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Inflammasomes are innate immune sensors that regulate caspase-1 mediated
inflammation in response to environmental, host- and pathogen-derived factors. The
NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli.
However, excessive or chronic inflammasome activation and subsequent interleukin-1b
(IL-1b) release are implicated in the pathogenesis of various autoimmune diseases such as
rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly,
inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast,
NLRP3 inflammasome is an important defense mechanism against microbial infections.
IL-1b antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving
IL-1b or inflammasome inhibitors are reported to be at a disproportionate risk to
experience invasive bacterial infections including pneumococcal infections.
Pneumococci are typical colonizers of immunocompromised individuals and a leading
cause of community-acquired pneumonia worldwide. Here, we summarize the current
limited knowledge of inflammasome activation in pneumococcal infections of the
respiratory tract and how inflammasome inhibition may benefit these infections in
immunocompromised patients.

Keywords: nucleotide-binding and oligomerization domain-like receptors and pyrin domain containing receptor 3,
inflammasome, pneumococcus (Streptococcus pneumoniae), respiratory infection, immune response
INTRODUCTION

The human innate immunity axis plays a pivotal role in detection of pathogen- or damage-
associated molecular patterns (PAMPs and DAMPs) and contributes to a crucial inflammatory
response. To sense PAMPs and DAMPs, innate immune cells express pattern recognition receptors
(PRRs). PRRs are classified into five families: Toll-like receptors (TLRs), Nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs), Retinoic acid-inducible gene (RIG)-I-like
receptors, C-type lectin receptors, and Absent in melanoma 2 (AIM2)-like receptor (ALR) (1).
Furthermore, other molecules such as cyclic GMP-AMP synthase can sense pathogen-derived DNA
(2). Inflammasomes are one of the most recently discovered classes of NLRs (3).

To date, 22 human NLRs are described. Among them, NLR and pyrin domain containing
receptor 3 (NLRP3) is by far the best characterized (4). A wide range of stimuli including bacterial
pore forming toxins can activate the NLRP3 inflammasome (5). The subsequent release of
interleukins (IL) IL-1b and IL-18 induces a diverse range of protective host pathways aiming to
eradicate the pathogen (6). However, uncontrolled and excessive hyper-inflammation can be a
driver of several inflammatory and autoimmune diseases (7, 8). Implication of the NLRP3
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inflammasome in inflammatory diseases has provided new
avenues for designing drugs which target the inflammasome
and its signaling cascade. However, it is observed that patients
who receive NLRP3 or IL-1b inhibitors are disproportionately
susceptible to bacterial infections (9). Therefore, it is of high
importance to understand the role of NLRP3 inflammasome in
bacterial pathogenesis.
CANONICAL NLRP3 INFLAMMASOME
ACTIVATION

NLRP3 inflammasome is a multi-protein complex comprising of
a sensor NLRP3 protein, an adaptor apoptosis-associated speck-
like protein (ASC), and the zymogen procaspase-1 (10). The
cytosolic NLRP3 protein contains an N-terminal Pyrin domain
(PYD), a central NACHT domain, and a C-terminal leucine-rich
repeat (LRR) domain. The NACHT domain possesses adenosine
triphosphatase (ATPase) activity and comprises of nucleotide-
binding domain (NBD), helical domain 1 (HD1), winged helix
domain (WHD) and helical domain 2 (HD2) (11). The ASC
domain is a bipartite molecule that contains an N-terminal
PYD domain and a C-terminal caspase activation and recruitment
domain (CARD). Procaspase-1 consists of an N-terminal CARD, a
central large catalytic p20 subunit, and a C-terminal small catalytic
p10 subunit (12).

