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Abstract
Bioimpedance spectroscopy (BIS) is an easily applicable tool to assess body composition. The three
compartment model BIS (3C BIS) conventionally expresses body composition as lean tissue index (LTI)
(lean tissue mass [LTM]/height in meters squared) and fat tissue index (FTI) (adipose tissue mass/
height in meters squared), and a virtual compartment reflecting fluid overload (FO). It has been studied
extensively in relation to diagnosis and treatment guidance of fluid status disorders in patients with
advanced-stage or end-stage renal disease. It is the aim of this article to provide a narrative review on
the relevance of 3C BIS in the nutritional assessment in this population. At a population level, LTI
decreases after the start of hemodialysis, whereas FTI increases. LTI below the 10th percentile is a con-
sistent predictor of outcome whereas a low FTI is predominantly associated with outcome when com-
bined with a low LTI. Recent research also showed the connection between low LTI, inflammation, and
FO, which are cumulatively associated with an increased mortality risk. However, studies toward nutri-
tional interventions based on BIS data are still lacking in this population. In conclusion, 3C BIS, by dis-
entangling the components of body mass index, has contributed to our understanding of the relevance
of abnormalities in different body compartments in chronic kidney disease patients, and appears to be
a valuable prognostic tool, at least at a population level. Studies assessing the effect of BIS guided nutri-
tional intervention could further support its use in the daily clinical care for renal patients.
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INTRODUCTION

Protein energy wasting (PEW) is highly prevalent in dial-
ysis patients, but also in patients with earlier stages of
chronic kidney disease (CKD).1 The cause of PEW,
which is an important risk factor for mortality, is
multifactorial.2

The diagnosis of PEW in renal failure is according to
current convention based on four different criteria, that
is, body mass (low body weight, weight loss, or
decreased total fat mass [FM]), decreased muscle mass,
serum chemistry, and an estimation of dietary intake.3

The estimation of body fat and muscle mass as proposed
in expert panels or guidelines is generally left to the dis-
cretion of the clinician, and can include different
methods such as anthropometry, dual X-ray absorptiom-
etry (DEXA), and bioimpedance analysis (BIA).3,4 BIA is
an easily applicable and operator independent method
which has a long history of research in end-stage renal
disease (ESRD). Whereas various BIA applications are
available, such as single-frequency, including vector
based methods,5 whole body (or more appropriately
called “wrist-to-ankle”) bioimpedance spectroscopy (BIS)
appears at present to be most frequently studied.6,7

Approximately one decade ago, a three compartment
(3C) BIS model was introduced, which differentiates
between three relevant compartments, that is, lean tissue
mass (LTM), adipose tissue mass (ATM), and a calculated
virtual entity reflecting fluid overload (FO), which is in
the literature commonly described as the “overhydration”

(OH) compartment,8 and which will be a negative vol-
ume in case of fluid depletion.

Whereas most research on 3C BIS has been devoted to
abnormalities in fluid state,6,7,9 recent papers also have
shed more light on its potential use in nutritional assess-
ment. The aim of this short review is to discuss the avail-
able evidence on the use of the 3C BIS model and to
explore the potential role in monitoring and management
of PEW and other abnormalities in body composition in
adult patients with advanced or end-stage kidney failure.

SHORT TECHNOLOGICAL
BACKGROUND OF THE 3C BIS MODEL

It is not the aim of this article to discuss the basics of BIS
into detail, for which there are recent reviews avail-
able.10,11 Basically, its principle is based on the measure-
ment of the impedance of tissue on a broad range of
frequencies of an alternating current. At low frequencies,
the current only passes through the extracellular fluids
(ECF), whereas at high frequencies the current also pas-
ses through the cell membranes. Complex models have
been developed to use the variation in impedance with
frequency to derive estimates of the ECF and intracellular
fluids (ICF) based on the original Hanai model.12,13 Dif-
ferences between the two compartment (2C) models and
the 3C models can be explained by different arrange-
ments of body composition compartments, which are
based on differences in hydration status of the

