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A bounded cost path planning method is developed for underwater vehicles assisted by a
data-driven flow modeling method. The modeled flow field is partitioned as a set of cells of
piece-wise constant flow speed. A flow partition algorithm and a parameter estimation
algorithm are proposed to learn the flow field structure and parameters with justified
convergence. A bounded cost path planning algorithm is developed taking advantage of
the partitioned flowmodel. An extended potential searchmethod is proposed to determine
the sequence of partitions that the optimal path crosses. The optimal path within each
partition is then determined by solving a constrained optimization problem. Theoretical
justification is provided for the proposed extended potential search method generating the
optimal solution. The path planned has the highest probability to satisfy the bounded cost
constraint. The performance of the algorithms is demonstrated with experimental and
simulation results, which show that the proposed method is more computationally efficient
than some of the existing methods.

Keywords: robotic path planning, graph search method, bounded cost search, parameter identification, underwater
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1 INTRODUCTION

Over the last few decades, autonomous underwater vehicles (AUVs) have been employed for ocean
sampling (Leonard et al., 2010; Smith et al., 2010), surveillance and inspection (Ozog et al., 2016;
Xiang et al., 2010), and many other applications. Ocean flow is the dominant factor that affects the
motion of AUVs (Zhang et al., 2016). Ocean flow dynamics vary in both space and time, and can be
represented as geophysical Partial Differential Equations (PDEs) in ocean circulation models (e.g.,
the Regional Ocean Modeling System (ROMS, Shchepetkin and McWilliams, 2005; Haidvogel et al.,
2008) and the Hybrid Coordinate Ocean Model (HYCOM, Chassignet et al., 2007)). While these
models can provide flow information over a large spatial domain and forecast over several days, the
available flow field forecast may still contain high uncertainty and error. The uncertainty comes from
multiple sources, including the incomplete physics or boundary conditions (Haza et al., 2007; Griffa
et al., 2004) and even terms in the equations themselves (Lermusiaux, 2006). In addition, the high
complexity of the flow dynamics makes solving these PDEs computationally expensive. Data-driven
flow models (Mokhasi et al., 2009; Chang et al., 2014) can provide short-term flow prediction in a
relatively smaller area with significantly lower computational cost, and can be more suitable for
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supporting real-time AUV navigation, particularly for systems
with strong gradients and/or high uncertainty.

Path planning is one of the crucial and fundamental functions
to achieve autonomy. Two key considerations for an AUV path
planner are computational efficiency and path quality. The path
planning strategy should be computationally efficient so that the
time for generating a path can be kept to a minimum.When these
methods are sufficiently fast, path planning can be performed in
near-real time, generating a feasible solution in minutes while the
AUV has surfaced to get a GPS fix and communicate with shore.
Advantages of real time path planning are that more recent
information, including the real time data from the vehicle, can
be incorporated in path planning. Hence there will be less
planning error due to outdated information (Leonard et al.,
2010). At the same time, it is desired that the path planning
algorithm has theoretical guarantee on the quality of the
generated path.

Most path planning algorithms aim to design optimal path
minimizing certain cost, for example, those associated with
engineering or flight characteristics (battery life, travel time) or
scientific value (e.g., distance relative to other assets or spacing of
relevant processes). Algorithms that have been applied to AUV
optimal path planning include: 1) graph-based methods such as
the A* method (Rhoads et al., 2012; Pereira et al., 2013; Kularatne
et al., 2017, 2018) and the Sliding Wavefront Expansion (SWE)
(Soulignac, 2011); 2) sampling-based methods like the Rapidly
exploring Random Trees (RRTs) (Kuffner and LaValle, 2000; Cui
et al., 2015), RRT* (Karaman and Frazzoli, 2011) and informed
RRT* (Gammell et al., 2018); 3) methods that approximate the
solution of HJ (Hamilton-Jacobi) equations, such as the Level Set
Method (LSM) (Subramani and Lermusiaux, 2016; Lolla et al.,
2014), and 4) the evolutionary algorithms, including the particle
swarm optimization methods (Roberge et al., 2012; Zeng et al.,
2014), and the differential evolution methods (Zamuda and Sosa,
2014; Zamuda et al., 2016). See (Zamuda and Sosa, 2019; Zeng
et al., 2015; Panda et al., 2020) for a comprehensive review on the
existing AUV path planning methods. However, the
computational cost of the above mentioned methods could be
high, especially in cases where the AUV deployment domain
is large.

Using a regular grid to discretize the flow field can result in
unnecessary large number of cells, which increases the
computational burden of the graph search methods. Since the
flow speed in adjacent cells is usually similar, we partition the flow
field into piece-wise constant subfields, within each the flow speed
is a constant vector, and introduce the Method of Evolving
Junctions (MEJ) (Zhai et al., 2020) to solve the optimal path
planning problem. MEJ solves for the optimal path by recasting
the infinite dimensional path planning problem into a finite
dimensional optimization problem through introducing a
number of junction points, defined as the intersection between
the path and the region boundaries. Hence the computation cost
of MEJ is significantly lower than other optimal path planning
methods, especially when the flow field is partitioned into a small
number of cells (Zhai et al., 2020). We identify Soulignac. (2011)
as the work closest related to ours, in which sliders, defined as
points sliding on the partitioned region boundaries, are

introduced to describe the wavefront expansion of the graph
search methods. In each iteration of the wavefront expansion,
each slider’s position on the wavefront is derived by minimizing
the travel cost in a single cell, and then the planned path is
computed by the backtracking of wavefronts. Both MEJ and SWE
are based on a novel parameterization of the path by introducing
the junctions and the sliders, that were discovered independently
by the two research groups. The main difference between MEJ
and SWE lies in that MEJ solves for junction positions by
formulating a non-convex optimization problem, and derives
the global minimizer by intermittent diffusion (Li et al., 2017),
which intermittently adds white noise to the gradient flow, while
SWE solves for slider positions by graph searchmethods. MEJ has
been justified to find the global minimizer with probability 1.
However, since the method does not pose any structure in the
search, the computational cost of MEJ could be less favorable
compared to SWE if the number of cells scales up.

To reduce the computational cost of the path planning
problem, the search can be reduced to find paths with total
cost less than an upper bound. Stern et al. (2014) present two
algorithms to solve the bounded cost search problem: the
Potential Search (PTS) and the Anytime Potential Search
(APTS). The PTS method defines the Potential Ordering
Function, which is an implicit evaluation of the probability
that a node is on a path satisfying the bounded cost
constraint, and iteratively expands the nodes in the graph with
the highest Potential Ordering Function value. The wavefront
expansion terminates when the goal node has been expanded, and
the path is found by backtracking of the wavefronts. The APTS
method runs the PTS algorithm iteratively to improve on the
incumbent solution, with the upper bound on total cost lowered
in each iteration of the algorithm. Later work (Thayer et al., 2012)
improves on the PTS method by minimizing both the potential
and an estimation of the remaining search effort, so that the
bounded cost search problem will be solved faster.

In this paper, our first objective is to develop a data-driven
computational flow model that approximates the true flow field
in the region of interest to assist AUV path planning. The
proposed data-driven flowmodel divides the flow field into cells,
within which the flow is represented as a single flow vector. The
optimal flow cell partition and initial values of the flow vectors
in each cell are derived from prior flow information, from
numerical ocean models or from observations. To improve
model accuracy, AUV observational data can be incorporated
into the data-driven model in near-real time, for example, in the
form of observed or estimated velocities (Chang et al., 2015).
Here, we design a learning algorithm that estimates the flow
field parameters based on the AUV path data. Our second
objective is to develop an algorithm that solves the AUV
bounded cost path planning problem. Given that the vehicle
is traveling in a flow field represented by the data-driven
computational model, the goal is to design a path that
connects AUV initial position with goal position with the
highest probability to have travel cost less than a pre-
assigned upper bound. By introducing the key function,
which is an implicit evaluation function of the probability
that a path satisfies the bounded cost constraint, the optimal
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path is computed by searching for the nodes with lowest key
function value using an informed graph search method.

