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Artificial Intelligence has been widely applied today, and the subsequent privacy leakage problems have also been paid attention
to. Attacks such as model inference attacks on deep neural networks can easily extract user information from neural networks.
)erefore, it is necessary to protect privacy in deep learning. Differential privacy, as a popular topic in privacy-preserving in recent
years, which provides rigorous privacy guarantee, can also be used to preserve privacy in deep learning. Although many articles
have proposed different methods to combine differential privacy and deep learning, there are no comprehensive papers to analyze
and compare the differences and connections between these technologies. For this purpose, this paper is proposed to compare
different differential private methods in deep learning. We comparatively analyze and classify several deep learning models under
differential privacy. Meanwhile, we also pay attention to the application of differential privacy in Generative Adversarial Networks
(GANs), comparing and analyzing these models. Finally, we summarize the application of differential privacy in deep
neural networks.

1. Introduction

In recent years, deep learning based on neural networks has
been widely developed and successfully applied to many
fields, such as image classification [1], natural language
processing [2], face recognition [3, 4], interpretable mecha-
nism learning [5], and recommendation systems [6, 7]. Deep
neural networks can be trained to learn through a large
number of training data. However, researches on model
inference attacks [8] and model inversion attacks [9] make it
easier to extract user information from the training dataset.
)ese training samples may contain sensitive information,
such as medical records, property information, biological
information, and social relationships. Once leaked, it will have
more or less impact on users [10]. In the era of big data, users
generate numerous data every day. Once user information is
collected, users often cannot control how their information is
used or shared. )is requires application vendors to provide
policies and techniques to protect user privacy.

)ere are many methods to protect user information in
privacy-preserving fields, such as k-anonymity [11], ho-
momorphic encryption [12], L-diversity [13], and secure
multiparty computing [14]. Most of these methods desen-
sitize the data or encrypt it into ciphertext [15], but they are
not effective for some particular attacks. For example, when
performing the same query f� “how many boys are in the
dataset” on the top 99 records and 100 records of a dataset,
you can know the sex of the 100th person by comparing the
two results. )is is the so-called differential attack. Differ-
ential privacy is designed to defend against this attack in the
first place, which provides a rigorous privacy guarantee [16].
It protects privacy by adding noise to the dataset or the
results of a query function so that the query result does not
increase or decrease due to the increase or decrease of a
particular record [17]. )e proposal of differential privacy
has made a breakthrough in privacy-preserving. Differential
privacy can ensure that an attacker cannot obtain private
information from arbitrary records.
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Differential privacy has been widely used in machine
learning [18–21]. Differential privacy in deep learning is
applied mostly by adding noise during the stochastic gra-
dient descent process, as in literature [22–25]. Combining
differential privacy with deep learning provides new ideas
for privacy-preserving in deep neural networks [26]. Al-
though many papers have proposed different methods to
protect privacy in deep learning, there is no comprehensive
paper to analyze and compare different technologies. For
this purpose, this paper is proposed to compare different
models of differential privacy and deep learning. After
comparing and analyzing them, we classify these methods to
help beginners quickly understand the knowledge in this
field. We comparatively analyze and classify several deep
learning models to help beginners understand the knowl-
edge in this field.

)e rest of the paper is organized as follows. )is paper
first introduces differential privacy and deep neural net-
works, as well as the types of attacks that neural networks
may suffer from. We classify these models into three cate-
gories and provide a detailed introduction and comparative
analysis in Section 5. At the same time, we found that
differential privacy can also be applied to Generative
Adversarial Networks (GAN). Two typical methods are
introduced and compared in Section 6. Finally, the con-
clusion and discussion are made in Section 7.

2. Preliminaries

2.1. Differential Privacy. Differential privacy is a concept
proposed by C. Dwork [27] in 2006 to protect statistical
databases from differential attacks. For example, for a simple
query f� “how many boys are in the database,” using this
query to query in the first 99 rows of data and the first 100
rows of data, the gender of the 100th person can be inferred,
which leads to the leakage of user privacy. Differential
privacy can guarantee that the output results will not in-
crease or decrease due to the increase or decrease of indi-
vidual information in the database.

Definition 1. K is a random algorithm and S is a set of all
possible outputs. For any two datasets, D and D′ differ from
at most one different data:

Pr[Κ[D]εS] ≤ exp(ε) × Pr Κ D′􏼂 􏼃εS􏼂 􏼃. (1)

)en, algorithm K provides (ε) − differentialprivacy.
)e parameter ε> 0, and we usually think of ε as 0.01, 0.1,

ln 2, and ln 3.
In other words, if the algorithm works on any adjacent

dataset, the probability of getting a specific output should be
similar, and then we say that this algorithm can achieve the
effect of differential privacy. )is means that observers can
hardly detect a small change in the dataset by observing the
output results. )is method can achieve the purpose of
protecting privacy to a certain extent.

In Definition 1, ε is the privacy budget [28], which
represents the privacy protection level provided by the al-
gorithm K. )e smaller ε, the higher the privacy protection

level. )ere are two commonly used privacy budget com-
position theorems: sequential composition [29] and parallel
composition [30].

Theorem 1 (sequential composition). Suppose that there is a
set of privacy mechanisms M � M1, . . . ,Mm􏼈 􏼉 performing
on a dataset in sequence, and each Mi provides εi− differ-
ential privacy, and then the privacy mechanism M will
provide (m · εi) − differential privacy.

Theorem 2 (parallel composition). Suppose that there is a
set of privacy mechanisms M � M1, . . . ,Mm􏼈 􏼉. If each Mi

provides εi−differential privacy on a disjointed subset of the
entire dataset, then the privacy mechanism M will provide
(max εi, . . . , εm􏼈 􏼉) − differential privacy.

Definition 2. K is a random algorithm and S is the set of all
possible outputs of K. For any two datasets, D and D′ differ
from at most one different data:

Pr[Κ[D]εS]≤ exp(ε) × Pr Κ D′􏼂 􏼃εS􏼂 􏼃 + δ. (2)

)en algorithm K provides (ε, δ) − differentialprivacy.