Figure 1 Distribution of body composition compartments 2C versus 3C model (by P. Wabel, Fresenius Medical Care D
GmbH, Bad Homburg, Germany), as published by Broers et al.14 (reproduced with permission). 2C = two compartment;
3C = three compartment; ATM = adipose tissue mass; FFM = fat free mass; FM = fat mass; LBM = lean body mass;
LTM = lean tissue mass; TBMC = total bone mineral content. [Color figure can be viewed at wileyonlinelibrary.com]
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compartments as is shown in Figure 1. The 2C model
divides body composition compartments into a fat free
mass (FFM) compartment and a FM compartment,
where FFM is estimated based on the assumption that fat
free tissue contains 73% of water.15 As the 2C model
cannot distinguish excess volume due to fluid retention,
predictions of FFM are influenced by the presence of
FO.14,16

The 3C model was developed based on validation with
tracer dilution techniques, DEXA, and air displacement
plethysmography in healthy controls and dialysis
patients.8,12 The 3C model recognizes the presence of ECF
and ICF in adipose tissue and calculates the so-called OH
compartment based on the assumption of normal hydra-
tion ratios for lean and adipose tissue, respectively.8 Thus,
the 3C model expresses three body compartments: LTM,
ATM, and the OH compartment as an indicator of FO8

(Figure 1), which can also be negative and in this case
points to fluid depletion.7,17 Lipid containing FM can be
derived from ATM by taking into account the hydration
state of adipose tissue.8 In addition, LTM and ATM are
usually normalized by dividing by height in meters
squared, and by convention usually expressed in the litera-
ture as lean tissue index (LTI) and fat tissue index (FTI).14

The algorithm embedded in one of most cited multi-
frequency bioimpedance devices (i.e., Body Composition
Monitor, BCM®), which applies the 3C method, has been
assessed in different populations, mostly Caucasian,12 and
validated against reference methods both for fluid volume
and nutritional findings.12,18 It should be recognized that
BIS does not directly measure body composition, but only
electrical properties of tissue which are used for the calcu-
lation of body compartments based on empirically derived
values for tissue coefficients.19

VALIDATION AGAINST REFERENCE
METHODS

Comparison between body fluid compartments when
assessed by tracer dilution techniques and BIS, in which
a correction factor for body mass index (BMI) was
included, have yielded acceptable limits of agreement
(−0.4 � 1.4 L [mean � SD] for extracellular water
[ECW] and 0.2 � 2.0 L for intracellular water [ICW]).12

Volume estimation by BIS also seems to be reliable in
patients with high BMI.20 However, it should be recog-
nized that even different tracer dilution methods show
disagreement between themselves in the assessment of
fluid compartments which was comparable to the differ-
ence between tracer dilution methods and bioimpedance
findings, and therefore the presence of real “gold

standard” methods in this respect have been
questioned.21 Using the 3C model, the mean difference
in FM assessed between BIS and DEXA was
0.55 � 3.3 kg in a Taiwanese population. The discrep-
ancy between DEXA and BIS was not related to the
degree of FO, but was more pronounced in patients with
higher BMI, where BIS appeared to overestimate the fat
compartment as compared to DEXA.22 In a study in
50 peritoneal dialysis (PD) patients, mean difference in
estimated FM between 3C BIS and DEXA was
0.9 � 5.7 kg (95% confidence interval [CI] = -10.5–12.3)
and −0.3 � 5.6 kg (95% CI = -11.8–10.8) for LTM.23

Relatively larger limits of agreement were also observed
in the study of Zhou et al. in 120 patients with non-
dialysis dependent CKD.24 In order to facilitate the com-
parison, the authors calculated FFM by BIS by
subtracting FM from body weight. FFM was higher in
BIS as compared to DEXA by a mean difference of
−2.8 kg (−12 to 6.5 kg), whereas mean FM was 3.1 kg
lower when assessed by BIS as compared to DEXA (−6.8
to 13 kg).24 Importantly, in both studies, the discrepancy
between DEXA and 3C BIS was related to the degree of
FO, which has been shown to influence the estimation of
body composition by DEXA.16 It is of importance to note
that all of these studies have been performed in chronic
disease population and none of them has been addressed
to acutely ill patients.

In a study of 91 patients treated with online
hemodiafiltration (OL-HDF), 3C BIS was also compared
between groups with or without PEW, as defined by the
malnutrition-inflammation score25 ≥ 5.26 In the PEW
group, FTI but not LTI was lower as compared to the
group without PEW. Notably, the prevalence of PEW
was far lower (19.7%) as compared to that of LTI < 10th
percentile, which was present in, respectively, 64.5% and
73.3% of patients with and without PEW.26

Data on the reproducibility of BIS in the nutritional
assessment in renal patients are limited, but a study
reported in abstract form showed a coefficient of variation
of ECW and ICW in a time period of 30 days of 2.2%
and 3.7%, respectively.27 However, although ECW and
ICW are used for the calculation of body composition by
3C BIS, there are to the best of our knowledge no data yet
on the reproducibility of FTI and LTI in the literature.