The main novelty of this work is introducing the modified PTS
method to solve the bounded cost search problem. Unlike the PTS
method (Stern et al., 2014), which assumes that the branch cost of
the graph is known exactly, our method deals with problems
where the branch cost of the graph is uncertain. Given
assumptions on the distribution of cost-of-arrival and cost-to-
go, we prove that the proposed algorithm guarantees optimality
of the planned path, that is, the planned path has the highest
probability of satisfying the bounded cost constraint. To the best
of our knowledge, this is the first time that the optimality of the
modified PTS solution to bounded cost problems is proved. The
proposed bounded cost path planning method can be viewed as
an extension to MEJ. Compared to MEJ, the modified PTS
algorithm is computationally more efficient, since a graph
search method is adopted to search for the junction positions.
At the same time, optimality of the planned path can be
theoretically justified. The major benefit of the proposed
bounded cost path planning algorithm lies in that it plans a
path faster, while at the same time still guarantees the path
quality. This paper is a significant extension of the conference
proceeding (Hou et al., 2019), which proposes a flow partition
method that approximates the flow field by a set of cells of
uniform flow speed. The main extensions of this paper are that
taking advantage of the flowmodel proposed in (Hou et al., 2019),
we propose the modified PTS method to solve the AUV bounded
cost path planning problem, and present theoretical justification
on the optimality of the proposed PTS method. The proposed
bounded cost search method is potentially applicable for all
bounded cost path planning problems with uncertain
branch cost.

We believe the proposed data-driven flow modeling and
bounded cost path planning methods are well-suited for path
planning of underwater glider deployment near Cape Hatteras,
NC, a highly dynamic region characterized by confluent western
boundary currents and convergence in the adjacent shelf and
slope waters. While deployed, the gliders are subject to rich and
complex current fields driven by a combination and interaction of
Gulf Stream, wind, and buoyancy forcing, with significant cross-
shelf exchange on small spatial and temporal scales (Savidge et al.,
2013a, Savidge et al., 2013b) that would be highly difficult to
sample using traditional methods. Path planning must consider
spatial variability of the flow field. Because spatial gradients are
significant, real-time path planning is critical to take advantage of
real-time data streams. Through simulated experiments, we
demonstrate the performance of applying the proposed
algorithms to underwater glider deployment in this area, and
show that the proposed algorithm is more computationally
efficient than A* and LSM.

2 PROBLEM FORMULATION

2.1 Vehicle Dynamics
Let FR : D→R2 represent a spatially distributed vector field for
the ambient flow velocity, whereD ∈ R2 is the domain of interest.

Let [T0,Tf ] be the AUV deployment time interval. The AUV
model is described as

_x � FR(x) + VRΨC(t), (1)

where x ∈ D denotes vehicle position. VR is the through-water
speed of the vehicle, andΨC(t) � [cosψC , sinψC]T is a unit vector
that represents the direction of the vehicle motion along heading
angle ψC.

Assumption 2.1: During the operation, VR is an unknown
constant.

Remark 2.1: Actual vehicle speed may depend on a number of
factors that affect an AUV’s speed, including water depth,
efficiency of propulsion, and bio-fouling. These effects are
difficult to estimate. Hence the vehicle forward speed is
assumed to be an unknown constant.

Assumption 2.2: We assume that the heading ΨC(t) can be
controlled for all time t, and the vehicle trajectory x(t) can be
measured or estimated for all time.

Remark 2.2: Though the actual location of a vehiclemay only be
known occasionally when the vehicle is underwater, the trajectory
of the vehicle can be estimated through localization algorithms,
which incorporates the known locations and the heading angle
commands as inputs to generate the optimal state estimation.

Assumption 2.3: We assume the flow field is time-invariant
throughout the deployment.

Remark 2.3: Even though there are existing work that considers
the time-variant flow field in solving the AUV planning problem,
such as (Eichhorn, 2013; Lolla et al., 2014; Zamuda and Sosa, 2014),
wemake this assumption due to the patterns of the flow field in this
domain. In the domain of interest considered in this paper, which
is near Cape Hatteras, NC, the current field is driven by a
combination and interaction of Gulf Stream, wind, and
buoyancy forcing (Savidge et al., 2013a, Savidge et al., 2013b).
Because magnitude and spatial gradients of the flow field are
significant relative to the temporal variation of the flow field
(mostly the tidal flow component), time variation of the flow
does not have a significant influence over the planned path.

2.2 Data-Driven Flow Modeling
Flow speed at neighboring grid points often exhibits similarity in
both strength and direction. Hence we assume that at the time
scale of an AUV deployment, the flow field can be divided into
finite number of regions {Ri}i∈IR, with the union of all cells being
the domain, ∪

i∈IR
{Ri} � D. The regions are separated by

continuous boundary curves. boundary curves {fi,j}i,j∈IR, and
fij(x) � 0 is the one dimensional compact boundary of the
region Ri and Rj. We define an indicator function ϕi(x) as
follows:

ϕi(x) � 1{x ∈ Ri} � { 1 if x ∈ Ri

0 otherwise.

This function indicates whether x is in Rα. Let ϕ : R2 →RN be
defined as ϕ(x) � [ϕ1(x) . . . ϕN(x) ]T . Then ϕ(x) are a set of
spatial basis functions of D.

In order to compute the partition, which is represented by the
basis functions ϕ. We need to use prior information of the
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environment obtained either from forecast data of the existing
ocean models, or from historical datasets. Let F0 : D ×
[T0,Tf ]→R2 denote the discretized flow map forecast
available on a set of grid points in D, and let y ∈ R4, y �
[xT , F0(x, t)T]T denote the vector at position x and time t. We
can define a distance function as dist : R4 × R4 →R as
dist2(y, y′) � (y − y′)TQ(y − y′), where y, y′∈ R4, Q is a weight
matrix. For each cell Ri, let ri represents its center, and let ]i be
the flow vector in this cell. Our goal is to find the optimal values of
ϕ(x) and {]i}i∈IR by solving the following optimization problem:

min
ϕ(x),{]i}i∈ IR

J � ∑
i∈IR

∑
x∈Ri

∑
t∈[T0 ,Tf ]

dist2(y(x, t), [rTi , ]Ti ]T). (2)

After the optimal partition is computed from forecast or
historical datasets, we need to compute the strength of the
flow in each partition based on the path information of the
AUV while moving through the flow field. Again, we assume that
the true flow field is constant in each of the partitioned cell. Let
θ ∈ R2N be the true flow vectors in all of the partitioned cells,

θ � [ θ1
θ2
] � [ θ11 . . . θN1

θ12 . . . θN2
], with θi � [θi1, θi2]T denoting the

flow vector in partitioned region Rα. Then the partitioned
flow field can be represented as

FR(x) � θϕ(x). (3)

To estimate the true flow field FR, we use the AUV path data
x(t). Let

ξ(t) � [ ξ1(t)
ξ2(t)] � [ ξ11(t) . . . ξN1 (t)

ξ12(t) . . . ξN2 (t)
]

be our estimate of the parameter θ and VL(t) be our estimate for
VR. We will design a learning algorithm to achieve c convergence
of ξ(t) and VL(t) to the true values e.g., ξ(t)→ θ and VL(t)→VR

as t→∞.

2.3 Bounded Cost Path Planning
Our goal is to find a path connecting the vehicle current position x0 to
the final position xf that results in total travel time less than an upper
bound C. In practice, the planning and replanning process of AUV
happen over long intervals, in order to avoid increased computation
cost. Hence we assume that the estimated parameters have converged
to their true value counterparts before the planning process. There
may be more than one path satisfying the bounded cost constraint.
Thus we formulate the following optimization problem, in which the
decision variable is the vehicle’s heading angle, ψC(t). The
optimization problem is to find the decision variable that is most
likely to satisfy the bounded cost constraint:

max
ψC(t)∈[−π,π]

Pr(T(ψC(t))<C)
s.t. _x � VRΨC(t) + θϕ(x),
x(T0) � x0,
x(T0 + T(ψC(t))) � xf .

(4)

where the total travel time to start from the initial position x0 to
reach the destination position xf under the control signal ψC(t) is
denoted as T(ψC(t)).