When δ � 0, algorithm K provides ε-differential privacy.

Definition 3. For a query function f: D⟶ Rd, Rd is a
d-dimensional vector and adjacent datasets D and D′, and
the sensitivity of f is defined as

Δf � max
D,D′

f(D) − f D′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌1,

� max
D,D′

􏽘

d

i�1
f(D)i − f D′( 􏼁i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(3)

Sensitivity is a parameter that determines how much
noise is required for a particular query in the mechanism. It
is only related to the type of query and considers the
maximum difference between query results on adjacent
datasets.

Differential privacy has different implementation
mechanisms for different algorithms. )e two most com-
monly used are the Laplace mechanism and the exponential
mechanism [31]. Laplace mechanism is often used for the
protection of numerical results, while the exponential
mechanism is suitable for nonnumeric results.

2.2. Laplace Mechanism. )e dense function of Laplace
noise is as follows:

P(z|b) �
1
2b

exp −
|z|

b
􏼠 􏼡, (4)

with variance of 2b2.

Definition 4. For the function f: D⟶ R performing on
the dataset D, the Laplace mechanism M is defined as
follows, which provides ε-differential privacy:
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M(D) � f(D) + Lap
Δf
ε

􏼠 􏼡. (5)

For a simple query f� “howmany data in dataset satisfies
the property P,” according to the above definition, the
sensitivity Δf � 1. In the Laplace mechanism, let b � 1/ε ,
then the density at z is proportional to e− ε|z|, and this
distribution gets the maximum density at 0. For any
zz′ with |z − z′|≤ 1, the maximum density of z is eε times
than z′, which satisfies the definition of differential privacy
[32].

2.3. Exponential Mechanism. Let the output domain of the
query function be R and each value r∈R in the domain be an
entity object. Under the exponential mechanism, the
function q(D, r)⟶R becomes the availability function of
the output value r, which is used to evaluate the output value
the pros and cons of r.

Definition 5. For random algorithmMwith input datasetD,
output r∈R(M), q(D, r) is the availability function in ex-
ponential mechanism, and Δq is the sensitivity of the
function q (D, r), if M satisfies

M(D) � return r∝ exp
εq(D, r)

2Δq
􏼠 􏼡􏼠 􏼡. (6)

)at is, if M selects and outputs r from R with a
probability proportional to exp(εq(D, r)/2Δq), thenM gives
ε − differential privacy.

2.4. Deep Neural Network. Deep neural network (DNN) is
very effective for many machine learning tasks. Deep neural
networks are neural networks with many hidden layers. )e
neural network layer inside DNN can be divided into input
layer, hidden layer, and output layer. Generally, the first
layer is the input layer, the last layer is the output layer, and
the number of layers in the middle is all hidden layers [33].
)e training process of deep neural networks is divided into
forward propagation and backpropagation. Forward prop-
agation is to use weight matrix W and the bias vector b to
perform a series of linear operations and activation oper-
ations with the input value vector x. Starting from the input
layer, the output of the previous layer is used to calculate the
output of the next layer. )e layer-by-layer backward cal-
culation is performed until the operation reaches the output
layer. )e activation function makes the linear relationship
between the input and the output nonlinear, which makes
the DNN can approximate almost any function, making the
DNN more powerful. Sigmoid function, ReLU function,
tanh function, and so on are commonly used as activation
function.

)e loss function is defined in DNN to represent the
error between the output result and the actual result, and the
performance of the model can be roughly judged by the loss
function. Large value of the loss function indicates that the
model has insufficient fitting ability, and the coefficients
need to be adjusted through backpropagation. DNN

automatically adjusts the coefficients through the back-
propagation algorithm. )e backpropagation process
compares the output result with the actual result, calculates
the error between them, and propagates the error from the
output layer to the front until the input layer. In the process
of backpropagation, the value of the weight parameter is
adjusted according to the error, so that the total loss function
is reduced.

Deep neural network is divided into two phases, the
training phase and the testing phase. )e training phase is
the above-mentioned process of forward propagation and
backpropagation. After the model is trained, the model
needs to be used on the test dataset to see how the model
performs on the test dataset.

2.5. Privacy Leakage and Attacks in Deep Learning.
Privacy protection inmachine learning can be analyzed from
confidentiality, integrity, and availability [34]. Attacks on
confidentiality may expose neural network model structures,
parameters, or data used to train and test models; attacks on
integrity may affect the privacy of data sources; attacks on
availability attempt to prevent legitimate users from
accessing meaningful model output or function of the
system itself.)e training process of neural network requires
a large amount of data, which may contain the user’s per-
sonal privacy information, such as medical records, property
information. Paper [35] indicates that user information can
be extracted effectively from neural network. Both the
training and testing phases of deep neural networks may
have a privacy leakage problem. During the fine-tuning of
the coefficient matrix in the training phase, the training
dataset may be manipulated by the attacker. )is situation is
called a poison attack [36]. Poisoning attacks alter the
training dataset by inserting, editing, or deleting sample
points, with the goal of modifying the decision boundary of
the target model.

During the testing phase of the neural network, the
coefficients of the model have been determined, and at-
tackers can also attack the model. )ere are three main types
of attacks, model extraction attacks, model inversion attacks,
and member inference attacks. Model extraction attacks are
to infer the specific parameters or structure of the model by
the attacker through the model test results. Assuming that
the model has n parameters, the attacker can test the model
with m (m> n) samples, list the test results and input
samples into m linear equations, and solve the equations to
get n parameter values [35].

Model inversion attacks mean that the attacker can
extract information related to the training data from the
model test results, such as the sensitive characteristics of the
training data [9]. In face recognition, an attacker can ran-
domly construct a picture, target a certain sample (such as
tom) in the training dataset, and use the gradient descent
method to randomly modify the prediction result to obtain a
picture with tom’s face features.