PREVALENCE OF ABNORMALITIES IN
BODY COMPOSITION IN DIALYSIS
PATIENTS

A low LTI is highly prevalent in dialysis patients as com-
pared with the LTI of healthy aged matched controls for
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which reference ranges are available.28 In the literature,
cutoff limits of <10th or >90th percentile of an age-
matched and sex-matched healthy population are usually
used. In a study of Marcelli et al.29 in 37,345 European
hemodialysis (HD) patients, LTI < 10th percentile was
present in 44% of patients. LTI and FTI < 10th percentile
was less prevalent, and only observed in 4.2% of
patients, which means that in general, a low LTI is
accompanied by a normal or increased FTI. Still, the
combination of LTI < 10th percentile and FTI > 90th
percentile, which would coincide with sarcopenic obe-
sity, was only present in 3.5% of patients, whereas the
combination of LTI < 10th percentile and FTI between
the 10th and 90th percentile was observed in 39% of
patients.29 The shift to higher BMI in dialysis patients
appears to be due to an altered distribution between LTI
and FTI in this population. For example, the group of
patients with low LTI had, respectively, a mean BMI of
19 � 1.9 kg/m2 when accompanied with FTI < 10th per-
centile, or a BMI of 25.4 � 3.9 kg/m2 when accompanied
with FTI between the 10th and 90th percentile. A normal
body composition (e.g., both LTI and FTI between the
10th and 90th percentile) coincided with a mean BMI of
27.6 � 4.0 kg/m2.29

The high presence of a low LTI appears to be a global
phenomenon. In a study in Argentina in 934 patients,
58.8% of patients had LTI < 10th percentile.30

It has also been suggested that BIS could also play a
role in the diagnosis of sarcopenic obesity in dialysis
patients by investigating the relationship between ATM
and LTM.30,31

Changes in LTI and FTI or differences between groups
appear to be detectable by BIS, at least on a population
level. In a recent study, Marcelli et al. observed an
increase in FTI of 1.0 kg/m2, and a decline in LTI of
0.4 kg/m2 in the first 2 years after the start of HD.32

These changes coincided with a mean increase in BMI of
0.6 kg/m2. These data were later confirmed by a study
from Keane et al., who observed a mean increase in FM
of 0.7 kg and a decline in LTM of 0.9 kg over a 2-year
period following the start of dialysis.17 In a cohort of
824 PD patients, LTI declined by a mean of 1.1 kg/m2

whereas FTI increased by 1.9 kg/ m2,33 with a significant
inverse relationship between changes in both body com-
partments. These observations are in agreement with ear-
lier data obtained by DEXA in a smaller group of dialysis
patients.34 Another study found a lower LTI, but a com-
parable FTI in HD as compared with a matched cohort
of PD patients.35

Interestingly, also seasonal differences in body compo-
sition in HD patients were detected by 3C BIS, with
higher FM and lower LTM in the winter period.36

RELATION BETWEEN ABNORMALITIES
IN BODY COMPOSITION AND
OUTCOME

Previous research showed that especially low BMI in dial-
ysis patients is associated with adverse outcome, whereas
higher BMI is actually protective.37 However, as BMI is a
composite parameter without the possibility to differenti-
ate between LTM and ATM, there is a clear rationale for
investigating the relation between specific body compart-
ments and outcome, because targeted interventions may
differ. Various studies have explored the relation between
body composition assessed by 3C BIS and outcome.
Rosenberger et al. observed a relation between LTI <
10th percentile and increased mortality in a study of
960 HD patients after adjustment for case-mix.38 In a
study including 697 Portuguese HD patients, a low FTI
was associated with reduced survival.39 In a smaller
group of HD patients, those with LTI < 10th percentile
had a significantly higher risk of mortality,40 whereas in
a cohort of 6395 Spanish HD patients, LTI below the
10th percentile was associated with increased mortality.41

In a study in 824 PD patients, both LTI below the 10th
percentile and FTI above the 90th percentile were associ-
ated with increased mortality, although the latter relation
lost significance after adjustment for C-reactive protein
(CRP) and serum albumin.33 In an international cohort
study in 37,345 HD patients, both LTI < 10th percentile
(hazard ratio [HR] = 1.53), and FTI < 10th percentile
(HR = 1.19) were associated with significantly increased
mortality as compared to LTI and FTI between the 10th
and 90th percentile. The highest mortality (HR = 2.51)
was observed in the group with a combination of both
FTI and LTI < 10th percentile.29 Furthermore, the inter-
action between FTI/LTI and outcome was analyzed by
means of smoothing spline analysis of variance in this
study (Figure 2).