3 FLOW FIELD ESTIMATION

First let us describe Algorithm 1. We derive the spatial basis
function and the initialized flow model parameters by solving eq.
2 using the K-means algorithm. Since this optimization depends
on both spatial and temporal variance of the flow field, solving
this problem can be computationally expensive. To simplify this
problem, instead of optimizing the difference between the time-
varying flow forecast and the partitioned flow field, as described
in eq. 2, we optimize the difference between the time-averaged
flow forecast and the partitioned flow field:

min
ϕ(x),{]i}i∈ IR

J ′ � ∑
i∈IR

∑
x∈Ri

dist2(y(x), [rTi , ]Ti ]T) (5)

where y(x) � ⎡⎢⎢⎢⎢⎣xT , 1
Tf −T0

∑
t ∈[T0 ,Tf ]

F0(x, t)T⎤⎥⎥⎥⎥⎦T denote the time

averaged flow observation at position x.
To implement the K-means algorithm, we start by randomly

selecting k cell centroids, and then use Lloyd iterations to solve the
optimization problem. The Lloyd iteration contains two steps, first
assign the points that are closest to a centroid to that centroid, and
then recompute the cell centroid. These two steps are repeated until
cell membership no longer changes. The K-means algorithm
requires proper selection of the number of partitioned cells, k,
the choice of which affects the path planning performance and flow
modeling quality. If the field is divided into too many regions, then
it results in a complicated flow structure and potentially increases
the computational cost of path planning. On the other hand,
dividing the field into too few regions may result in a large
error between the true flow field and the modeled flow field,
which potentially leads to significant path planning error.
Therefore, we introduce an iterative K-means algorithm that
can guarantee a bounded flow field partition error, and at the
same time utilize the smallest number of partition regions.

Let F0 : D→R2 denote the time-averaged flow field over the
time interval [T0,Tf ], and ]i is the uniform flow velocity in Ri.
Define the flow field partition error as:

δF � max
i∈IR

max
x∈Ri

����F0(x) − ]i
����. (6)

Given an initialized k, we will iteratively perform the K-means
algorithm (lines 8, 9), and check if the flow partition error satisfies
δF < ε, where ϵ is a pre-defined upper bound on the flow partitioning
error. If this condition is satisfied, then the current k is designated for
partitioning; otherwise, the number of cells is increased by 1, and we
recompute the solution to eq. 5 using K-means method.

Now let us explain Algorithm 2. An estimate z(t) for the
vehicle trajectory can be computed by integrating

_z � ξ(t)ϕ(z) + VL(t)ΨC + β(t), (7)

where β(t) ∈ R2 is introduced as a learning injection parameter.
The term e � x − z is the controlled Lagrangian Localization error
(CLLE, Cho and Zhang, 2016; Cho et al., 2021), which describes
how much the actual trajectory deviates from the estimated
trajectory. A learning algorithm will then compute
β(t), ξ(t),VL(t) so that the CLLE can be reduced.

The CLLE dynamics can be derived from eqs 7, 1.
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_e � _x − _z � θϕ(x) − ξ(t)ϕ(z) + (VR − VL(t))Ψc − β(t). (8)

We design the learning parameter injection as

β(t) � ξ(t)ϕ(x) − ξ(t)ϕ(z) + Ke, (9)

and hence the CLLE dynamics becomes

_e � −Ke + (θ − ξ(t))ϕ(x) + (VR − VL(t))Ψc. (10)

The learning algorithm updates parameters ξ(t) and VL(t) so that
the CLLE converges to zero. Let ξ(t) � [ξ11(t), . . . , ξN1 (t), ξ12(t), . . . ,
ξN2 (t)]T , θ � [θ11, . . . , θN1 , θ12, . . . , θN2 ]T , and
e⊗ ϕ � [e1ϕ1, . . . , e1ϕN , e2ϕ1, . . . , e2ϕN ]T , where ⊗ is the
Kronecker product. We design the updating rules for parameter
estimation as follows,

_ξ(t) � ρe ⊗ ϕ(x)
_VL(t) � ρeTΨc.

(11)

These rules are then used in Algorithm 2.

4 BOUNDED COST PATH PLANNING

Given the piece-wise constant flow model described in eq. 3,
the domain is divided into a finite number of regions {Ri}i∈IR.
Thus, all possible trajectories cross a sequence of cells of
uniform flow, and finally reach the goal position. Since the
vehicle moves in constant speed, and the flow in one cell is

uniform and constant, the vehicle’s optimal heading angle in
each cell should be constant, and the vehicle path in each cell
is a straight line. We define junction points as the position
where the path intersects with cell boundaries. Below we show
that in each cell, due to the time invariance of the flow field,
solving for the heading angle is equivalent to solving for the
junction points of a path.

Let c1, c2 denote two junction points on two different
boundary curves of the same cell Ri. Since the vehicle moves
at constant speed, the total vehicle speedVRΨC + θi must be in the
same direction as the segment of the path,

c2 − c1∣∣∣∣∣∣∣∣c2 − c1
∣∣∣∣∣∣∣∣ � VRΨC + θi∣∣∣∣∣∣∣∣VRΨC + θi

∣∣∣∣∣∣∣∣. (12)

From eq. 12, we can represent the vehicle’s heading angle as a
function of the junction points,

ΨC � 1
VR
( c2 − c1∣∣∣∣∣∣∣∣c2 − c1

∣∣∣∣∣∣∣∣
���������������������
V2

R + 2VR(θi)TΨC +
∣∣∣∣∣∣∣∣θi∣∣∣∣∣∣∣∣2√

− θi). (13)

The vehicle’s travel time in Ri, denoted as τ, can be computed
given the junction points and the vehicle’s heading angle,

τ(c1, c2, θi) � ∣∣∣∣∣∣∣∣c2 − c1
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣VRΨC + θi
∣∣∣∣∣∣∣∣. (14)

Combining eq. 14 and eq. 12 we can write the travel time in cell
Ri as a function dependent only on the junction points,

τ(c1, c2, θi) � 1∣∣∣∣∣∣∣∣θi∣∣∣∣∣∣∣∣2 − V2
R

((c2 − c1)Tθi
−
���������������������������������((c2 − c1)Tθi)2 + ����c2 − c1

����2(V2
R −
∣∣∣∣∣∣∣∣θi∣∣∣∣∣∣∣∣2)√ ).

(15)

eq. 15 describes the travel time in one single cell. Based on the
discussion of the one cell case, next we talk about solving eq. 4
across multiple cells.

Let c1, c2, . . . , cn denote the chain of junctions position, and
p1, p2, . . . , pn+1 represent the index of the sequence of cells that
the path crosses. The planning problem eq. 4 can be transformed
into the following mixed integer optimization problem, where the
decision variables are the cell sequence and the junctions position,

max
{ci}ni�1 ,{pi}n+1i�1

Pr⎛⎝τ(xs, c1, θp1 ) +∑
i�1

n−1
τ(ci, ci+1, θpi ) + τ(cn, xf , θpn+1)<C⎞⎠,

s.t. fpi ,pi+1(ci) � 0,∀i ∈ [1, n].
(16)

Now let us explain the proposed solution to eq. 16. The solution is
presented in Algorithm 3. We propose a bounded cost path
planning algorithm that solves for the path that is most likely to
satisfy the bounded cost constraint. The solution contains two
steps, the first step is solving for the optimal sequence of cells that
is most likely to result in a bounded cost path, in the discretized
flow map described by the piece-wise constant flow cells. In this
step, the junction positions are unknown. An informed graph

ALGORITHM 2 | Flow Estimation Algorithm

Data: Vehicle trajectory x(t), estimated vehicle trajectory z(t), heading angle
ΨC(t), initial estimated parameter ξ(0), initial estimated speed VL(0)

Output: Estimated parameter ξ(t + 1), estimated flow parameter ξ(t + 1), estimated
vehicle speed VL(t + 1)

while t< ending time do
e(t) � x(t) − z(t)
Update β(t) using eq. 9
Update ξ and VL(t) using eq. 11
Update z(t) by integrating eq. 7

end

ALGORITHM 1 | Flow Field Partition Algorithm

Data: flow field observations {y(xi , t)}, i ∈ [1,m], t ∈ [T0 , Tf ], flow partition
error threshold ϵ

Output: Spatial basis function ϕ(xi), piece-wise constant flow speed of
cells ]j , j ∈ [1, k]
F0(xi) � 1

Tf −T0 ∑
t∈[T0 ,Tf ]

y(xi , t), yi � [xTi , F0(xi)T ]T

Initialize cluster number k � 1, r1 � 1
m ∑m

i�1
xi , ]1 � 1

m ∑m
i�1

F0(xi)
Compute δF using eq. 6
while δF > ε do
k � k + 1
Randomly initialize cluster centroids
while not converges do
For all i ∈ [1,m], set ci � arg min

j
dist2(yi , [rTj , ]Tj ]

T )
For all j ∈ [1, k], set rj � ∑i

1(ci�j)xi∑i
1(ci�j) , ]j �

∑i
1(ci�j)F0(xi )∑i

1(ci�j)
Compute δF using eq. 6

end
end
For all i ∈ [1,m], ϕ(xi) � [ 1{ci � 1} . . . 1{ci � k} ]T
For all j ∈ [1, k], Rj � ∪i1{ci � j}xi
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search method is used for the first step of the proposed solution.
The second step is optimizing junction positions on the
boundaries of the optimal cell sequence.