Member inference attacks aim to infer whether a par-
ticular record is in the training dataset [8]. )ere are black-
box attacks and white-box attacks [22].
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Black-box attacks: the attacker can only get the output
of the model with arbitrary inputs. For any input x, the
attacker can only obtain f (x; W) but cannot get the
parameter matricW of the model and the intermediate
steps of the calculation. An attack against a black-box
model has been defined in [8] which exploits the sta-
tistical difference between the model’s predictions on
the training set and unseen data.
White-box attacks: for any input x, besides the output,
the attacker can also obtain the structure and param-
eters of the model and observe the intermediate cal-
culation steps in the hidden layer.

2.6.Differential Privacy inDeep Learning. Due to the privacy
leakage in the neural network, it is necessary to protect these
models. )e proposal of differential privacy makes a new
way to protect privacy [37]. In this section, we analyze six
differential privacy models: DP-SGD, the improved DP-
SGD, Adaptive Laplace Mechanism, dPA, PCDBN, and
PATE. We divide these models into three categories. )e
first category is to increase noise during the stochastic
gradient descent of neural networks to achieve differential
privacy. DP-SGD improved DP-SGD, and the Adaptive
Laplace Mechanism belongs to the first category. )e second
category is based on functional mechanisms, which achieve
differential privacy by perturbing the objective function of
the optimization problem instead of its result. dPA and
PCDBN belong to the second category. )e third category is
a new framework that protects privacy through knowledge
aggregation and transmission [38]. PATE model belongs to
the third category.

2.7. 8e First Category

2.7.1. DP-SGD. DP-SGD (Differential privacy-Stochastic
Gradient Descent) algorithm was proposed by Mart́ın Abadi
et al. in 2016 [23]; this algorithm aims to control the impact
of the training dataset on the training process, especially
during the calculation of gradient. Based on [24], compared
to the algorithms in this paper, the DP-SGD algorithm has
been modified and expanded, especially in the calculation of
privacy budget. )e main idea of DP-SGD is shown in
Algorithm 1.

For the Gaussian distribution noise in this algorithm,
when σ �

����������
2 log1.25/δ

􏽰
/ε, then every single step suffices

(ε, δ) − differential privacy [31]. Since each group of the
algorithm is composed of a randomly selected sample,
privacy amplification theorem [39] indicates that it gives
(O(qε), qδ) − differential privacy, q � L/N is the probability
of randomly selecting samples, and ε≤ 1.

For the DP-SGD algorithm, an important issue is to
track the privacy budget in training phases. )is paper
proposes a privacy accounting method “Moments Ac-
countant,” which can prove that this algorithm satisfies
(O(qε√T), qδ)− differential privacy. )e bound of privacy
cost using Moments Accountant mechanism is less than the
bound using strong composition theorem [40]. We save a
factor of

�������
log(1/δ)

􏽰
in ε part and a factor of Tq in δ part.

2.7.2. Improved DP-SGD. )ere are twomain problems with
the DP-SGD algorithm. )e first problem is that when
implementing the algorithm, in order to obtain higher ef-
ficiency, random shuffling is often used to batch data. )is
method will lead to higher privacy loss and make the privacy
loss calculated by Moment Account underestimated. )e
second problem is that the DP-SGD algorithm needs to
iterate multiple times when calculating the privacy loss. To
solve these problems, Lei Yu et al. [42] proposed a method
for training neural networks by using concentrated differ-
ential privacy (CDP) [43]. CDPmakes the privacy protection
algorithm more practical than traditional DP when doing a
lot of calculations, while still providing a strong privacy
guarantee. )is paper first proposes a dynamic privacy
budget allocation technique and then develops zCDP-based
privacy accounting methods for different data batch pro-
cessing methods.

2.8. Dynamic Privacy Budget Allocation. For a given privacy
budget, the accuracy of the final model depends on how the
privacy budget is allocated during training. Privacy
budget allocation technology aims to optimize the
budget allocation in the training process, so as to obtain a
differential privacy DNN model with higher accuracy. )e
main idea is that as the model accuracy converges, the noise
on the gradient becomes less. )is will make the model
closer to the optimal solution while having higher accuracy.
On this basis, literature [42] proposed two privacy
budget allocation techniques: adaptive schedule based on
public validation dataset and predefined schedules.

2.9. Adaptive Schedule Based on Public Validation Dataset.
)e technique uses the public verification dataset to monitor
verification errors during training and reduce the noise scale
when verification errors stop improving. Specifically,
whenever the verification accuracy is improved to less than
the threshold δ, the noise level is reduced by a factor of k
until the privacy budget is exhausted.

2.10. Predefined Schedules. )is method does not use a
verification dataset but predefines certain decay functions so
that the noise level will decrease over time. )is document
mainly uses four decay functions to reduce the noise level:
Time-Based Decay, Exponential Decay, Step Decay, and
Polynomial Decay.

2.11. Privacy Accountant

Definition 6. CDP considers privacy loss on an outcome o of
the randomized mechanism A operating on two adjacent
databases D and D′ as follows:

L
(o)

A(D)‖A D′( )( )
� log

Pr(A(D) � o)

Pr A D′( 􏼁 � o( 􏼁
, (7)

(µ, τ)-CDP ensures that the mean of privacy loss does not
exceed µ, and the probability of the loss exceeding its mean
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by an amount of t · τ is bounded by e− t2/2 [43]. Bun and
Steinke [44] proposed another form of (µ, τ)-CDP, called
zero-concentrated differential privacy, zCDP.

Definition 7. For two datasets differs from only one data,
random mechanism A is ρ − zCDP if

Dα A(D)‖A D′( 􏼁( 􏼁 �
1

α − 1
log E e

(α− 1)L(o)

􏼔 􏼕􏼒 􏼓≤ ρα, (8)

αε(1,∞), Dα(A(D)‖At(D′)) is α-Re′nyi divergence be-
tween D and D′.