The relation between low LTI and outcome was con-
firmed in a meta-analysis, in which LTI < 10th percentile
was associated with mortality with a HR of 1.53.42

Also in patients with CKD stage 4–5, LTI appeared to
be predictive for outcome. In a cohort of 356 patients, a
lower LTI (defined as LTI < 14.1 kg/m2) was associated
with an increased mortality during a mean follow-up
time of 22 months.43 These results were confirmed in a
study in 326 patients with CKD stages 3–5, in whom
LTI above the median value, but not high BMI or FTI,
was associated with improved outcomes. Interestingly,
the group with both LTI and FTI above the median
showed the best outcomes.44

Whereas low FTI has been associated with adverse
outcomes, as shown above, a very high FTI was

3C BIS in chronic kidney disease patients

Hemodialysis International 2020; 24:148–161 151



associated with increased mortality as well. In an interna-
tional study of our group,29 FTI > 90th percentile was
associated with increased mortality without adjustment
for LTI. However, in a combined model, those patients
with LTI < 10th and FTI > 90th percentile had a lower
mortality as compared to patients with a combination of
LTI and FTI < 10th percentile, suggesting that high FTI
in patients with significantly reduced LTI may actually be
partially protective. Patients with normal LTI but
FTI > 90th percentile also tended to have an increased
mortality.29 Lee et al. observed a relation between the fat
tissue/lean tissue (FM/LTM) ratio, as a proposed surro-
gate of sarcopenic obesity, and the risk of cardiac events
and all-cause mortality in a cohort of 130 HD patients.31

It should be noted that the quartile with the highest
FM/LTM ratio was characterized both by the highest FM
as well as the lowest LTM, which makes the interpreta-
tion of the individual contribution of the respective body
compartments somewhat difficult to interpret.

Summarizing, a low LTI is associated with adverse
outcomes, which also holds true for a low FTI in combi-
nation with a low LTI. This relation may be caused by
the underlying disease state, leading to wasting, but also
because skeletal muscle is an important reservoir of pro-
teins.42,44 Next to this, a low LTI contributes to muscle

weakness and frailty with an increased risk of complica-
tions and may be associated with a reduced physical
activity, which is at itself a risk factor for mortality.31,44,45

Moreover, also a low FTI may be a sign of serious
underlying disorders, where severely depleted fat stores
could interfere with the homeostatic response to a
stressor such as infection or surgery, given the fact that
fat is an important source of energy. In addition, the
higher circulating lipoproteins associated with adipose
tissue could provide prevention against endotoxins.46–48

On the other hand, visceral adiposity was related to an
enhanced risk of cardiovascular complications in HD
patients.49 Therefore, also in dialysis patients, extremes
in body composition seem to be disadvantageous. A
summary of articles reflecting body composition parame-
ters in relation to outcome is presented in Table 1.

ASSOCIATION OF ABNORMALITIES IN
BODY COMPOSITION WITH OTHER
RISK DOMAINS

Malnutrition often occurs in combination with abnormal-
ities in other risk domains, most notably inflammation,
and forms part of the so-called Malnutrition Inflamma-
tion Atherosclerosis (MIA) syndrome.50 However, malnu-
trition also appears to be associated with abnormalities in
fluid status. In a cohort of 338 patients with CKD stages
3–5, FO was inversely associated with LTI, and was
incrementally associated with the MIA score,51 as well as
with interleukin-6.52 In a cohort of 478 patients with
CKD stages 4 and 5, both LTI and FTI were lower in the
fluid overloaded group, defined as an overhydration/
extracellular volume (OH/ECV) ratio above 7%.53