The proposed solution is presented in Algorithm 3. First we
describe the first step of our solution. Consider having a candidate
junction on boundaries of all cells. Two junctions ci and cj are
defined as adjacent if fp,q(ci) � 0, fr,s(cj) � 0, {p, q} ∩  {r, s}≠∅,
indicating that the two junctions are on different boundaries of
the same cell. Two adjacent junctions are connected by an edge. A
non-directed graph G can be formed with the vertices being all the
candidate junctions in the domain, and the edges being the path
segment between the adjacent candidate junctions. Let ni,j
describe the node that corresponds to the junction on
boundary curve between Ri and Rj, and let s and g denote
the node corresponding to the starting and final position.

Then in this context, a path Γ from the starting position x0 to
the final position xf , crossing the cells Rp1, . . . ,Rpn+1 in
sequence can be represented by a sequence of nodes
s→ np1p2 → np2p3 → . . . → npnpn+1 → g on the graph. Figure 1
is an example of the graph representation of the workspace, in
which case the flow field is partitioned into 4 cells.

The branch cost of the graph is defined as the travel time from
one junction to another adjacent junction. The travel time can be
computed by eq. 15 if the two junction positions are known.
However, since the junction positions are unknown when
optimizing the cell sequence, the branch cost of the graph
cannot be explicitly computed. Hence we introduced the
following assumption:

Assumption 4.1: We assume that the branch cost for all edges
in E is a random variable, with a known minimum value.

Remark 4.1: Even though the branch cost is unknown, its
minimum value can be computed, since the branch cost eq. 15 is
convex with respect to c2 − c1 (Soulignac, 2011).
We solve for the minimum cost of all edges in the graph, denoted
as wp

ij,jk by solving the following constrained optimization
problem, using the interior-point method. (Kim et al., 2007),

min
c1 ,c2

τ(c1, c2, θ j)
s.t. fij(c1) � 0, fjk(c2) � 0.

(17)

The informed graph search method we propose is an extension
to a class of graph search algorithms called potential search (PTS)
(Stern et al., 2014). The PTS algorithms can be viewed as
modifications to the celebrated A* algorithm for path planning
(Hart et al., 1968). To determine which nodes should be searched,
the algorithms maintain an OPEN list and a CLOSED list. A graph
node is labeled NEW if it has not been searched by the algorithm.
The OPEN list contains all the nodes that are searched, but still
have a NEW neighbor. The CLOSED list consists of all the nodes
that have been accessed by the search algorithm.
To determine which cells should be searched first by the algorithm, the
algorithm computes the cost-of-arrival, which is the minimal cost of
going from the starting node s to an arbitrary node n, and cost-to-go,
which is theminimal cost of going fromn to the goal point g. Let gp(n)
denote the actual cost-of-arrival, and let hp(n) denote the actual cost-
to-go of a node n. Since the actual cost-to-go is unknown during the
search, a heuristic cost h(n)≤ hp(n), is usually used by the search
algorithm. TheA* search algorithm sort theOPEN list according to the
value of gp(n) + h(n). The node with lowest value is searched first.
In our problem, the following estimated cost-to-go is used to guide the
search:

h(n) �
min
cn

����xf − cn
����

VR +max
i∈IR

����θi����. (18)

The heuristic function defined in eq. 18 is the travel time of the
vehicle traveling in the most favorable flow condition, reaching
goal position from the junction position that is closest to the goal.
Hence, h(n)≤ hp(n), which is required by A* search. However, in
our problem, the branch cost is unknown. The exact value of

ALGORITHM 3 | Bounded Cost Search in Piece-wise Constant Flow Field

Data: Start and goal node s, g, start and goal position x0, xf , travel cost upper
bound C, graph G

Output: Optimal heading angle ΨC

PTS (s,g,C,G) →P *Step 1: Find the optimal cell sequence
MEJ (P, x0 , xf )→ΨC *Step 2: Find the optimal heading angle
Function PTS a(s, g,C,G)
Initialization. g(n) � ∞, h(n) � ∞,K(n) � ∞,∀n ∈ G
s→ {CLOSED}
Set the heuristics and estimated cost-of-arrival of s
(OPEN, CLOSED) � Expand (s,OPEN,CLOSED,G)
while OPEN is not empty do
if g ∈ CLOSED then

Backtracking (s, g) → α

end
v � arg min

n∈OPEN
K(n)

(OPEN, CLOSED) � Expand (v, OPEN, CLOSED)
end
return α

Function Epand v, OPEN, CLOSED, G
{OPEN}∖v→ {OPEN}
v ∪  {CLOSED}→ {CLOSED}
Find adjacent nodes {ni}mi�1 to v in G
for i � 1 to m do
Compute minimum branch cost wp(v, ni) by solving eq. 17
if wp(v, ni) + g(v)<g(ni) ni then

predecessor � v
{OPEN} ∪  ni → {OPEN}
Compute h(ni) using eq. 18
g(ni) � g(v) + wp(v, ni)
Update K(ni) using eq. 19

end
end
return OPEN, CLOSED

Function Backtrack (s,g)
g→P
while s ∉ {P} do
v � P(end)
v.predecessor ∪  P→P

end
return P

Function MEJ (P, x0 , xf )
Initialize junction set c0 on the boundary curves of the cell sequence P
Compute junction positions by solving eq. 20
Compute heading angle from junction positions by eq. 21
return ΨC(t)

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 5752676

Hou et al. AUV Bounded Cost Path Planning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


actual cost-of-arrival cannot be computed during the search
process, which is different from a typical path planning
problem that can be solved by A* or PTS method. Hence we
introduce the estimated cost-of-arrival, denoted as g(n). The
estimated cost-of-arrival is computed by summation of the
minimum branch cost along the path, thus g(n)≤ gp(n).
The goal of A* search is to find the path with minimum cost. In our
problem, due to the uncertainties in the branch cost, this goal is overly
ambitious. Hence our problem formulation eq. 16 aims to find a path
with bounded cost. We define a potential function described as follows:

Definition 4.1: The potential of a node n, denoted as PT(n), is
Pr(hp(n) + gp(n)<C).

The potential function characterizes the probability that a
node is on a path that satisfies the bounded cost constraint. Nodes
with high potential have higher probability to be part of the
desired path. However, the exact potential of nodes cannot be
computed or compared, since both hp(n) is unknown before the
optimal path is found. Therefore, PTS algorithms usually design a
key function to determine the nodes that need to be searched at
each step of the graph search. Nodes in the OPEN list are sorted
by the key function value instead of gp(n) + h(n), which is the
main difference between the PTS algorithms and the A* method.
Various key functions have been proposed for different path
planning problems with bounded cost (Thayer et al., 2012; Stern
et al., 2014, Stern et al., 2011).

One significant contribution of this paper is in extending the PTS
method to solving bounded cost problems with uncertain branch
cost, by introducing a new form of key function K(n) ∈ R≥ 0 as

K(n) �
⎧⎪⎪⎨⎪⎪⎩

h(n)g(n)(C − h(n) − g(n))2, if h(n) + g(n)<C

∞, otherwise

. (19)

K(n) is an indication of the probability of the node n being on a
path that satisfies the bounded cost constraint. Nodes with lower
key function value have a higher probability of being on a path
satisfying the bounded cost constraint. The intuition is that, if
h(n) + g(n)<C, the key function value increases if either h(n) or
g(n) is larger. In this case, the estimated cost h(n) + g(n)

increases, and will be closer to C, then it is less likely that the
true cost satisfies the bounded cost constraint, and the node n is
less likely to be on a feasible path. If h(n) + g(n)≥C, then n
cannot be on a path satisfying the bounded cost constraint, since
hp(n) + gp(n)≥ h(n) + g(n)≥C. In this case, the key function is
set as positive infinity.