)ere are two propositions proposed in literature [44].

Proposition 1. For any δ > 0, if A satisfies ρ − zCDP, then A
satisfies (ρ + 2

���������
ρ log(1/δ)

􏽰
, δ)-DP.

Proposition 2. 8e mechanism with N (0,Δ2σ2I) Gaussian
noise satisfies (1/2σ2) − zCDP.

Since zCDP and DP are comparable, this paper proposes
a privacy accounting method based on zCDP. According to
the sequential composition satisfied by zCDP, if each iter-
ation satisfies ρ − zCDP and the total number of iterations of
the training process is T, then the entire training process
satisfies (Tρ) − zCDP. )is paper proposes the composition
of privacy loss under two common batch processing
methods: replacement random sampling and random
shuffling. Replacing random sampling refers to randomly
sampling each sample from the training dataset. Random
shuffling means that the training dataset is randomly
shuffled into batches of similar size, and the SGD process
processes one batch at a time. Random shuffle is a common
practice, its performance is better than random sampling,
and the convergence speed is improved [45].

In the random shuffling method, the loss of privacy is
tracked using )eorem 2. In replacing random sampling
method, )eorem 4 is used to calculate.

Theorem 4. Let 􏽢ρ � P(q, σ) and uα � Uα(q, σ). 8e mech-
anism A′ has

Dα A′(D)
����A′(D’)􏼐 􏼑≤ α􏽢ρ. (9)

For 1< α≤ uα, it satisfies

(􏽢ρ + 2
��������
􏽢ρlog(1/δ)

􏽰
, δ) − DP , if δ ≥ 1/exp 􏽢ρ uα − 1( 􏼁

2
􏼐 􏼑,

􏽢ρuα −
log δ
uα − 1

, δ􏼠 􏼡 − DP , otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

where q is the probabilityL/N of randomly selected samples
and P(∗ ) and U(∗ ) are functions of q and δ.

Under different privacy budget allocation methods,
given the data processing method, the privacy loss can be
calculated according to )eorem 2 or )eorem 3.

2.11.1. Adaptive Laplace Mechanism. Paper [46] proposed
an Adaptive Laplace Mechanism (AdLM) whose main idea
is to add more noise to features that are not related to the
model output. According to the contribution of each
feature to the model output, the Laplace noise is injected
into features adaptively. Unlike the method in [47], the
noise and privacy budget injected by this method are not
accumulated in each training step. )e consumption of the
privacy budget is independent of the number of training
times. )e Adaptive Laplace Mechanism is shown in
Algorithm 2.

)e computing loss function FL(θt) suffices
ε3 − differential privacy, according to composition theorem
[48]; this algorithm gives (ε1 + ε2 + ε3)-differential privacy.
Besides, this mechanism can be used in various deep
learning models, such as CNN [49], deep autoencoder [33],
and convolution deep belief networks [50].

Input:Sample x1, x2, . . . , xn􏼈 􏼉, learning rate ηt,
Loss function L(θ) � 1/N􏽐iL(θ, xi) , group size L
noise scale σ, gradient norm bound C,
Initialize θ0 randomly
for t ∈ [T]

{
Take a random sample Lt with probability
L/N Compute gradient
for each iεLt, compute gt(xi) � ∇θt

L(θt, xi)

Clip gradient
gt(xi) � gt(xi)/max(1, ||gt(xi)||2/C)

Add noise
􏽥gt � 1/L(􏽐igt(xi) + N(0, σ2C2Ι))
Descent
θt+1 � θt − ηt 􏽥gt

}
Output: θT and compute privacy cost (ε, δ) with the privacy accounting method.

ALGORITHM 1: DP-SGD.
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2.11.2. Comparative Analysis. Among the three models of
the first type, DP-SGD uses gradient clipping and increased
Gaussian noise to implement differential privacy. At the
same time, a privacy accounting mechanism “Moments
Accountant” is proposed. )e privacy loss threshold ob-
tained using this mechanism is small. On this basis, Lei Yu
et al. [42] improved the DP-SGD algorithm and proposed a
dynamic privacy budget allocation technique. )rough ex-
periments in [42], the comparison of the privacy accounting
method of DP-SGD and the improved DP-SGD algorithm is
shown in Table 1. It can be seen that the privacy loss obtained
by the MA method and the zCDP method is smaller than
that using the strong composition, indicating that both
methods can obtain the privacy loss value more accurately.
zCDP(RF) has a higher privacy loss value than MA and
zCDP(RS) methods because RS introduces more certainty.

However, RF is a more commonly used method in deep
neural networks. )e DP-SGD algorithm is also imple-
mented using RF for batch processing. It can be seen that the
MA method underestimates its privacy loss.

As the accuracy of the model converged, the noise on the
gradient became less. At the same time, zCDP-based privacy
accountingmethods are developed for different batch processing
methods. )e Adaptive Laplace Mechanism adds more noise to
features that are not related to the model output. According to
the contribution of each feature to themodel output, the Laplace
noise is adaptively injected into the feature. )e accuracy
comparison of these three models is shown in Table 2.