In resting macrophages, the NLRP3 and pro-IL-1b
concentrations are insufficient to initiate activation of the
inflammasome (13). Therefore, the NLRP3 inflammasome is
activated in a two-step process. The first, so called priming
step, is initiated via the inflammatory stimuli which are
detected by TLRs, tumor necrosis factor receptors (TNFR) or
IL-1R. These actions activate downstream the transcription
factor NF-kB. NF-kB, in turn, upregulates the expression of
NLRP3 and pro-IL-1b. In contrast, the priming step does not
affect the expression of ASC, procaspase-1 or IL-18 (14–16).
Following priming, a second activation step is essential for the
assembly of the inflammasome. NLPR3 is highly diverse in
nature and a wide range of stimuli can activate it. Common
activators of the NLRP3 inflammasome are pathogens (17),
extracellular ATP (18), pathogen associated RNA, proteins and
toxins (5, 19, 20), heme (21), endogenous factors (amyloid-b,
cholesterol crystals, uric acid crystals) (22–24), and
environmental factors (silica and aluminum salts) (24, 25).
These activators do not directly interact with the inflammasome
but rather cause various changes at the cellular level. These include
changes in cell volume (26), ionic fluxes (27), lysosomal damage
(28), ROS production, and mitochondrial dysfunction (29). The
second activation step is essential for cells such as macrophages
and epithelial cells. In contrast, human monocytes can release
mature IL-1b already after priming (30, 31). Upon activation,
oligomerization of the NLRP3 complex occurs via homotypic
PYD-PYD interaction of the sensor and adaptor protein, and
CARD-CARD interaction of the adaptor and procaspase-1
(Figure 1). Following assembly, recruited procaspase-1 is
converted to bioactive caspase-1 through proximity induced
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auto-proteolytic cleavage (32). Subsequently, caspase-1 cleaves
the cytokine precursors pro-IL-1b and pro-IL-18 into mature
forms. Simultaneously, caspase-1 cleaves gasdermin-D
(GSDMD). After proteolytic cleavage, the C-terminal GSDMD
(GSDMD-C) remains in the cytosol, while GSDMD-N anchors
the cell membrane lipid. The lipid binding allows GSDMD-N to
enter the lipid bilayer. Subsequent GSDMD-N oligomerization
within the membrane results in pore formation leading to cell
swelling and lysis. The pores serve thereby as protein secretion
channels for IL-1b and IL-18. This form of a programmed
inflammatory cell death is called pyroptosis (33–35). However,
lytic GSDMD-N dependent secretion of IL-1b does not apply
universally to all cell types. Studies on neutrophils have shown
that GSDMD-N does not localize at the plasma membrane.
Instead, it co-localizes with membranes of azurophilic granules
and LC3+ autophagosomes resulting in a non-lytic pathway
dependent IL-1b secretion which depends on autophagy
machinery (36). Alongside with IL-1b, other pro-inflammatory
cytokines, eicosanoids, and alarmins are released into the
extracellular space. These actions accentuate the inflammatory
state by recruiting additional inflammatory immune cells of
different lineages (37–39).

Apart from the canonical , non-canonical NLRP3
inflammasome activation is described (40). Non-canonical
inflammasome activation is triggered by caspases-4/5 in
humans (41). However, the noncanonical form can sense only
Gram-negative bacteria. Therefore, it potentially does not play a
role in Gram-positive bacterial infections (40).
APPROVED IL-1b INHIBITING DRUGS AND
THEIR SIDE-EFFECTS IN PATIENTS

NLRP3 inflammasome signaling is implicated in the onset of a
number of diseases, including gout (24), atherosclerosis (23),
type ІІ diabetes (42, 43), Cryopyrin-associated periodic
syndrome (CAPS) (44), various types of cancer (45), and
inflammatory bowel disease (IBD) (46). In the following, we
give just two examples of the role of NLRP3 in auto-
inflammatory and auto-immune diseases.

CAPS summarizes three auto-inflammatory diseases caused
by mutations in the NLRP3 gene. These include familial cold
auto-inflammatory syndrome (FCAS), Muckle-Wells syndrome
(MWS), and neonatal onset multisystem inflammatory disease
(NOMID). In most cases, CAPS manifests during the childhood
and is characterized by spontaneous NLRP3 activation and
excessive IL-1b production resulting in frequent episodes of
fever, skin rashes, joint and eye inflammation. In severe cases,
children can suffer from periorbital edema, amyloidosis,
polyarthralgia, growth retardation, and death (47, 48). In vivo
studies with transgenic mice expressing the human disease-
associated R258W (MWS) or A350V and L351P (FCAS)
mutations in the NLRP3 gene demonstrated the detrimental
role of IL-1b in these diseases (49, 50). Genetic deletion of the
IL-1R efficiently rescued NLRP3A350V and partially NLRP3L351P