The PTS with our new key function is then applied to search
for the optimal cell in Algorithm 3. The only difference
between our PTS and A* is that the total cost used by A* to
sort the OPEN list is replaced by the key function, as shown in
line 13. Similar to A*, The search algorithm consists of two
processes: the expansion process and the backtracking process.
During the iterative expansion process, the algorithm orders
the nodes in the OPEN set according to the key function value,
and inserts the node with the lowest key function value to the
CLOSED set (lines 19, 20). Neighbors of this node and their
key function values are updated if the neighboring nodes can
be reached with a lower cost through the current node (lines
26, 28, 29). The propagation continues until the OPEN list is
depleted, or the goal node is in the OPEN set. Starting from the
goal position, the backtracking process searches for the
predecessor of the last node in the path set and add it to
the path, until the starting node is included in the path (lines
37, 38).

The PTS algorithm fulfills step one of the bounded cost path
planning solution. We have found the vector of indices {pi}n+1i�1 ,
which indicates the optimal indices that is most likely to result
in a bounded cost path. In step two, we find the optimal junction
positions that leads to the minimum total cost. Given the
optimal cell sequence, the problem eq. 16 converts to an
optimization problem depending on the junction positions
{ci}ni�1 in all cells,

min{ci}ni�1
τ(x0, c1, θp1) +∑

i�1

n

τ(ci, ci+1, θpi) + τ(cn, xf , θpn+1)
s.t. fpi ,pi+1(ci) � 0.

(20)

This optimization problem is solved by the interior-point method.
The optimal heading angle can be computed from the junction

FIGURE 1 | (A) Partitioned cells in the domain. On each boundary of two adjacent cells there is a candidate junction point, represented as the purple triangle (B)
Graph representation of the workspace. The vertices represent the candidate junctions, while the edges are the path segment between the adjacent junctions. The red
line on both of the plots represent the same example path.
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positions using eq. 12. In each cell of the sequence {pi}ni�1, given the
optimal junction position ci+1 and ci, the heading angle in cellRpi can
be derived by

ΨC � 1
VR
( ci+1 − ci∣∣∣∣∣∣∣∣ci+1 − ci

∣∣∣∣∣∣∣∣
����������������������
V2

R + 2VR(θpi)TΨC +
����θpi����2√

− θpi). (21)

5 THEORETICAL JUSTIFICATION

In this section, we give theoretical justification to the proposed data-
driven flow modeling and bounded cost path planning method.

5.1 Data-Driven Flow Modeling
Algorithm 1 can be theoretically justified by proving that the
optimal solution to eq. 5 is the optimal solution to eq. 2. We also
prove that Algorithm 2 achieves error convergence and
parameter convergence, indicating that the estimated trajectory
converges to the actual trajectory, and the estimated parameter
converges to the true values.

Lemma 5.1: The optimal flow partition derived by solving eq. 2
is the same as the optimal flow partition derived from eq. 5.

PROOF: Let δy(x, t) � y(x, t) − y(x). Since ∑Tf

t�T0

δy(x, t) �∑Tf

t�T0

y(x, t) − (Tf − T0)y(x) � 0, the following equality holds

J �∑
i�1

N ∑
x∈Ri

∑Tf
t�T0

dist2( y(x, t), μi)
�∑

i�1

N ∑
x∈Ri

∑Tf
t�T0

dist2( y(x) + δy(x, t), μi)
�∑

i�1

N ∑
x∈Ri

⎡⎢⎢⎣(Tf − T0)dist2( y(x), μi) + ∑Tf
t�T0

dist2(y(x, t), y(x))⎤⎥⎥⎦.
The second term in J represents the temporal variation of flow
speed on one grid point, which does not change with respect to
the partitioning of the flow field. Hence arg min

ϕ(x),]
J � arg min

ϕ(x),]
J′,

where J′ is defined in eq. 5. Thus the optimal solution of eq. 2
equals the optimal solution of eq. 5, which implies that the
optimal flow partition of the time-varying flow field is
equivalent to the optimal flow partition of the time-
invariant flow field, computed by taking the time-average of
the flow field observations, as described in line 1, Algorithm 1.

Next we will prove that under Assumption 2.3, the estimated
trajectory converges to the actual trajectory, and that the
estimated parameter converges to the true value using
adaptive control theory. In order to prove convergence, the
persistent excitation condition must be demonstrated, and is
given below.

Definition 5.2: (Sastry and Bodson, 1994; Khalil, 1996) A
vector signal u is persistently exciting if there exist positive

constants κ1, κ2, and T such that κ2I ≥ ∫t+T
t

u(τ)uT(τ)dτ ≥ κ1I ∀t.

Let ~ϕ1 � [ ϕ1 . . . ϕN

0 0 0
] and ~ϕ2 � [ 0 0 0

ϕ1 . . . ϕN
]. Let

w � [~ϕ1, ~ϕ2,ΨC]T ∈ R(2N+1)×2, which is the input signal to eq.
24. We can construct a matrix W(t) ∈ R(2N+1)×(2N+1) as follows

W(t) � ∫ t+T

t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1ϕ1 ϕ1ϕ2 . . . ϕ1ϕN 0 . . . 0 ϕ1 cosψc

ϕ2ϕ1 ϕ2ϕ2 . . . ϕ2ϕN 0 . . . 0 ϕ2 cosψc

« 1 « « « 1 « «
ϕNϕ1 ϕNϕ2 . . . ϕNϕN 0 . . . 0 ϕN cosψc

0 0 . . . 0 ϕ1ϕ1 . . . ϕ1ϕN ϕ1 sinψc

0 0 . . . 0 ϕ2ϕ1 . . . ϕ2ϕN ϕ2 sinψc

« « 1 « « 1 « «
0 0 . . . 0 ϕNϕ1 . . . ϕNϕN ϕN sinψc

ϕ1 cosψc ϕ2 cosψc . . . ϕN cosψc ϕ1 sinψc . . . ϕN sinψc 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ.

(22)

The persistent excitation condition is critical to prove the
convergence of parameters (Narendra and Annaswamy, 1989).
When W(t) is singular the estimation errors of parameters may
not converge to zero. The persistent excitation condition requires
that the trajectories traveled by the robot to spread over all the
partitioned cells, as stated in the following Lemma.

Lemma 5.3: The signal vector w is persistently exciting if the
vehicle visits all the partitioned cells.

PROOF: Since the partitioned cells do not overlap with each
other, for ∀τ, x(τ) can only be in one cell. Hence for all i, j ∈ IR,

ϕi(x(τ))ϕj(x(τ)) � 1{i � j} � { 1 if i � j
0 otherwise

.

Thus W(t) can be simplified to

W(t) � ∫  t+T

t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1ϕ1 ϕ1 cosψc

1 0 «
ϕNϕN ϕN cosψc

ϕ1ϕ1 ϕ1 sinψc

0 1 «
ϕNϕN ϕN sinψc

ϕ1 cosψc . . . ϕN cosψc ϕ1 sinψc . . . ϕN sinψc 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dτ.

If ∀i,∃τ ∈ [t, t + T], s.t. ϕi(x(τ)) � 1, meaning that the vehicle
visits all cell during time [t, t + T], then W(t) is full rank, and
hence w is persistently exciting.

The persistent excitation condition must be satisfied in order
to have the flow parameters of all the cells and vehicle speed
estimation converge to the true value. The persistent excitation
condition requires the vehicle to visit all the partitioned regions. If
this condition is not satisfied, not all flow parameters in the
partitioned cells can be accurately estimated. We will further
address this condition in the simulation and experimental result
section.The convergence of CLLE is presented as follows.

Theorem 5.4: Under the updating law eq. 11, CLLE converges to
zero when time goes to infinity.

PROOF: Consider the following Lyapunov function,

V(e, ξ,VL) � 1
2
(eTe + 1

ρ
(θ − ξ(t))T(θ − ξ(t))

+ 1
ρ
(VR − VL(t))2).

Since eT(θ − ξ(t))ϕ(x) � (θ − ξ(t))e⊗ ϕ(x), the derivative of V is
_V � ( − Ke + (θ − ξ)ϕ(x) + (VR − VL(t))ΨC)Te + 1

ρ
(−ρe⊗ ϕ(x))(θ − ξ)

+ 1
ρ
(VR − VL(t))(−ρeTΨC)

� eTKe≤ 0.
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_V is negative semi-definite, which implies that e, ξ,VL(t) are
bounded. In addition, the second order time derivative of V is

€V � −2eTK((θ − ξ(t))ϕ(x) + (VR − VL(t))ΨC − Ke).
Thus €V bounded, and hence _V is uniformly continuous.
Therefore limt→∞ _V(t) � 0. Since K is a diagonal matrix,
e(t)→ 0 as t→∞.