It can be seen that, on theMNISTdataset, the accuracy of
the three models is very high, reaching more than 90%.
When ε � 0.5, the accuracy of the AdLM model is slightly
higher than that of DP-SGD, reaching 93.66%. On the

Compute the average relevance by applying LRP alg. [41].
∀j ∈ [1, d]: Rj(D) � 1/|D|􏽐xi∈DRxi,j

(Xi)

Inject Laplace noise into the average relevance of each j-th input feature
ΔR � 2 d/|D|

for j ∈ [1, d] do{
Rj⟵ 1/|D|􏽐xi∈DRxi,j

(Xi) + Lap(ΔR/ε1)
}
R(D) � Rj􏽮 􏽯

jε[1,d]
Inject Laplace noise into coefficients of the differentially private layer h0
Δh0
⟵ 2􏽐h∈h0d

for j ∈ [1, d] do
εj⟵ βj × ε2
for xiε D, j ∈ [1, d] do {
xij⟵xij + 1/|L|Lap(Δh0/εj)

}
b⟵ b + 1/|L|Lap(Δh0/ε2)
Construct hidden layers h1, h2, . . . , hk􏼈 􏼉, normalization layers η1, η2, . . . , ηk􏼈 􏼉

Inject Laplace noise into coefficients of the approximated loss function
ΔF � M(|η(k)| + 1/4|η(k)|

2)

for xiε D, R ∈ [0, 2], l ∈ [1, M] do
ϕ(R)

lxi
⟵ ϕ(R)

lxi
+ 1/|L|Lap(ΔF/3)

Initialize θ0 randomly
for t ∈ [T] do {
Take a random training batch L
Construct differentially private affine transformation layer

hOL(W0)⟵ hL(W)􏽮 􏽯
h∈h0

.
hL(W) � 􏽐xi∈L(xiW

T + b)

Construct differentially private loss function
FL(θt) � 􏽐

M
l�1 􏽐xi∈L 􏽐

2
R�0 (ϕ(R)

lxi
WT

l(k))
R

Compute gradient descents
θt+1⟵ θt − ηt∇θtFL(θt)

}
Return θT.

ALGORITHM 2: Adaptive Laplacian mechanism.

Table 1: Comparison of privacy accounting methods.

Mechanism Privacy accounting approaches q σ δ Epoch ε
Baseline Strong composition 0.01 6 10− 5 400 34.3
DP-SGD Moment Account (MA) 1.67

)e improvement of DP-SGD zCDP (random sampling, RS) 2.37
zCDP (random reshuffling, RF) 21.5
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CIFAR-10 dataset, the improved algorithm of DP-SGD has
lower accuracy, and the accuracy of DP-SGD and AdLM
algorithms is higher. When ε � 8, the accuracy of AdLM
algorithm is more accurate than that of the DP-SGD al-
gorithm. )e rate is about 4% higher. )e accuracy of the
improved DP-SGD method under different privacy budget
decay functions is slightly different, but similar. From the
perspective of convergence speed, the DP-SGD algorithm is
faster than AdLM. )e improved algorithm of DP-SGD is
proposed for the problem of excessive iterations and un-
derestimation of privacy loss when calculating the privacy
loss of the DP-SGD algorithm. )erefore, its convergence
speed is faster than DP-SGD.

2.12. 8e Second Category

2.12.1. dPA. Deep autoencoder (dA) is one of the basic deep
learning models and is widely used in natural language
processing and other fields [33]. Autoencoder is an unsu-
pervised learning algorithm, which is mainly used for data
dimensionality reduction or feature extraction. In deep
learning, it can be used to determine the initial value of the
weight matrix before training starts. It encodes the high-
dimensional input so that the compressed low-dimensional
vector maintains the characteristics of the input data. Phan
et al. [51] proposed a deep private autoencoder (dPA), which
is implemented by perturbing the target function (not the
result) of a traditional deep autoencoder to achieve differ-
ential privacy. )is algorithm is improved on the basis of
functional mechanism (FM) [20]. )e algorithm steps are as
follows.

Derive polynomial approximation of data reconstruc-
tion function RE(D, W), denoted as 􏽣RE(D, W).

For a given encoding 􏽥xi, the reconstruction function of
the autoencoder is as follows:

RE ti,W( 􏼁 � −log P xi| 􏽥xi, W( 􏼁,

� − 􏽘
d

j�1
xijlog􏽦xij􏼐 􏼑 + 1 − xij􏼐 􏼑log 1 − 􏽦xij􏼐 􏼑.

(11)

)e above function is transformed into Taylor
expansion:

􏽣RE(D, W) � 􏽘

|D|

i�1
􏽘

d

j�1
􏽘

2

l�1
f

(0)
ij (0) + 􏽘

2

l�1
f

(1)
ij (0)⎛⎝ ⎞⎠Wjhi

⎛⎝

+ 􏽘
2

l�1

f
(2)
ij (0)

2!
⎛⎝ ⎞⎠ Wjhi􏼐 􏼑

2⎞⎠.

(12)

)e function 􏽣RE(D, W) is perturbed by using functional
mechanism, denoted as RE(D, W).

Calculate the sensitivity of 􏽣RE(D, W) and 􏽣RE(D′, W),
and perturb the function according to the sensitivity. )e
sensitivity is as follows:

Δ � 2max
t

􏽘

d

j�1
􏽘

2

R�0
λ(R)

jt

�����

�����≤ d b +
1
4
b
2

􏼒 􏼓. (13)

Compute W � argminw RE(D, W) to get the initial
weight matrix of the input layer.

2.13. Private Autoencoder (PA) Stacking. Fix the initial
weight matrix of the input layer to autoencoder each sub-
sequent layer. )e hidden units of the lower layer will be
considered as the input of the next PA. To guarantee that this
input to the next PA satisfies

�������

􏽐
b
j�1 h2

ij

􏽱
≤ 1, a normalization

Table 2: Comparing the accuracy of the first category.

Mechanism Dataset Parameters Epoch Accuracy (%)

DP-SGD

MNIST
ε � 0.5, δ � 10− 5 16 90
ε � 2, δ � 10− 5 140 95
ε � 8, δ � 10− 5 800 97

CIFAR-10
ε � 2; δ � 10− 5 60 67
ε � 4; δ � 10− 5 130 70
ε � 8; δ � 10− 5 700 73

)e improvement of DP-SGD
MNIST

Time k� 0.05 38 93.4
Step k� 0.6; period� 10 31 92.8
Exp k� 0.01 71 93.4
Poly k� 3; σend � 2; period� 100 44 93.0

Validation k� 0.7; m� 5; σ � 0.01; period� 10 64 93.0

CIFAR-10 Exp σ0 � 30; k� 0.001 200 43
Validation σ0 � 35; k� 0.99; period� 50; m� 1; δ � 0.01 200 45

AdLM
MNIST ε � 0.25 500 90.2

ε � 0.5 500 93.66

CIFAR-10 ε � 2.5 800 72.1
ε � 8 800 77
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layer is added on the top of the hidden layer to make
hij � hij − cj/(φj − cj) ·

�
b

√
.

