA-PKcs was immunoprecipitated and the eluates
were separated on SDS-PAGE. The top panel shows the autoradiographic image, and the bottom one the
Coomassie blue staining of the gel with DNA-PKcs. (C) The graph shows the quantitative analysis of the data
following normalization of the autoradiographic signal on the amount of immunoprecipitated DNA-PKcs.

doi:10.1371/journal.pone.0123333.g006
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than 50% when Reptin was silenced. We further suggest that although both DNA-PKcs and
ATM levels were similarly reduced, the decreased γH2AX level may be preferentially related to
the loss of DNA-PKcs since the phosphorylation of Chk2, another ATM substrate, was unaf-
fected, suggesting that ATM amount is not limiting under these conditions. It is noteworthy
that Reptin silencing did not either modify Chk2 phosphorylation following UV irradiation in
HeLa cells [30].

The decreased expression of DNA-PKcs and ATM upon Reptin silencing was already re-
ported in HeLa cells [24,33]. However, in these studies, decreased levels of DNA-PKcs and
ATM were associated with a reduction of their respective mRNAs, suggesting that at least part
of the regulation was transcriptional. Here, we show that the levels of the transcripts of these
proteins are not affected by Reptin depletion, showing a strictly post-transcriptional regulation.
This is supported by the finding that Reptin and DNA-PKcs do interact, as shown by co-
immunoprecipitation, confirming previous studies [24]. We further demonstrate that Reptin
silencing results in a reduced stability of DNA-PKcs. The combination of experiments of pulse
chase and of western blot following cycloheximide show that Reptin silencing specifically af-
fects the half-life of newly synthesized DNA-PKcs, but has no effect on the stability of the pre-
formed pool of the protein. These results are in coherence with the participation of Reptin and
its homolog Pontin to the R2TP complex. This complex, initially isolated in yeast [34], is com-
posed of Rvb1 (yeast Pontin), Rvb2 (yeast Reptin), Tah1 (RPAP3 in human) and Pih1D1 (or
NOP17) and is highly conserved in Drosophila [35], Apicomplexa [36] and human [37]. It is a
co-chaperone of HSP90 and is involved in the stabilization of every PIKK family member
through the Tel2 adaptor protein [38–40]. It was shown that Tel2 interacts with PIKK proteins
only during the first hour after their synthesis [39], and that Tel2 silencing resulted in de-
creased stability of newly synthesized mTOR and ATM [38]. This is however the first time that
the mechanism for Reptin silencing induced DNA-PKcs down-regulation is defined. On the
other hand, the lack of effect of Reptin silencing on the stability of the pool of DNA-PKcs is in
agreement with data showing no apparent changes in DNA-PKcs stability in cells silenced for
Pontin and treated with cycloheximide [24], and with reports showing a very long half-life for
DNA-PKcs, up to more than 5 days [41].

Altogether, we thus propose that Reptin, mostly via the post-transcriptional stabilization of
DNA-PKcs, controls the signalization of DNA damage. Reptin depletion leads to a decrease in
DNA-PKcs levels, with consecutive reduced phosphorylation of H2AX and defective repair of
lesions. Conversely, it can be hypothesized that the high Reptin levels observed in many can-
cers could confer a higher ability of tumor cells to repair the DNA damage and thus contribute
to their resistance to treatment. This would fit nicely with the overexpression of Reptin ob-
served in ovarian cancers resistant to platin-based chemotherapy [42] and in chemoresistant
breast cancers [43].

Supporting Information
S1 Fig. Reptin depletion impairs H2AX phosphorylation at serine 139 (γH2AX) after DNA
damage in Hep3B cells.
(TIF)

S2 Fig. Kinetics of H2AX phosphorylation following DNA damage in Hep3B cells.
(TIF)

S3 Fig. Cell cycle analysis.
(TIF)
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S4 Fig. Kinetics of 53BP1 foci analyzed by immunofluorescence.
(TIF)

S5 Fig. Effect of cycloheximide on the stability of DNA-PKcs.
(TIF)
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