Theorem 5.5: Under the updating law eq. 11, if the vehicle
visits all the partitioned cells, ξ(t) and VL(t) converges to θ and
VR respectively as time goes to infinity.

PROOF: Let η1 � θ1 − ξ1(t), η2 � θ2 − ξ2(t), η3 � VR − VL(t),
then the CLLE dynamics can be written as

_e � ~ϕ1(x)η1 + ~ϕ2(x)η2 + η3ΨC − Ke.

We define a new state variable X � [eT , ηT1 , ηT2 , η3]T , and an
output variable Y � e, then the dynamics for the state variable
and the output variable satisfy

_X � A(t)X,Y � CX,

where A(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−K ~ϕ1 ~ϕ2 ΨC

−ρ~ϕ1 0 0 0
−ρ~ϕ2 0 0 0
−ρΨC 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,C � [ I 0 0 0 ] .

Our goal is to show that the origin of _X � A(t)X is uniformly
asymptotically stable, which indicates that ξ converges to θ, and
VL(t) converges to VR. Let

P �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
K−1 0 0 0

0
1
2ρ
K−1 0 0

0 0
1
2ρ
K−1 0

0 0 0
1
2ρ
K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

There exists some c1, c2 such that c1I ≤ P ≤ c2I, and there exists
some constant 0< ]< 1 such that

A(t)TP + PA(t) + _P + νCTC � (1 − ])
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
which is negative semi-definite.

Then by the Lyapunov theorem (Theorem 3.8.4 in (Ioannou
and Sun, 1995)), _X � A(t)X is uniformly asymptotically stable if
we can prove that (C,A) is uniformly completely observable.
First, we will find a bounded matrix L, and show that
(C,A + LC) is uniformly completely observable. Then, this
will lead to the conclusion that (C,A) is uniformly

completely observable. Let L �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ρ~ϕ1
ρ~ϕ2
ρΨT

C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. Since ΨC is uniformly

bounded, and all elements in ~ϕ is either 0 or 1, L is uniformly
bounded, and

A + LC �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−K ~ϕ1

~ϕ2 ΨC

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
Thus, we now consider the observability of

_X � (A + LC)X
Y � CX.

(23)

Let η � [η1, η2, η3]T , then the system eq. 23 has the following
form:

_e � −Ke + wTη
_η � 0
Y � e

. (24)

Due to the assumption that the vehicle visits all cells, by Lemma

5.3, w is persistently exciting. LetΦ(τ) � ∫τ
t

e−K(τ−σ)w(σ)dσ be the
output of eq. 24 given input w. Then Φ(τ) satisfies persistently
exciting conditions because w(σ) is persistently exciting, and the
transfer function of eq. 24, (sI + K)−1 is stable, minimum phase,
proper rational transfer function. Therefore, there exists constant

κ1, κ2,T0 > 0 such that κ2I ≥ 1
T0
∫t+T0

t

Φ(τ)Φ(τ)Tdτ ≥ κ1I,∀t ≥ 0.

By applying Lemma 4.8.4 in (Ioannou and Sun, 1995), we can conclude
that the system of eq. 24 is uniformly completely observable. In other
words, we have proved that (C,A + LC) is uniformly completely
observable. By applying Lemma 4.8.1 in (Ioannou and Sun, 1995)
the system (C,A) is uniformly completely observable. Therefore,
the origin of _X � AX is uniformly asymptotically stable, that is,
X→ 0 as t→∞. This means that η1, η2 and η3 go to zeros,
individually. Thus ξ andVL(t) converges to θ andVR, respectively.

5.2 Bounded Cost Path Planning
In this subsection, we prove that Algorithm 3 finds the optimal
solution of eq. 4. Assumption 5.1 and Assumption 5.2 are
required for the optimality proof.

Assumption 5.1: Consider any node not the starting node s or
the goal node g, the estimated cost-of-arrival g(n) and the
estimated cost-to-go h(n) are bounded below,
g(n)≥ gmin, h(n)≥ hmin, where gmin > 0 and hmin > 0.

Remark 5.1: For any node that is not the goal node, h(n)
reaches its minimum when n is an adjacent node of g. Similarly, for
any node that is not the start node, g(n) reaches its minimum when
n is adjacent to s. Since the flow partition algorithm is performed
over discrete grid points in D, size of the cells cannot be infinitely
small. Therefore, h(n) can only be zero if the junction represented by
the node n is sliding on the same boundary of the goal point, and
g(n) can only be zero if the junction represented by the node n is
sliding on the same boundary of the start point. However, by
junction assignment, only one junction can be assigned on each
boundary. Hence there exists hmin and gmin that bound h(n) and
g(n) from below, and the lower bound cannot be infinitely small.
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Let Hmax � max{ C
hmin

, C
gmin
}. Consider {Xn}Nn�1, {Yn}Nn�1 to denote

sequences of independent and identically distributed random
variables uniformly distributed over [1,Hmax]. To prove
optimality of the algorithm, we make assumptions on the
statistical relationship between hp(n), h(n), and gp(n), g(n) as
follows.

Assumption 5.2: The true cost-to-go, hp(n) and the heuristic
function h(n), as well as the true cost-of-arrival, gp(n) and
estimated cost-of-arrival, g(n) both satisfy hp(n) �
h(n)Yn, gp(x) � g(n)Xn.

Remark 5.2: Both hp(n) and gp(n) are summation of branch
cost along the optimal path. Since the branch cost is the travel time
between two adjacent junctions sliding on two boundaries, the branch
cost of all edges must have both a lower bound and an upper bound.
Hence both hp(n) and gp(n) are assumed to be a uniform
distribution, with the minimum of it being h(n) and g(n), and
the maximum being h(n)Hmax and g(n)Hmax. In practice, the
statistical model of hp(n) and gp(n) depends on the distribution
of the flow field, and may not be uniform distribution in some
flow cases. However, the following theoretical analysis can be
adapted to other parameterization of the statistical model of
hp(n) and gp(n).

We will show below that, by expanding the nodes with the lowest
key function value without explicitly calculating the potential of
nodes, the proposed algorithm expands the nodes with the highest
potential value, and thus guarantees tofind the optimal solution to eq.
4. Lemma 5.6 states that the key function is an equivalent evaluation
of the potential value of nodes. Lemma 5.7 demonstrates that the
optimal path can be equally defined by either the potential or the
key function value of nodes. Finally, given the two Lemmas, we
justify the optimality of the proposed algorithm, which is stated
in Theorem 5.8.

Lemma 5.6: For all n1, n2 ∈ G, PT(n1)<PT(n2) if and only if
K(n1)>K(n2).

PROOF: To simplify notation, let h1, h*1, g1, g
*
1 denote

h(n1), h*(n1), g(n1), and g*(n1), respectively. The Lemma
trivially holds in the cases where either K(n1) or K(n2) is
infinity. Below we show that the Lemma holds in the case
where both K(n1) and K(n2) are not infinity; equivalently, h1 +
g1 <C and h2 + g2 <C. Due to the i.i.d. distribution assumption
stated in Assumption 5.2,X1,X2 can be written as a single random
variable uniformly distributed on [1,Hmax], and Y1,Y2 also can be
written as a single random variable uniformly distributed on
[1,Hmax]. Therefore, PT(n1)<PT(n2) if and only if

Pr(h1Y + g1X <C)< Pr(h2Y + g2X <C).
Terms in the above inequality can be computed by integration of
the probability density function,

∫∫
S1

ρX,Y(x, y)dxdy <∫∫
S2

ρX,Y(x, y)dxdy,
whereS1 � {(x, y)∣∣∣∣h1y + g1x <C, x ∈ [1,Hmax], y ∈ [1,Hmax]}, S2 �
{(x, y)∣∣∣∣h2y +g2x <C, x ∈[1,Hmax], y∈[1,Hmax]}. ByAssumption5.2,
X ≤ C

gmin
,Y ≤ C

hmin
, and therefore S1, S2 are two triangles, as shown

in Figure 2. Due to the uniform distribution of X,Y , the above
integration can be easily computed by multiplying area of S1, S2

with the joint distribution ρX,Y(x, y), which is a constant.
Hence,

1
2
ρXY(C − g1

h1
− 1)(C − h1

g1
− 1)< 1

2
ρXY(C − g2

h2
− 1)(C − h2

g2
− 1)

which implies K(n1)>K(n2).
Let the ordered sequence Γ denote a path connecting the start

node s with the goal node g in the graph G. Define Kmax(Γ) as the
highest key function value of all nodes on the path Γ, that is,
Kmax(Γ) � max

n∈Γ
K(n).