Recently, we explored the association between LTM,
inflammation, and FO. In a cohort of 8883 European
prevalent dialysis patients, predialytic FO was more pro-
nounced in patients with LTI < 10th percentile, and
highest in the subgroup with the combined presence of
LTI < 10th percentile and inflammation, defined as a
high sensitive CRP (hsCRP) level above 6 mg/L.54 In
40% of this entire cohort, a low LTI was present in com-
bination with either FO and/or inflammation, whereas in
only 6.5% of patients, a low LTI was observed as an iso-
lated phenomenon. Therefore, there are important argu-
ments for a clustering of risk factors over different
domains, which includes FO as an important novel risk
factor. Furthermore, there also appears to be a clustering
of abnormalities including those involved in the MIA
syndrome with FO, although the relative contribution of
abnormalities in the different risk domains might fluctu-
ate between patients and over time.7,54

Figure 2 Interaction between LTI, FTI, and outcome in
female HD patients by smoothing spline ANOVA
(reproduced with permission from Marcelli et al.32).
ANOVA = analysis of variance; FTI = fat tissue index;
LTI = lean tissue index. [Color figure can be viewed at
wileyonlinelibrary.com]
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Table 1 Articles reflecting body composition parameters in relation to outcome

Group
Study

population Patient characteristics Follow-up period Outcome

Rosenberger
et al.38

HD (n = 748)*

*complete
cases out of
n = 960

Age: 63 (54–73) y
Male (%): 54

Median (IQR):
17 (10–33) mo

• Diagnosed malnutrition
(LTI < 10% of normal value) is an
independent predictor of
mortality.

• Mortality risk malnutrition
vs. normal nutritional state:
(HR = 1.66; 95% CI = 1.10–2.48,
P = 0.015)*.

* fully adjusted model
Caetano
et al.39

HD (n = 697) Age: 67 (55.5–76) y
Male (%): 56.5

12 mo Predictors of 1-y all-cause mortality*:
• Low FTI: (HR = 3.25; 95%

CI = 1.33–7.96, P = 0.010).
• BMI < 18.5: (HR = 3.93; 95%
CI = 1.99–7.74, P < 0.001)
BMI = 25–29.9: (HR = 0.46; 95%
CI = 0.23–0.92, P = 0.028).

* fully adjusted model
Rymarz
et al.40

HD (n = 48) Age: 59.8 � 15.5 y
Male (%): 66.7

Mean � SD:
29.93 � 20.09 mo

• Lower survival rate in patients
with sarcopenia (defined as
LTI < 10th percentile); not
statistically significant (P = 0.055).

Castellano
et al.41

HD*
(n = 6395)

*(Incident and
prevalent
patients)

Age: 67.6 � 14.7 y
Male (%): 62.7

Not defined; Study
period: January
2012–December
2014

• LTI < 10th percentile* carries
higher relative risk of death.
(OR = 1.57; 95%
CI = 1.13–2.20, P < 0.05)**.

* percentiles of LTI were
calculated based on studied
groups
**multivariate regression.

Parthasarathy
et al.33

PD (n = 824) Age: 55.9 (47–68) y
Male (%): 64

Up to 9 y • HR = 0.93; (0.86–1.00) for
LTI > 10%,

• HR = 0.87 (0.78–0.97) for
FTI < 90%. FTI lost significance
after adjustment for biochemistry

Marcelli
et al.29

HD
(n = 37,345)

Age: 62.7 � 15.2 y
Male (%): 57

Median (25th–75th
percentile):
266 (132–379) d

• Both LTI and FTI within reference
values of a healthy population
indicate better survival in HD
patients.

All-cause mortality risks fully
adjusted models:

HR only for LTI:
• Low LTI: (HR = 1.53; 95%

CI = 1.40–1.66, P < 0.001).
HRs only for FTI:
• Low FTI: (HR = 1.19; 95%
CI = 1.08–1.31, P < 0.001)High
FTI: (HR = 1.23; 95%
CI = 1.02–1.47, P = 0.03).
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Although in our study, the association between low
LTI and mortality was highly apparent in combination
with FO and/or inflammation, the association lost signifi-
cance when corrected for other risk domains.54 However,
in the study of Vega et al., a low LTI added independent
prognostic information for risk of mortality,43 whereas in
the study of Castellano et al., a low LTI remained predic-
tive for mortality after adjustment for FO, serum albu-
min, and the Charlson comorbidity index.41 In a study
in 529 PD patients, LTI was not significantly associated

with outcome in a model adjusted for FO,55 whereas in
another study in 824 patients, this relation remained sig-
nificant after adjustment for FO.33

The mechanisms behind the relation between malnu-
trition, FO, and inflammation are likely complex
(Figure 3) and may, in dialysis patients, include factors
such as inflammation, hypoalbuminemia, and incorrect
adjustment of target weight.56

However, whereas in malnourished patients without
renal failure, ECV remained stable in an absolute sense,

Table 1 Continued

Group
Study

population Patient characteristics Follow-up period Outcome

HRs for LTI + FTI combined:
• Low LTI + low FTI: (HR = 2.51;
95% CI = 2.12–2.96, P < 0.001)
Low LTI + normal FTI: (HR = 1.63;
95% CI = 1.48–1.81, P < 0.001).