Derive and perturb the polynomial approximation of
cross-entropy error C(θ), denoted as C(θ).

)e cross-entropy error function of the softmax layer is

C YT, θ( 􏼁 � − 􏽘

YT| |

i�1
yilog 1 + e

− W(k)hi(k)􏼐 􏼑􏼐

+ 1 − yi( 􏼁log 1 + e
W(k)hi(k)􏼐 􏼑􏼑.

(14)

)e above function is transformed into the polynomial
form:

􏽢C YT, θ( 􏼁 � 􏽘

YT| |

i�1
􏽘

2

l�1

􏽐
2

R�0

f
(R)
l (0)

R!
W(k)hi(k)􏼐 􏼑

R
. (15)

Calculate the sensitivity ΔC � |h(k)| + 1/4|h(k)|
2 of

􏽢C(YT, θ) and 􏽢C(YT
′, θ), and perturb the cross-entropy loss

function according to the sensitivity.
Computer θ � argminθC(θ); return θ.

2.13.1. pCDBN. Private deep convolutional belief network
(pCDBN) [52] is essentially a differential privacy version of
convolutional deep belief network (CDBN) [50]. )is
method is similar to dPA in [51], but there are still some
differences. Since the global sensitivity of the CDBN in the
functional mechanism cannot be derived, it is difficult to
identify the approximate error range in the CDBN, and the
Chebyshev polynomial is used in the pCDBN to approxi-
mate the nonlinear objective function.)en, noise is injected
into these polynomials, and the functional mechanism is
used to make each hidden layer’s training phase satisfy
ε-differential privacy. Finally, the hidden layer becomes a
private hidden layer after the above transformation, the
private hidden layer is stacked on each layer, and the
polynomial form of the cross-entropy error function of the
softmax layer is obtained and then perturbed to generate a
private convolutional deep confidence network. )e algo-
rithm steps are as follows.

Derive a polynomial approximation of the energy
function E(D, W), denoted as 􏽢E(D, W).

Perturb function 􏽢E(D, W) by using functional mecha-
nism [20], denoted as E(D, W). Stack the private hidden and
pooling layers (H, P) to construct pCDBN. Apply the
technique presented in [51], and the cross-entropy error is
transformed into a polynomial form at the softmax layer of
the classification and prediction tasks and then perturbed.

3. Experiment

Experimental comparison between pCDBN, CDBN, dPAH
(dPA for human behavior prediction), TCDNB (a simplified
version of CDBN, without adding noise to the energy function
approximation), and conditionally restricted Boltzmann ma-
chine [53] (SctRBM) is shown in Figure 1. It can be seen that
the accuracy of the model without privacy-preserving remains
basically unchanged. Due to the addition of noise, dPAH and
pCDBNhave lower accuracy thanCDBNand TCDNBmodels.

)e accuracy of pCDBN is higher than that of the dPAH
model, and the accuracy of the pCDBN model is even higher
than that of SctRBM without added noise.

)is literature also compares the pCDBNmodel with the
DP_SGD (pSGD) model in [23]. )e experimental results
are shown in Figure 2. When ε � 0.5, the pSGD model
reached 88.75% accuracy at 18 epochs, and the pCDBN
model pCDBN reached 91.71% accuracy after 162 epochs,
which was higher than the pCDBN model accuracy.

3.1. Comparative Analysis. In the second type of model,
based on the functional mechanism, dPA uses Taylor ex-
pansion to approximate the cross-entropy error function to a
polynomial form and then injects noise. pCDBN uses Che-
byshev polynomials to derive polynomial approximations of
the energy function and nonlinear objective functions and
then injects noise. )e algorithm and ideas of these two
models are basically similar, but they use different methods to

CDBN
TCDBN
pCDBN

dPAH
SctRBM
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Figure 1: Comparison of different models [40].
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Figure 2: Comparison of DP-SGD and pCDBN [40].
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transform the objective function into a polynomial form.
Literature [52] compared pCDBN with dPAH, a human
behavior recognition model using dPA, in the experimental
part.)e results can be seen in Figure 2.)e result shows that
the accuracy of pCDBN is higher than that of dPAH.

4. The Third Category

4.1. PATE

4.1.1. Framework. Some neural network models may in-
advertently remember some privacy data, and there is a risk
of leaking privacy. )e PATE (Private Aggregation of
Teacher Ensembles) algorithm proposed by Papernot et al.
[54] can provide a strong guarantee for training data. )is
method combines multiple models trained using disjoint
datasets (such as records from different subsets of users) in a
black-box manner. )ese models are not published but are
used as “teachers” for “student” models. Students will learn
to predict the output selected by noise voting among all
teachers and have no direct access to individual teachers,
basic data, or parameters. )e general framework of the
PATE algorithm is shown in Figure 3, which is reproduced
from Nicolas Papernot et al., 2017 [54].

)is algorithm divides the training dataset into n groups,
and each group is trained using n models, and these n
models become “teacher” models. When the prediction
results of these n teacher models are combined, it is per-
formed according to the principle that the minority obeys
the majority, and noise is added to it, thereby disturbing the
voting result and protecting privacy. For an input x, if most
teachers’ predictions are consistent, adding noise will not
affect the final prediction result; if the teacher’s prediction
results are divided into two categories and the number of
votes is the same, then one of the predictions will be output
randomly after adding the noise.