Lemma 5.7: The optimal path minimizes Kmax(Γ) over all paths
in the graph.

PROOF: Let Γp denote the optimal path that maximizes
Pr(hp(n) + gp(n)<C). Suppose that there is a path Γ′ that is
different from the optimal path Γp with Kmax(Γ′)<Kmax(Γp),
then there exists n′∈ Γ′, and n ∈ Γp that satisfies K(n′)<K(n).
By Lemma 5.6, PT(n′)>PT(n), indicating that
Pr(hp(n′) + gp(n′)<C)>Pr(hp(n) + gp(n)<C), which
contradicts the assumption that Γp is the optimal path. Hence, a
path is the optimal one if it minimizes Kmax(Γ).

Conversely, let Γ � arg min
Γ″∈G

Kmax(Γ″), then for all Γ′ that is

different from Γ, for all n ∈ Γ,∃n′∈ Γ′, such that K(n)<K(n′).
Thus by Lemma 5.6, PT(n)> PT(n′) for n′ in any arbitrary path
that is not Γ in the graph, and hence Γ that minimizesKmax(Γ) is the
optimal path.

Theorem 5.8: When a feasible solution exists, the
proposed algorithm terminates if and only if an
optimal path is found.

PROOF: Algorithm 3 can only terminate by finding the
goal node, or after depleting the OPEN set. However, the
OPEN set can never be empty before termination if there is a
feasible path from s to goal point. Hence Algorithm 3 must
terminate by finding a goal point.

Next we show that Algorithm 3 terminates only by
finding an optimal path to the goal node. Suppose that the
algorithm terminates by finding a path, Γ′ other than the
optimal path Γp, then by Lemma 5.7, Kmax(Γp)<Kmax(Γ′), that
is, there exists n′∈ Γ′, n ∈ Γp such that K(n)<K(n′). Thus
during the propagation process, Algorithm 3 would have
selected n for expansion rather than n′, contradicting the
assumption that the algorithm terminates by finding Γ′.
Hence the algorithm must terminate by finding the
optimal path to the goal node.

5.3 Complexity Analysis
In our analysis, we derive the worst case running time for
Algorithm 3, and compare it with dynamic programming
based planning methods, such as A*, to demonstrate the
computational efficiency of the proposed planning
algorithm. Let us suppose the flow field forecast is available
on N × N grid points in the deployment domain, and suppose
that the domain is partitioned into M cells by performing
Algorithm 1.

To derive the worst case running time of the proposed
algorithm, we first consider the partitioning. Since one junction
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must be formed by the boundary of at least two cells, the total
number of junctions cannot exceeds M(M − 1), and hence the
total number of nodes in the graph is at mostM(M − 1). In one
iteration process, the sorting operation (line 13), and
computation of the key function, the minimum branch cost,
and the heuristics (line 29, line 23 and line 27 are performed
for one time. Suppose that the OPEN set is implemented using
a heap data structure, the worst case running time of the
operation in line 13 is O(log(M(M − 1))). We assume that the
computation of the key function, the minimum branch cost,
and the heuristics can be performed in constant time. There
can be at most M(M − 1) iterations during the entire
execution, before the OPEN set is depleted. Hence, the
worst case running time of Algorithm 3 is O(M(M −
1)log(M(M − 1)).

The worst case running time of A* is O(2N2 logN)
(Nilsson, 2014). Thus, the proposed algorithm is more
computationally efficient than A* if M(M − 1)<N2,
meaning that Algorithm 1 partitions the domain into less
number of cells than the number of rectangular cells in the
original gridded domain.

6 EXPERIMENT AND SIMULATION
RESULTS

In this section, we provide the results of the implementation of our
flow field modeling and path planning methods in a simulated
experiment. First, we describe the simulated experimental set-up
and recent field experiments, which serve as a strong test of the
methods due to the magnitude and variability of the flow. We
validate the proposed flow modeling algorithm by comparing the
estimated flow model parameters generated from the proposed
flow estimation algorithm with the glider estimated flow collected
during the experiment. Based on the estimated flow model,
simulation of the bounded cost path planning algorithm is

performed, and its performance is compared with other AUV
path planning algorithms.

6.1 Experimental and Simulation Setup
Our study is motivated by the use of underwater gliders off
the coast near Cape Hatteras, North Carolina, US as part of a
16-months experiment (Processes driving Exchange At Cape
Hatteras, PEACH) to study the processes that cause exchange
between the coastal and deep ocean at Cape Hatteras, a highly
dynamic region characterized by confluent western boundary
currents and convergence in the adjacent shelf and slope
waters. Underwater gliders, AUVs that change their
buoyancy and center of mass to “fly” in a sawtooth-shaped
pattern, were deployed on the shelf and shelf edge to capture
variability in the position of the Hatteras Front, the boundary
between cool, fresh water on the shelf of the Mid Atlantic
Bight and the warmer, saltier water observed in the South
Atlantic Bight.

While the energy efficiency of the glider’s propulsion
mechanism permits endurance of weeks to months, the
forward speed of the vehicles is fairly limited
(0.25–0.30 m/s), which can create significant challenges for
navigation in strong currents. Use of a thruster in a so-called
“hybrid” glider configuration can increase forward speed to
approximately 0.50 m/s, but at great energetic cost. The
continental shelf near Cape Hatteras is strongly influenced
by the presence of the Gulf Stream, which periodically
intrudes onto the shelf, resulting in strong and spatially
variable flow that can be nearly an order of magnitude
greater than the forward speed of the vehicle (2+ m/s).
With realistic estimates of the spatial and temporal
variability of the flow, path planning can provide a
significant advantage for successful sampling.

We deployed one glider off Oregon Inlet, NC May 16, 2017
and recovered it 14 days later. For its mission, the glider was
initially tasked to sample along a path with offshore, inshore,

FIGURE 2 | Illustration of computing PT(n1) and PT(n2). The red triangle is S1 � {(x, y)∣∣∣∣h1y + g1x <C, x ∈ [1,Hmax , y ∈ [1,Hmax]]}, and the green triangle is
S2 � {(x, y)∣∣∣∣h2y + g2x <C, x ∈ [[1,Hmax], y ∈ [1,Hmax]]}.
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and triangular segments designed to sample critical flow
features (Figure 3), and was not used with a thruster. The
glider surfaced approximately every 4 h to update its position
with a GPS fix, communicate with shore, transmit a subset of
data, and most importantly, receive mission updates and
commands to adapt sampling.

6.2 Flow Modeling Using Glider
Experimental Data
In this example, we present flow modeling results using the
proposed flow partition and parameter estimation methods.

The flow map forecast is given by a 1-km horizontal
resolution version of the Navy Coastal Ocean Model

FIGURE 3 | Survey domain near Cape Hatteras. The curve represents glider trajectory during the first PEACH deployment. The red line path is the pre-assigned
sampling pattern. Squares denote the glider surfacing positions along trajectory, and color of the trajectory depicts timestamps. The arrows represent the NCOM-
predicted flow field at the starting time of the deployment.

FIGURE 4 | Flow partition error when the number of cells is set as k � 1, . . . , 30.
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(NCOM, Martin, 2000), made available by J. Book and
J. Osborne (Naval Research Laboratory, Stennis Space Center,
United States). In the domain of interest, the ocean model flow
forecast is given at 106 × 106 rectangular grid points. Tidal flow
accounts for much of the short-term ( < 24 hour) temporal
variation of the flow field. Hence the partition time interval
is taken over multiple periods of the largest tidal constituent, the
lunar semidiurnal M2 tide (period 12.42 h). Maximum flow
speed in this area is 2.2788 m/s, approximately 7.5 times the
vehicle speed, and 4.5 times the speed of a hybrid glider using a
thruster. We set the upper bound for flow partition error to be
0.35 m/s, which is about 15% of the maximum flow speed in the
domain. Figure 4 describes the flow partition error in the case of
different selection of cell number. Since the flow partition error
goes below the upper bound when k � 13, the number of cells is
chosen as 13. We smooth the cell boundaries into straight lines
using the Least Mean Square method. Even though smoothing
the cell boundaries might overlook more detailed spatial
variability of the flow field, it helps to reduce the
computational cost of solving the planning problem,
specifically, in solving eq. 17 and eq. 20. The partitioned
flow field is shown in Figure 5. Comparing Figures 3, 5, it
can be seen that the proposed algorithm captures the
major spatial variation of the flow field, by separating the
high speed flow regions from the area where the flow is at
lower speed.