• Low LTI + high FTI: (HR = 1.74;
95% CI = 1.40–2.17, P < 0.001)
Normal LTI + low FTI (HR = 1.42;
95% CI = 1.25–1.62, P < 0.001).

Hwang
et al.42

HD (3 studies) • Meta-analysis
• HR = 1.53 (1.41–1.66) for

LTI < 10%
Vega et al.43 CKD4-5 ND

(n = 356)
Age: 67 � 13 y
Male (%): 64

Median (range):
22 (3–49) mo

• Better survival in patients with
high LTI.Survival analysis: (log-
rank, 9.47; P = 0.002).

• Independent relation between low
LTI and mortality (P = 0.031, HR
not showed*).

• Independent association
cardiovascular mortality and
low LTI.

*multivariate regression.
Lee et al.31 HD (n = 131) Age: 60.7 � 13.6 y

Male (%): 55.7
Mean � SD:
53.1 � 10.9 mo

• The fat-to-lean (FM/LTM) mass
ratio is an independent predictor
of cardiac events and all-cause
mortality.

• Patients with high FM/LTM mass
ratios had higher risks of cardiac
events (P < 0.001 [log-rank test]),
and all-cause death (P < 0.001
[log-rank test]).

• Higher vs. lower FM/LTM ratio is
a clinical indicator of all-cause
mortality (HR = 3.61; 95%
CI = 1.07–12.13, P = 0.038*).

* adjusted model

Age is given in mean � standard deviation (SD) or median with interquartile range. BMI = body mass index; CI = confidence intervals;
FTI = fat tissue index; HD = hemodialysis; HR = hazard ratio; IQR = interquartile range; LTI = lean tissue index; OR = odds ratio.
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but increased relatively to body weight,57,58 also in the
absence of hypoalbuminemia. Given the fact that adipose
tissue, which was also lower in these patients, contains
ECW, actually a reduction in ECV might have been
expected. The mechanisms for this relative expansion of
ECV in nonuremic malnutrition, other than explained by
a loss of intracellular mass per se11 remain unclear,59

although a translocation of ICW to ECW based on an
osmotic shift from the intracellular to the extracellular
space, or abnormalities of the Na+-K+-ATPase pump have
been postulated.60,61 Inhibition of the Na+-K+-ATPase
pump may lead to cell shrinkage by secondary accumula-
tion of intracellular Ca2+ resulting in a loss of amino
acids and ions.62

Interestingly, relative water content of muscles was also
found to be increased in nonuremic malnourished sub-
jects, for reasons that have not been completely elucidated.
Although the increase in relative water content of muscle,
the major component of LTM, was relatively small (�3%),
it violates to some degree the assumption of a fixed hydra-
tion level of LTM of 3C-BIS which is used to calculate the
OH compartment,8 which should therefore, in our opin-
ion, be interpreted with some caution in patients with
severe PEW.26 Keane et al. also found an increased OH
(mean 1.1 L) in nonuremic malnourished patients.63

However, in nonuremic subjects, no difference in the
hydration of LTM was observed between patients with
mild and severe malnutrition.64 Also, a study by Chazot
et al. showed a relation between brain natriuretic peptide
and malnutrition (defined according to serum [pre]albu-
min and normalized protein nitrogen appearance),65

whereas Arias-Guillen et al. observed a higher prevalence
of FO in malnourished patients according to the clinical
PEW criteria mentioned in the introduction of this arti-
cle.26 This supports the FO-malnutrition relationship also
by the use of other methodologies than BIS.