mice from neonatal lethality (49).
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Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by persistent synovial inflammation and hyperplasia
of the diarthrodial joints and progressive destruction of cartilage and
bone (51). In particular, chondrocytes- and monocytes-derived TNF
and IL-1b are associated with hyper-inflammatory processes in
affected joints (52). At the local level, even low concentrations of
IL-1b induce production and secretion of matrix metalloproteinases,
which aremainly involved in destructive processes (53). Furthermore,
IL‐1b assists in T helper type 17 (Th17) cells differentiation and
subsequent IL-17A production. Both processes further contribute to
the hyper-inflammatory state of RA (54). These data implicate
NLRP3 inflammasome as one of the contributing factors to RA
progression. In line with this, several studies have shown that NLRP3
and other inflammasome-related genes are highly upregulated in
monocytes, macrophages, and dendritic cells of RA patients.
Furthermore, NLRP3 gene polymorphisms (e.g., rs35829419,
rs10754558, rs4612666) were associated with RA manifestation and
pathogenesis [reviewed in (55)].

Although the above mentioned diseases affect different organs
and are diverse in nature, they are also characterized by a
common feature, namely elevated levels of IL-1b. It is of
significance to mention that IL-1b release is not limited to
NLRP3 inflammasome activation. A variety of mechanisms,
including AIM2 inflammasome activation, which also plays a
crucial role in bacterial detection, can result in production and
release of IL-1b [reviewed in (56)]. Therefore, treatments target
Frontiers in Immunology | www.frontiersin.org 3
various components of the signaling cascade and particularly
IL-1. Several strategies that combat IL-1 action have undergone
substantial clinical trials. Some of them are summarized in
Table 1. Anakinra, Rilonacept, and Canakinumab are clinically
approved IL-1 inhibiting drugs and the best studied agents (73).
Anakinra is an IL-1 receptor antagonist and is used among
others for the treatment of RA, acute gouty arthritis, and CAPS.
It blocks the action of both IL-1a and IL-1b (74–76). Clinical
trials with Anakinra reported elevated numbers of infectious
episodes in Anakinra-treated patients as compared to the
placebo-treated group during the first 6 months of treatment.
Furthermore, the incidence of serious infections was increased.
These infections comprised mainly of cellulitis, pneumonia, and
bone and joint infections as well (57). Rilonacept is a dimeric
fusion protein that contains two IL-1 receptors attached to the Fc
portion of human IgG1. Similar to Anakinra, it blocks the
activity of IL-1 isoforms but does not interact with the IL-1
receptor. Rilonacept is used to treat CAPS and the most reported
side-effects include skin reactions and upper respiratory tract
infections (58). Canakinumab is a monoclonal IgG1 that
specifically targets IL-1b and is commonly used for treatment
of Periodic Fever Syndromes, MWS, and acute gouty arthritis
(59, 60). Among the various side effects, respiratory tract
infections were the most reported side effect in clinical trials (60).

All IL-1 inhibiting strategies are well tolerated in the majority
of patients. The most common adverse effect is a dose-dependent
FIGURE 1 | NLRP3 inflammasome activation by pneumococci. Pneumococci secrete two major virulence determinants: pneumolysin (PLY) and hydrogen peroxide
(H2O2). In neutrophils (PMN), PLY-mediated NLRP3 activation is a result of K+ efflux. K+ efflux activates NLRP3 inflammasome resulting in caspase-1 activation and
subsequent cleavage of pro-IL-1b into mature form. In macrophages, PLY-mediated NLRP3 inflammasome activation is among others dependent on ATP. The
released IL-1b stimulates epithelial cells. As a result, they release chemoattractants, including CXCL1 and CXCL2. Both chemokines are involved in processes
resulting in neutrophil influx. Furthermore, IL-1b is involved in T helper type 17 cells differentiation and subsequent IL-17A release. In contrast to PLY, H2O2

suppresses NLRP3 inflammasome in macrophages (MF) resulting in pro-IL-1b accumulation in these cells (APC, antigen presenting cell).
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skin irritation at the injection site. However, a substantially
increased incidence of bacterial infections of the respiratory tract
caused by Gram-positive bacteria, including pneumococci,
Staphylococcus aureus (SA), and/or group A streptococci (GAS)
are reported (77). Furthermore, IL-1 inhibiting therapies
were associated with a higher incidence of fatal infections as
compared to the placebo treated group. Therefore, treatment
with IL-1 inhibiting drugs is not recommended for patients with
an ongoing infection or with a history of severe infections (59,
77, 78).
ROLE OF NLRP3 INFLAMMASOME IN
PNEUMOCOCCAL INFECTIONS