As the number of predictions increases, the model needs
to add more noise, which makes the model useless. And if
the adversary can access the parameters of the model, the
privacy guarantee cannot be held. To solve this problem, the
PATE algorithm introduces a “student” model. )e student
model is trained using nonsensitive data and unlabeled data.
Part of the unlabeled data is labeled by the teacher model and
then used as the training dataset for the student model with

the remaining unlabeled data. Using the student model
instead of the aggregation of teacher for deployment, a fixed
loss of privacy can be obtained, the value of which is de-
termined by the number of queries made to the teacher
model during student model training. )erefore, even if the
adversary obtains its architecture and parameters by
attacking the student model, the algorithm can protect user
privacy from being leaked.

)e PATE framework uses the Moment Account
mechanism of [23] to conduct privacy analysis. At each step,
add Lap(1/c) to the aggregation mechanism to
implement(2c, 0) − DP, and then after T step, this mecha-
nism is implemented (4Tc2 + 2c

��������
2T ln 1/δ

√
, δ)-DP. )e

accuracy of the student models on the MNIST and SVHN
datasets is shown in Table 3. It can be seen that the PATE
model achieves up to 98% accuracy in the MNIST dataset
and more than 90% accuracy in the SVHN dataset.

4.2. Experiment. In the third type of model, PATE uses the
aggregation results of the “teacher” model to train the
“student” model, so that attackers cannot directly access the
“teacher” model, private data, or model parameters. PATE
supports various models flexibly, especially for deep neural
networks. Experiments show that the PATE model has
higher accuracy on the MNISTand SVHN datasets, and 98%
accuracy on the MNIST dataset (ε � 2.04, δ � 10− 5) as
shown in Table 3.

5. Comparative Analysis of These
Three Categories

In the three types of methods, noise is added to achieve
differential privacy. )e first category of methods adds
noise to the model gradient. On this basis, it discusses how
to assign privacy (dynamic or static) and how to add noise
(fixed or not). )e second category is based on functional
mechanisms and protects privacy by perturbing the ob-
jective function of the optimization problem rather than
its result. )e third type is a new framework by training
the teacher model dispersedly, making decisions based on
the prediction results of the teacher model and the noise
added to it, and then introducing the student model to
hold the privacy guarantee. )ese three types of methods

Sensitive
Data

Data 1

Data 2

Data 3

...

Data n

Teacher 1

Teacher 2

Teacher 3
Aggregate
Teacher

Predicted
completion

Incomplete
Public Data

Not accessible by adversary Accessible by adversary

Student Queries

...

Teacher n

Training
Prediction
Data feeding

Figure 3: Framework of PATE [54].
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can realize the use of differential privacy in DNN to
protect user privacy data, which is representative. )e
comparative analysis of these three types of models is
shown in Table 4.

5.1. Differential Privacy IN GAN. Generative Adversarial
Network (GAN) is a model used to estimate the distribution
of the training dataset and use this distribution to randomly
generate samples [55]. However, due to the high complexity
of the model, it can easily remember the training samples,
which leads to the leakage of user privacy data. By repeatedly
sampling from the distribution, there is a considerable
opportunity to recover the training samples. For example,
Hitaj et al. [56] introduced an active inference attack model
that can reconstruct training samples from the generated
samples. )e general idea of protecting user privacy in-
formation using differential privacy in a GAN is to add noise
to the discriminator during the training process and co-
operate with the calculation of the generator, such as the
literature ([57–59]). Reference [59] proposed an AC-GAN
model for clinical data sharing, and the model does not leak
user privacy data. Now we will introduce some methods of
using differential privacy to protect GAN.

5.2. DPGAN

5.2.1. Algorithm. Liyang et al. [57] proposed a framework
that combines the differential privacy method in [23] with
GAN and DPGAN. )is model adds carefully designed
noise during the training process, performs gradient
clipping, and uses the Wasserstein distance [60] as an
approximation of the distance between probability distri-
butions, which is more reasonable than the JS-divergence
in GAN. Specifically, when calculating the D gradient

relative to the actual sample x, we first clip the gradient by
injecting the designed noise (line 6) to ensure that the
sensitivity is limited by e.)en, we add random noise sampled
from the Gaussian distribution. RMSProp is an optimization
algorithm that can adaptively adjust the learning rate
according to the size of the gradient [61]. )e detailed al-
gorithm is shown in Algorithm 3.

)e clip function in Algorithm 3 satisfies that the ac-
tivation function of the discriminator has a bounded range
and bounded derivatives everywhere:σ(·)≤Bσ and
σ′(·)≤Bσ′

, and every data point x satisfies ‖x‖≤Bx and then
||gw(x(i), z(i))||≤ cg for some constant cg.

When q � m/M, noise scale σn � 2q
���������
ndlog(1/δ)

􏽰
/ε, and

Algorithm 3 is (ε, δ) − DP. DPGAN’s privacy loss is inde-
pendent of the amount of data generated, which makes this
method suitable for various real-world situations.

6. Experiment

)e accuracy of DPGAN under the MNIST dataset is
shown in Figure 4. From left to right on the figure are the
real data, the generated nonprivate samples, and the
generated samples where ε� 11.5, 3.2, 0.96, and 0.72,
respectively. As can be seen from this figure, as the noise
level increases, the accuracy of the generated samples is
also higher, indicating that the more efficient the samples
are generated.

6.1. GANobfuscator

6.1.1. Framework. GANobfuscator is a model proposed by
Chugui Xu et al. [58] which uses differential privacy to
mitigate the leakage of private information in GANs. )is
algorithm adds well-designed noise to the learning process

Table 4: Comparison of DP-models.

Model Similarity Difference
DP-SGD

Add noise to gradient, they are DP-SGD algorithm, and it is
variant

Add Gaussian noise to SGD Moments Accountant
)e improvement of
DP-SGD

Dynamic privacy budget allocation privacy accounting
methods for different batch processing methods

Adaptive Laplace
Mechanism

Adaptively add more noise to features that are not
related to the model output

dPA

Based on functional mechanism, approximate functions to
polynomial forms and perturb objective function mainly

used for optimal algorithm

Uses Taylor expansion to approximate the cross-
entropy error function to a polynomial form and add

noise

PCDBN
Use Chebyshev polynomials to derive polynomial

approximations of nonlinear objective functions and
add noise

PATE Decentralized training model adds noise to decisions
and introduces student models

Table 3: Accuracy of PATE reproduced from Nicolas Papernot et al. [54].