Whereas a low LTI was related to FO and inflamma-
tion, the study of Lee et al. showed that in male subjects,
the FM/LTM ratio was also positively related to hsCRP
and interleukin-6.31 In PD patients, changes in FTI were
also positively related to changes in inflammatory sta-
tus.66 This has mainly been attributed to the relation
between visceral adiposity and systemic inflammation.67

However, a recent study suggested that the production of
inflammatory cytokines was actually higher in subcutane-
ous as compared to visceral adipose tissue.68

A summary of articles reflecting abnormalities in body
composition in relation with other risk domains in
patients with advanced or end stage kidney disease is
presented in Table 2.

Figure 3 Hypothesized relation between malnutrition, fluid overload, and inflammation. ECV = extracellular volume;
ICV = intracellular volume; LTM = lean tissue mass; Na+/K+-ATPase = sodium-potassium pump. [Color figure can be viewed
at wileyonlinelibrary.com]
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Table 2 Abnormalities in body composition with other risk domains in patients with advanced or end stage kidney disease

Group Study population
Patient

characteristics Outcome

Hung et al.51 CKD 3–5 (n = 338) Age: 65.7 � 13.5 y
Male (%): 68.9

• Negative correlation FO vs. LTI: r2 = 0.038
• Presence of MIA-syndrome has an additive

effect on the level of FO.
Wang et al.52 CKD 3–5 (n = 326) Age: 65.8 � 13.3 y

Male (%): 68.7
• Patients with low LTI (<10%) (n = 40) had

significantly higher levels of interleukin-6
(P = 0.017)

Tsai et al.53 CKD 4 and 5 (n = 478) Age: 65.4 � 12.7 y
Male (%): 54.6

• LTI and FTI are significantly lower in CKD
patients with FO (hydration status > 7%),
P = 0.003 and P = 0.01, respectively

Dekker et al.54 Prevalent HD (n = 8883) Age: 63.5 � 14.8 y
Male (%): 57.2

• Highest levels of predialysis FO (mean
3.06 L [95% CI = 2.79–3.34]) observed in
patients with both LTI and FTI below <10th
percentile + inflammation
(hsCRP > 6 mg/L).

• Association between low LTI and mortality
was highly apparent in combination with
FO and/or inflammation (HR = 5.89 [95%
CI = 4.28–8.10])

• Low LTI was present in combination with
either FO and/or inflammation in 40% of
the population.

• Solely low LTI in 6.5% of the population
Vega et al.43 CKD 4 and 5 (n = 356) Age: 67.0 � 13.0 y

Male (%): 64.0
• LTI provides independent prognostic

information for risk of mortality (P = 0.031)
Castellano et al.41 HD (n = 6395) Age: 67.6 � 14.7 y

Male (%): 62.7
• LTI is predictive for mortality after

adjustment for FO, serum albumin, and the
Charlson comorbidity index, where
LTI < 10th percentile carries a higher
relative risk of death (OR = 1.57; 95%
CI = 1.13–2.20, P < 0.05)

O’Lone et al.55 PD (n = 529) Age: 57.0
(46.7–68.8) y

Male (%): 62.0

• No significant associations between LTI to
outcome in a model adjusted for FO

Parthasarathy
et al.33

PD (n = 824) Age: 55.9
(47.0–68.0) y

Male (%): 64.0

• Significant associations between LTI and
mortality in a model adjusted for FO
(HR = 0.88; 95% CI = 0.81–0.96)

Chazot et al.65 HD (n = 51) Age: 65.3 � 14.2 y
Male (%): 54.9

• Significantly increased levels of brain
natriuretic peptide in patients with
malnutrition

Arias-Guillén et al.26 HD (n = 91) Age: 60.0 � 14.0 y
Male (%): 29.7

• Higher prevalence of FO in malnourished
patients

Lee et al.31 HD (n = 131) Age: 60.7 � 13.6 y
Male (%): 55.7

• Significant associations between FM/LTM
ratio vs. interleukin-6 (r = 0.501), and
hs-CRP (r = 0.532) levels (P < 0.001)

Rincón Bello et al.66 Prevalent PD (n = 31) Age: 57.4 � 18.0 y
Male (%): 45.2

• Association between changes in FTI and
changes in CRP (r = 0.382, P = 0.045)

Delgado et al.67 HD (n = 609) Age: 56.1 � 14.3 y
Male (%): 57.0

• Relation between visceral adiposity and
systemic inflammation (CRP and
interleukin-6)

Age is given in mean � standard deviation or median with interquartile range. CI = confidence intervals; CRP = C-reactive protein; FO = fluid
overload; FTI = fat tissue index; HD = hemodialysis; HR = hazard ratio; hs-CRP = high sensitivity C-reactive protein; LTI = lean tissue index;
OR = odds ratio.
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INTERVENTIONAL STUDIES USING
3C BIS