Pneumococci, SA, and GAS are frequent colonizers of the upper
respiratory tract (79). Colonization is usually asymptomatic in
healthy individuals. However, imbalances in the immune system
can lead to severe, invasive and even life-threatening diseases
such as pneumonia and sepsis. The occurrence of the more
severe forms of infection is commonly found in children younger
than 5 years of age, elderly, and immuno-compromised
population (80). Due to the immunosuppressive nature of IL-1
inhibiting agents, patients undergoing treatment seem to be at
higher risk to develop infections caused by these bacteria (77,
81). In general, inflammation plays a crucial role in infectious
diseases. Impaired or insufficient inflammatory response can
result in prolonged and/or recurrent infections. In contrast,
excessive hyper-inflammation is associated with fatal outcome
(82, 83).

Pneumococci colonize the nasopharyngeal cavity of 20%–
50% of children and 8%–30% of adults. They have been
implicated as the most common etiologic agent of community-
acquired pneumonia (80, 84). However, only limited number of
studies investigated the role of inflammasome in pneumococcal
infections and contrary results are reported. For example, one
murine model study reported that NLRP3−/− mice are more
Frontiers in Immunology | www.frontiersin.org 4
susceptible to pneumococcal pneumonia (85). In contrast, a
study on pneumococcal meningitis showed that mice with an
active NLRP3 signaling have higher clinical scores, suggesting
that NLRP3 activation contributes to brain injury (86). Since the
incidence of respiratory tract infections is elevated in patient
receiving IL-1 inhibiting agent, we will solely focus on the role of
NLRP3 in respiratory pneumococcal infections.

Two of the most important secreted pneumococcal virulence
determinants are hydrogen peroxide (H2O2) and the cholesterol-
dependent cytolysin, pneumolysin (PLY) (87). Both factors are
implicated in inflammasome activating and suppressive
processes. Based on the pneumococcal serotypes used for the
infection, the NLRP3-dependent IL-1b secretion by human cells
varies. Macrophages infected with serotypes that are associated
with invasive diseases and express low/non-hemolytic PLY
(serotypes 1, 7F and 8), release lower amounts of IL-1b as
compared to macrophages infected with serotypes expressing a
fully active PLY (serotypes 2, 3, 6B, 9N) (88, 89). Being poor
activators of the inflammasome, the invasive serotypes are
potentially less efficiently recognized by the innate immune
system and therefore, are less susceptible to immuno-mediated
clearance. However, the exact mechanism of NLRP3 activation
by PLY is unknown. This process is most likely of indirect nature
(Figure 1). Studies on human neutrophils have shown that PLY-
mediated NLRP3 activation is a result of potassium ion (K+)
efflux. Experimental inhibition of K+ efflux in neutrophils
resulted in impaired caspase-1 activation and subsequently in
diminished IL-1b processing (Figure 1). Furthermore, it was
shown that lysosomal destabilization did not play a role in PLY-
mediated IL-1b processing in neutrophils (90). In general, IL-1b
induces the production of chemoattractants, such as CXCL1 and
CXCL2 by lung epithelial cells, which enhance neutrophil influx
(91) and subsequent bacterial clearance at the site of infection
(92, 93). Studies on pneumococcal infections of mouse peritoneal
neutrophils indicate that NLRP3 inflammasome is mainly
responsible for IL-1b secretion, while the AIM2 and NLRC4
inflammasomes are dispensable in these type of immune
TABLE 1 | NLRP3 inflammasome inhibitors used in clinics.