At each surfacing, the vehicle position is given by the GPS
location.When the glider is underwater, we use linear interpolation
to estimate the heading and vehicle position. The vehicle’s forward
speed is zero when it is at the surface of the ocean, and the vehicle
drifts freely with the surface current. This violates the constant
forward speed assumption stated in Assumption 2.1. Hence, we
remove the segment of data when the vehicle is drifting at surface,

and then compute the estimated flow parameters by the proposed
algorithm. Glider speed is initialized to be 0.3 m/s, while the flow
parameters are initialized by the flow vectors found by partitioning
the NCOM data. Since the vehicle trajectory crosses cell 3, 6, 7, 10,
and does not enter other cells, the glider trajectory does not satisfy
persistent excitation condition described in Lemma 5.3.Hence only
the flow parameters in cells 3, 6, 7, 10 can be updated by the
adaptive updating law, while the flow parameters in the rest cells
remain to be the initial value. To justify performance of the
proposed flow parameter estimation algorithm, we use the
ADCIRC (Advanced Circulation) model output (Luettich et al.,
1992) to model the tidal flow component, and derive the non-tidal
glider estimated flow speed by subtracting ADCIRC reported flow
from the flow parameter estimate. The de-tided glider estimated
flow speed is considered as the ground truth of flow parameters in
the corresponding cells. The root mean square error (rmse)
between the estimated parameter and the ground truth in cell 3,
6, 7, 10 is shown in Table 1. It can be seen that in all of the four
cells, the estimated flow parameters is in good agreement with the
true flow parameters. The rmse in all of the four cells is within 5%
of the maximum flow speed in the domain. Figure 6 shows the
comparison between the estimated flow parameters and the true
flow parameter value in one of the cells that the glider trajectory
visits. It is shown that in cell 7, the estimated flow parameter
matches well with the true value.

6.3 Bounded Cost Path Planning
In this example, we present simulation results of AUV bounded cost
path planning. Since the flow field is of high speed in the domain of
interest, we assume that the glider is sampling the domain using
combined propulsion of buoyancy and thrusters for the operation.
Hence the AUV through-water speed is set to be 0.5 m/s. The
simulations are run on a core i7 at 1.80 GHz PC with 32GB RAM.

FIGURE 5 | Partitioned cells of the survey domain. The polygons are the partitioned regions. The blue arrows represent uniform flow speed in each of the cells
generated from the proposed algorithm.
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Figure 7 shows one example of the proposed bounded cost
path planning method. The start position and goal position is
assigned as (−75.60, 35.06) and (−74.98, 35.83) in longitude and
latitude, respectively. Upper bound of the travel time is set as 72 h.
The travel cost of the resulting path is 62.650 h, which satisfies the
bounded cost constraint. As shown in the figure, the generated
path makes a detour and takes advantage of the strong northward
ocean flow to travel to the goal position.

We perform A* (Carroll et al., 1992) and Level Set Method (LSM)
(Lolla et al., 2014) as comparison to the proposedmethod. 15 test cases
are generated in total. Each test case T � {Start,Goal, d} is built by
first assign the distance between the start and the goal node d to be
20 km, 50 km, 80, or 100 km, then randomly place the Start point in
the domain, and select the Goal node so that the distance to the start
node is d. The computation time column in Table 2 shows
comparison of the averaged computational time for A*, LSM, and
the proposed algorithm. Table 3 presents the post-hoc analysis results
of the simulation. The post-hoc analysis rejects null hypotheses of the

same performance, i.e. the proposed algorithm spends less
computation time to solve the planning problem than the A* and
the LSM method, for all different scenarios of d. The difference
between the three algorithms is due to the number of nodes in the
graph. By partitioning the domain into 13 cells, the proposed
algorithm searches for the optimal path in a graph with only 13 ×
12 nodes, while both the A* and LSM algorithm searches for the
optimal path in a domain containing 106 × 106 nodes. Thus, the
computational cost of the proposed algorithm is significantly lower
than the other two methods.

Further, we compare the percentage of increase in the
computation time when d increases. In Table 2, the % of
increase column shows the increase in the computation cost
when d increases from 20 to 50, 80, and 100, respectively. The
percentage is calculated by considering the computation time of
each algorithm when d � 20 km as the base time, and divide the
increase of computation time when d scales up by the base time. It
can be seen that when the domain of interest scales up, the

TABLE 1 | Root mean square error between the estimated and the true flow parameters.

Cell number Flow parameter Estimation error (m/s)

Cell 3 W-E flow 0.0558
N-S flow 0.0082

Cell 6 W-E flow 0.0526
N-S flow 0.0831

Cell 7 W-E flow 0.0415
N-S flow 0.0388

Cell 10 W-E flow 0.0961
N-S flow 0.0975

FIGURE 6 | Estimated flow parameters and the ground truth value in cell 7.
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FIGURE 7 | Example of simulation case. The resulting path is computed by the proposed method.

TABLE 2 | Computation time comparison of A*, Level Set Method, and the proposed algorithm. Avg. comp. time represents the averaged computation time for each
simulation scenario, and STD comp. time represents the standard deviation of the computation time. % of increase describes the percentage increase in the
computation cost when d increases.

Method d (km) Avg. Comp. Time (s) Std comp. Time % Of increase

Algorithm 3 20 0.1576 0.0365 —

50 0.1603 0.0385 1.7%
80 0.2796 0.1127 77%
100 0.4276 0.2318 171%

A* 20 1.6776 0.5199 —

50 7.4376 0.7692 343%
80 11.8376 1.3216 605%
100 14.9040 1.1900 788%

LSM 20 86.8376 9.4397 —

50 145.7043 30.0730 67%
80 210.6376 23.4036 142%
100 241.9043 25.6065 178%

TABLE 3 | Post-hoc analysis of simulation comparison between the proposed method, A*, and LSM. The mean and STD of difference describe the mean and standard
deviation of the computation time difference between the proposed method and the two other methods. The significance level is set as α � 0.05 when computing the
p-value.

Method d (km) Mean of
difference

Std of difference t-score p-value

A* 20 1.5200 0.5108 11.53 2e−8

50 7.2773 0.7744 36.40 0
80 11.5580 1.2980 34.49 0
100 14.4767 1.1168 50.20 0

LSM 20 86.6800 9.4511 35.52 0
50 145.5440 30.0805 18.74 0
80 210.3580 23.4411 34.76 0
100 241.4767 25.6747 36.43 0
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computational cost of the proposed algorithm has the least
increase, compare with A* and LSM. This is because as d
increases, both A* and LSM have to expand significantly more
nodes before finding the optimal solution. For the proposed
algorithm, the number of nodes to be expanded stays relatively
constant as d increases. Hence, its computation cost does not
increase as much as A* and LSM as the domain scales up.

It is worth mentioning that the proposed algorithm achieves
decreased computation cost by compromising the path quality.
Even though optimality of the planned path is guaranteed in the
partitioned flow field, as shown in Theorem 5.8, the planned pathmay
not be optimal in the actualflowfield, since the partitioned flow field is
different from the actual flow field.We identify the compromised path
quality as the major constraint of the proposed algorithm.

In cases where the domain is larger,Algorithm 1may still result in
large number of cells, leading to increased computation cost in solving
the bounded cost planning problem. In such scenarios, stochastic
optimization methods, such as the differential evolution method, may
be helpful in further reducing the computation cost of solving the
planning problem. We refer to a survey paper on the differential
evolution methods (Das et al., 2016) for this matter.

7 CONCLUSION

In this paper, a bounded cost path planning method is developed for
underwater vehicles assisted by a data driven flow field modeling
method. Themain advantage of the proposedmodified PTSmethod is
that it is more computational efficient comparing to A* and LSM in
solving AUV planning problem in time-invariant 2D fields, as

demonstrated by the simulation result. Major limitation of the
proposed algorithm is the compromised solution quality, resulting
from the model reduction error introduced by the flow partition
process. The proposed method has the potential to be extended to
other path planning applications where the task performance is
sensitive to planner’s computational efficiency. Future work will
include performing the proposed method in real glider
deployments, to compare the planned trajectory with the real
mission trajectory, where drift and time-varying fields happen.
Future work will also include comparing the proposed method
with other algorithms, such as the differential evolution algorithms.
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