Important is whether changes in body composition, mea-
sured by BIS, respond to nutritional intervention. Prelim-
inary evidence suggests that this is indeed the case. In a
nonrandomized study in which patients with a serum
albumin level below 38 g/L received a high protein meal
during dialysis, their FTI increased in contrast to a
decline in FTI in the control group. However, LTI
decreased both in the interventional and in the control
groups.69 In addition, the PESET study used 3C BIS to
monitor changes in body composition assigned to HD or
OL-HDF and observed a decline in LTM and an increase
in ATM in HD as compared to the OL-HDF patients.70

No study has yet prescribed nutritional intervention
according to abnormalities in body composition by BIS,
although recently a proposal was made for nutritional
monitoring and intervention based on FTI and LTI
criteria.26

THE ROLE OF BIS IN THE INTEGRATED
ASSESSMENT OF DIALYSIS PATIENTS

It is important to realize that assessment of body compo-
sition is only part of the nutritional and functional assess-
ment of dialysis patients. Earlier recommendations have
suggested to include body composition as one of the
criteria for PEW.3,71 In addition, a study of Chen et al.
already showed the added value of measuring LTI with
the BCM as a screening tool for nutritional status, given
the fact that low LTI as a marker of protein wasting, is
seen as the primary component of PEW.72 It is of impor-
tance to realize that abnormalities in body composition
are part of a wider, but only partly overlapping spectrum,
including physical inactivity, a reduction in muscle
strength, and a reduction in health-related quality of
life14,73–75 in which the latter may surpass a reduction of
muscle mass in the prediction of outcome.76 Indeed,
recent guidelines on sarcopenia recommend to include
combined assessments of muscle mass, muscle strength,
and physical performance.77 Next to this, it would be
rational to include physical activity in this assessment as
it plays an important role as a determinant of muscle
strength and the frailty syndrome.78,79 Therefore, to our
opinion BIS should not be implemented as a single solu-
tion, but as part of a multimodal and recurrent assess-
ment strategy in which the different dimensions of PEW
are incorporated, next to a parameter for muscle
strength, physical activity, physical performance, and
health-related quality of life. Easily applicable tools such

as handgrip strength measurements, actometers, the
4-meter gait speed test, and short form-36 (SF-36) ques-
tionnaires can assess all of these domains (Figure 4).
However, further research is recommended with regard
to the implementation of BIS measurements for determi-
nation of fluid status and nutritional guidance of ESRD
patients to show the effect of using the BCM on clinical
outcomes in this patient group.80

CONCLUSION

In the last years, assessment of body composition using
the 3C BIS model has provided a wealth of information,
not only regarding the importance of FO, but also that of
other abnormalities in body composition in patients with
ESRD and earlier stages of CKD. Its ease of use has led to
the availability of large cohorts in which the relation
between body composition and outcome can be studied.
The use of 3C BIS has also facilitated the interpretation
of the relation between outcome and the interaction of
abnormalities in different body compartments. Despite
the relatively wide limits of agreement with reference
techniques such as DEXA found in some studies, the
available studies consistently show that a low LTI is
related to increased mortality, and as such has predictive
validity. It has also been shown that the concomitant

Figure 4 Proposed role of bioimpedance spectroscopy in
the multidimensional assessment of nutritional and
functional status in patients with advanced chronic kidney
disease. SF-36 = short form-36. [Color figure can be viewed
at wileyonlinelibrary.com]
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presence of a low FTI can add to the risk associated with
low LTI. On the other hand, excessively high FTI may
also carry a risk for especially cardiovascular mortality.
The available information thus suggests that assessment
of body composition by the 3C BIS model provides
highly relevant prognostic information, at least at a popu-
lation level.

To the best of our knowledge, in contrast to studies
using BIS for the assessment of fluid status,81 studies
assessing the effect of nutritional interventions are still
limited. Studies showing the validity of BIS-guided nutri-
tional intervention would provide a strong rationale for
the implementation of BIS in the prevention of PEW. At
present, the main argument for its use in clinical practice
is its usefulness in risk stratification, in combination with
assessment of FO, which provides prognostic informa-
tion about different risk domains using a single measure-
ment. This besides a role in a holistic nutritional and
functional assessment using easily applicable tools in a
dialysis population.
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