Drug Target Inhibition mechanism Treatment Reference

Anakinra IL-1 receptor IL-1 receptor antagonist Rheumatoid arthritis, Cryopyrin-associated periodic syndrome (57)
Rilonacept IL-1a and IL-1b IL-1 blocker Cryopyrin-associated periodic syndrome (58, 59)
Canakinumab IL-1b Monoclonal IgG1 antibody CAPS and other Periodic Fever Syndromes, active Still’s

disease
(59–61)

Tranilast* NACHT domain Inhibits the NLRP3 oligomerization Bronchial asthma, atypical dermatitis, allergic conjunctivitis,
keloids, and hypertrophic scar

(62)

Gevokizumab# IL-1b Monoclonal anti-IL-1b antibody Diabetes, autoimmune disease (63, 64)
LY2189102# IL-1b Humanized monoclonal anti-IL-1b antibody Rheumatoid arthritis, Type 2 diabetes (65)
Glyburide# ATP-sensitive K+

channels
Indirect inhibition of the NLRP3 inflammasome Type 2 diabetes, gestational diabetes (66–68)

VX-740#

(Pralnacasan)
Caspase-1 Non-peptide caspase-1 inhibitor Osteoarthritis and rheumatoid arthritis (69)

VX-765#

(Belnacasan)
Caspase-1
Caspase-4

Peptidomimetic metaboliteCaspase-1/4 inhibitor Rheumatoid arthritis (70)

OLT1177# NLRP3 ATPase Blocks NLRP3 ATPase activity, restricts
inflammasome activation

Osteoarthritis (71)

AMG108 IL-1R1 Human monoclonal IL-1R1-antibody Osteoarthritis (72)
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cells (94). Furthermore, neutrophil-derived IL-1b is involved in
activation of Th17 cells. Th17-derived IL-17A acts as an
additional chemoattractant-stimulating agent (95, 96) and
indirectly mediates neutrophilia in the infected organs
(Figure 1) (97). Nonetheless, neutrophil influx alone is not
sufficient to clear pneumococci and macrophage influx is
essential to ensure bacterial elimination (93, 98). A study by
Hoegen and colleagues demonstrated that PLY was a key inducer
of NRLP3 inflammasome and IL-1b expression in human
differentiated THP-1 cells (86). In contrast to neutrophils,
NLRP3 inflammasome activity was dependent on lysosomal
destabilization, release of ATP, and cathepsin B activation (86).
Furthermore, NLRP3 inflammasome activating synergistic
effects of PLY and TLR agonists in dendritic cells and
macrophages are reported (85, 88). However, this is rather a
general inflammasome activating/priming effect. Apart from
NLRP3, PLY can also activate AIM2 inflammasomes (99).

In contrast to PLY, only one study investigated the
pneumococci-derived H2O2 and inflammasome interplay. By
uti l izing mouse bone marrow-derived macrophages
(mBMDMs), Ertmann and Gekara have shown that mBMDMs
infected with pneumococci accumulate large amounts of pro-IL-
1b and procaspase-1 (100). Detection of the processed forms of
IL-1b and caspase-1 was highly delayed and remained
undetectable until 12 h post infection. However, the ratio of
processed IL-1b and caspase-1 to their precursors was still very
low (100). In contrast, spxB-mutant strain, which lacked H2O2

production, showed an intrinsically increased capacity to activate
the inflammasome. The authors suggested that pneumococci
employ H2O2-mediated inflammasome inhibition as a
colonization strategy (100). Although the study provides highly
relevant new insights into pneumococci-host interplay,
verification of these results in human host system is warranted.
However, host factors upstream or downstream of NLRP3
inflammasome also play a crucial role in colonization and
infection processes. Studies in aged mice have suggested that
an increase in endoplasmic reticulum stress and enhanced
unfolded protein responses contribute to diminished assembly
and activation of the NLRP3 resulting in failed clearance of
pneumococci (101). In support of this, Krone and colleagues
demonstrated that aged mice shows a delayed clearance of
pneumococci in the nasopharynx as compared to young mice
(102). The authors attributed the observed phenotype to the
impaired innate mucosal immune responses in aged mice,
including NLRP3 and IL-1b suppression. Furthermore, Lemon
and colleagues demonstrated a prolonged colonization of IL1R-/-

adult mice as compared to wild-type mice (93). The prolonged
colonization was linked to reduced numbers of neutrophils at
early stages of infection and reduced macrophage influx at later
time points of carriage in IL1R-/- mice (93).

Apart from the bacterial pore-forming toxins, microbial RNA
has also been implicated as a direct NLRP3 inflammasome
activator (19). Studies showed that even small fragments of
staphylococcal or group B streptococcal (GBS) RNA are
sufficient for inflammasome activation in human THP-1-derived
Frontiers in Immunology | www.frontiersin.org 5
and mouse macrophages (103, 104). Based on detailed analyses of
GBS and mouse macrophages interplay, Gupta and colleagues
proposed that bacteria-mediated activation of NLRP3
inflammasomes requires bacterial uptake, phagolysosomal
acidification, and toxin-mediated leakage. Subsequently, the free
accessible bacterial RNA interacts with NLRP3 and activates the
inflammasome cascade (104). Whether such mechanism applies
to pneumococcal infections, remains to be elucidated.

In general, tightly controlled inflammasome activation in
pneumococcal pneumonia is one of many important host
defense mechanisms contributing to bacterial clearance (56).
However, excessive NLRP3 activation can also lead to
uncontrolled pyroptosis. The disproportionate gasdermin-D
mediated cell membrane rupture in a variety of lung cells may
result in a release of plethora of alarmins, including processed
antigens, ATP, HMGB1, reactive oxygen species, cytokines, and
chemokines (105). These prompt an immediate reaction from
resident and recruited immune cells leading to a pyroptotic chain
reaction with subsequent excessive tissue pathology (106).
Furthermore, pathogen-associated antigens might disseminate
to other organs resulting in a severe systemic hyper-
inflammatory response (105). Whether such actions apply to
pneumococcal pneumonia remains to be shown.
CONCLUSION

Besides the crucial role of NLRP3 inflammasome activation in
inflammation, many studies implicate NLRP3 inflammasome in
the pathology of several autoimmune and auto-inflammatory
disorders. Currently, the most common therapy for such diseases
involves the use of immuno-suppressive, cytokine inhibiting
therapies, such as IL-1 inhibitors. The immuno-suppression of
patients by these agents results in side effects that often include
respiratory tract infections caused by pneumococci. However,
only a limited number of studies investigated the role of the
NLRP3 inflammasome in pneumococcal respiratory infections.
Future studies, especially those considering the complex
interplay of human genetics, immuno-suppressive status, and
age with pneumococcal colonization are needed to better
understand the role of NLRP3 inflammasome in such infections.
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74. Ottaviani S, Moltó A, Ea H-K, Neveu S, Gill G, Brunier L, et al. Efficacy of
anakinra in gouty arthritis: a retrospective study of 40 cases. Arthritis Res
Ther (2013) 15:R123. doi: 10.1186/ar4303

75. Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a systematic
review. J Rheumatol (2009) 36:1118–25. doi: 10.3899/jrheum.090074

76. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al.
Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med
(2007) 356:1517–26. doi: 10.1056/NEJMoa065213

77. Fleischmann RM, Schechtman J, Bennett R, Handel ML, Burmester GR,
Tesser J, et al. Anakinra, a recombinant human interleukin-1 receptor
antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: A large,
international, multicenter, placebo-controlled trial. Arthritis Rheumatism
(2003) 48:927–34. doi: 10.1002/art.10870

78. Bettiol A, Lopalco G, Emmi G, Cantarini L, Urban ML, Vitale A, et al.
Unveiling the Efficacy, Safety, and Tolerability of Anti-Interleukin-1
Treatment in Monogenic and Multifactorial Autoinflammatory Diseases.
Int J Mol Sci (2019) 20. doi: 10.3390/ijms20081898

79. Siemens N, Oehmcke-Hecht S, Mettenleiter TC, Kreikemeyer B, Valentin-
Weigand P, Hammerschmidt S. Port d’Entree for Respiratory Infections -
Does the Influenza A Virus Pave the Way for Bacteria? Front Microbiol
(2017) 8:2602. doi: 10.3389/fmicb.2017.02602

80. McCullers JA. Insights into the interaction between influenza virus and
pneumococcus. Clin Microbiol Rev (2006) 19:571–82. doi: 10.1128/
CMR.00058-05
December 2020 | Volume 11 | Article 614801

https://doi.org/10.1002/eji.201545655
https://doi.org/10.1038/ni.1935
https://doi.org/10.2337/db12-0420
https://doi.org/10.1007/s10875-019-00638-z
https://doi.org/10.1016/j.lfs.2019.116593
https://doi.org/10.1016/j.lfs.2019.116593
https://doi.org/10.3389/fimmu.2019.00276
https://doi.org/10.1038/ng756
https://doi.org/10.1067/mai.2001.118790
https://doi.org/10.1067/mai.2001.118790
https://doi.org/10.1016/j.immuni.2009.05.005
https://doi.org/10.1016/j.immuni.2009.05.005
https://doi.org/10.1016/j.immuni.2009.04.012
https://doi.org/10.1016/j.immuni.2009.04.012
https://doi.org/10.1056/NEJMra1004965
https://doi.org/10.1172/JCI36389
https://doi.org/10.1093/rheumatology/keg326
https://doi.org/10.1016/j.jaut.2015.08.010
https://doi.org/10.1016/j.jaut.2015.08.010
https://doi.org/10.1016/j.biopha.2020.110542
https://doi.org/10.1016/j.biopha.2020.110542
https://doi.org/10.1007/978-3-319-41171-2_11
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103950s5136lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103950s5136lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125249s045lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125249s045lbl.pdf
https://doi.org/10.1111/j.1365-2125.2011.03958.x
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125319s100lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125319s100lbl.pdf
https://doi.org/10.1056/NEJMoa0810787
https://doi.org/10.1084/jem.20171419
https://doi.org/10.2337/dc11-2219
https://doi.org/10.2337/dc11-2219
https://doi.org/10.1016/j.ajo.2016.09.017
https://doi.org/10.1208/s12248-014-9623-6
https://doi.org/10.1208/s12248-014-9623-6
https://doi.org/10.1083/jcb.200903124
https://doi.org/10.1056/NEJMoa066224
https://doi.org/10.1056/NEJM200010193431601
https://doi.org/10.1016/S1063-4584(03)00153-5
https://doi.org/10.1124/jpet.106.111344
https://doi.org/10.1073/pnas.1716095115
https://doi.org/10.1073/pnas.1716095115
https://doi.org/10.1186/ar3430
https://doi.org/10.1186/ar4303
https://doi.org/10.3899/jrheum.090074
https://doi.org/10.1056/NEJMoa065213
https://doi.org/10.1002/art.10870
https://doi.org/10.3390/ijms20081898
https://doi.org/10.3389/fmicb.2017.02602
https://doi.org/10.1128/CMR.00058-05
https://doi.org/10.1128/CMR.00058-05
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Surabhi et al. Inflammasome and Pneumococci
81. Ozen G, Pedro S, England BR, Mehta B, Wolfe F, Michaud K. Risk of Serious
Infection in Patients With Rheumatoid Arthritis Treated With Biologic
Versus Nonbiologic Disease-Modifying Antirheumatic Drugs. ACR Open
Rheumatol (2019) 1:424–32. doi: 10.1002/acr2.11064

82. Yau B, Hunt NH, Mitchell AJ, Too LK. Blood–Brain Barrier Pathology and
CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci
(2018) 19. doi: 10.3390/ijms19113555

83. Geldhoff M, Mook-Kanamori BB, Brouwer MC, Troost D, Leemans JC,
Flavell RA, et al. Inflammasome activation mediates inflammation and
outcome in humans and mice with pneumococcal meningitis. BMC Infect
Dis (2013) 13:358. doi: 10.1186/1471-2334-13-358

84. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission,
colonization and invasion. Nat Rev Microbiol (2018) 16:355–67. doi:
10.1038/s41579-018-0001-8

85. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, et al.
Pneumolysin activates the NLRP3 inflammasome and promotes
proinflammatory cytokines independently of TLR4. PLoS Pathog (2010) 6:
e1001191. doi: 10.1371/journal.ppat.1001191

86. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, et al. The
NLRP3 inflammasome contributes to brain injury in pneumococcal
meningitis and is activated through ATP-dependent lysosomal cathepsin
B release. J Immunol (Baltimore Md 1950) (2011) 187:5440–51. doi: 10.4049/
jimmunol.1100790

87. Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus
pneumoniae virulence factors in host respiratory colonization and disease.
Nat Rev Microbiol (2008) 6:288–301. doi: 10.1038/nrmicro1871

88. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, et al. The
NLRP3 inflammasome is differentially activated by pneumolysin variants and
contributes to host defense in pneumococcal pneumonia. J Immunol
(Baltimore Md 1950) (2011) 187:434–40. doi: 10.4049/jimmunol.1003143

89. Fatykhova D, Rabes A, Machnik C, Guruprasad K, Pache F, Berg J, et al.
Serotype 1 and 8 Pneumococci Evade Sensing by Inflammasomes in Human
Lung Tissue . PloS One (2015) 10 :e0137108. doi : 10 .1371/
journal.pone.0137108

90. Karmakar M, Katsnelson M, Malak HA, Greene NG, Howell SJ, Hise AG,
et al. Neutrophil IL-1b processing induced by pneumolysin is mediated by
the NLRP3/ASC inflammasome and caspase-1 activation and is dependent
on K+ efflux. J Immunol (Baltimore Md 1950) (2015) 194:1763–75. doi:
10.4049/jimmunol.1401624

91. Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V,
et al. The Interleukin-1b/CXCL1/2/Neutrophil Axis Mediates Host
Protection against Group B Streptococcal Infection. Infect Immun (2014)
82:4508–17. doi: 10.1128/IAI.02104-14

92. Matsumura T, Takahashi Y. The role of myeloid cells in prevention and
control of group A streptococcal infections. Biosafety Health (2020) 2:130–4.
doi: 10.1016/j.bsheal.2020.05.006

93. Lemon JK, Miller MR, Weiser JN. Sensing of interleukin-1 cytokines during
Streptococcus pneumoniae colonization contributes to macrophage
recruitment and bacterial clearance. Infect Immun (2015) 83:3204–12. doi:
10.1128/IAI.00224-15

94. Zhang T, Du H, Feng S, Wu R, Chen T, Jiang J, et al. NLRP3/ASC/Caspase-1
axis and serine protease activity are involved in neutrophil IL-1b processing
during Streptococcus pneumoniae infection. Biochem Biophys Res Commun
(2019) 513:675–80. doi: 10.1016/j.bbrc.2019.04.004
Frontiers in Immunology | www.frontiersin.org 8
95. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23–IL-17 immune axis: from
mechanisms to therapeutic testing. Nat Rev Immunol (2014) 14:585–600.
doi: 10.1038/nri3707

96. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of
interleukin-17 function in disease. Immunology (2010) 129:311–21. doi:
10.1111/j.1365-2567.2009.03240.x

97. Hassane M, Demon D, Soulard D, Fontaine J, Keller LE, Patin EC, et al.
Neutrophilic NLRP3 inflammasome-dependent IL-1beta secretion regulates
the gammadeltaT17 cell response in respiratory bacterial infections.Mucosal
Immunol (2017) 10:1056–68. doi: 10.1038/mi.2016.113

98. Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17-
dependent clearance of pneumococcal colonization in mice. J Clin Invest
(2009) 119:1899–909. doi: 10.1172/JCI36731

99. Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S, et al. Critical roles
of ASC inflammasomes in caspase-1 activation and host innate resistance to
Streptococcus pneumoniae infection. J Immunol (Baltimore Md 1950) (2011)
187:4890–9. doi: 10.4049/jimmunol.1100381

100. Erttmann SF, Gekara NO. Hydrogen peroxide release by bacteria suppresses
inflammasome-dependent innate immunity. Nat Commun (2019) 10:3493.
doi: 10.1038/s41467-019-11169-x

101. Cho SJ, Rooney K, Choi AMK, Stout-Delgado HW. NLRP3 inflammasome
activation in aged macrophages is diminished during Streptococcus
pneumoniae infection. Am J Physiol Lung Cell Mol Physiol (2018) 314:
L372–l87. doi: 10.1152/ajplung.00393.2017
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