Dataset ε δ Queries Nonprivate baseline (%) Student accuracy (%)
MNIST 2.04 10− 5 100 99.18 98.00
MNIST 8.03 10− 5 1000 99.18 98.10
SVHN 5.04 10− 5 500 92.80 82.72
SVHN 8.19 10− 5 1000 92.80 90.66
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Figure 4: Accuracy of DPGAN on digits 4 and 5 [46].

Parameter: αd, learning rate of discriminator. αg, learning rate of generator. cp, parameter clip constant. m, batch size. M, total
number of training data points in each discriminator iteration. nd, number of discriminator iterations per generator iteration. ng,

generator iteration. σn, noise scale. cg, bound on the gradient of Wasserstein distance with respect to weights.
Ensure: Differential private generator θ.
Initial discriminator parameters w0, generator parameters θ0.
for t1 � 1, . . . , ng do
for t2 � 1, . . . , nd do

Sample z(i)􏼈 􏼉
m

i�1 ∼ p(z) a batch of prior samples.
Sample x(i)􏼈 􏼉

m

i�1 ∼ pdata(x) a batch of real data points.
For each i, gw(x(i), z(i))⟵∇w[fw(x(i)) − fw(gθ(z(i)))]

gw⟵ 1/m(􏽐
m
i�1 gw(x(i), z(i))) + N(0, σ2nc2gI).

w(t2+1)⟵w(t2) + αd · RMSProp(w(t2), gw)

w(t2+1)⟵ clip(w(t2+1), −cp, cp)

end for
Sample z(i)􏼈 􏼉

m

i�1 ∼ p(z), another batch of prior samples.
gθ⟵ − ∇θ1/m 􏽐

m
i�1 fw(gθ(z(i)))

θ(t1+1)⟵ θ(t1) − αg · RMSProp(θ(t1), gθ)

end for
return θ.

ALGORITHM 3: DPGAN.

Sensitive data

Generator
G

Discriminator
D

X or G (z) ?

G (z)

Differentially Private
Training

Pruning

X

z

Latent
distribution

Figure 5: Framework of GANobfuscator [47].
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of GANs. With this algorithm, analysts can generate un-
limited synthetic samples for any task without leaking in-
formation about the training samples. )e general
framework of this algorithm is in Figure 5.

)e privacy data X reaches the discriminator D through
the privacy protection layer. )e role of the discriminator is
to distinguish the real data from the artificial dataset 􏽥X

generated by the training differential privacy generator
G.)e implementation method of GANobfuscator is similar
to the method in [23], which adds noise during the training
process. Compared with the discriminator D and the gen-
erator G, G generally uses the construction module [62] and
batch normalization [63] to generate samples. D has only a
simple structure and a small number of parameters and D

WGAN
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GAN
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Figure 6: Accuracy of GANobfuscator [47].

Input: αd, learning rate of discriminator. αg, learning rate of generator. cp, constant for parameter clip.m, batch size.M, total number
of training data points in each discriminator iteration. Td, the number of discriminator iterations per generator iteration. Tg,

generator iteration. σ, noise scale. cg, bound on the gradient of Wasserstein distance with respect to weights.Dpub, public data.Dpri,
private data.
Output: Differentially private generator G.

Initialize discriminator parameters w0, generator parameters λ;
for t� 1, 2, . . . ,Tg do
Sample 􏽥x(i)􏽮 􏽯

mpub

i�1 ∼ Dpub;
g(i)􏼈 􏼉

mpub
i�1 ⟵ ImprovedWGAN − Gradient, ( 􏽥x(i)􏽮 􏽯

mpub

i�1 , mpub);
Sample x(i)􏼈 􏼉

mpub
i�1 ∼ Dpri;

g(i)􏼈 􏼉
m

i�1⟵ ImprovedWGAN − Gradient, ( x(i)􏼈 􏼉
m

i�1, m);
for j� 1, 2, . . ., m do
ε ∼ N(0, (cjσj)

2);
g

(i)
j ⟵g

(i)
j max(1, ||g

(i)
j ||2/cj) + ε

Update L with (σ, m, Tg);
w⟵ wj􏽮 􏽯

m

j�1;
Sample zi􏼈 􏼉

m

i�1 ∼ ρθ;
δ⟵ queryLwith ε0;

Return G
ImprovedWGAN − Gradient, ( xj􏽮 􏽯

m

j�1, m)

for j � 1, . . . , m do
Sample z ∼ ρθ, λ ∼ Φ[0, 1];
􏽥x⟵ λxj + (1 − λ)G(z)

ℓ(j)⟵D(G(z)) − D(xj) + cg(||∇􏽥xD(􏽥x)||2 − 1)2;
g(j)⟵∇wℓ(j);

Return gj􏽮 􏽯
m

j�1.

ALGORITHM 4: Optimizing GANobfuscator.
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Figure 7: Precision of the inference attack [47].
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can get real data directly. )erefore, D is easier to measure
the loss of privacy. Noise only needs to be added when
training the discriminator D.

7. Algorithm

)e algorithm flow of GANobfuscator is similar to the
DPGAN algorithm. )e difference between the two lies in
the clip function when clipping gradient (see Algorithm 3).
)e problem brought by Algorithm 3 is that the quality of
the generated samples is low and the model convergence
speed is slow. In order to solve this problem, Chugui Xu et al.
[58] designed an optimized GANobfuscator algorithm. )is
method enhances GANobfuscator through adaptive pruning
function to monitor the change of gradient and dynamically
adjust the pruning range to converge faster and get stronger
privacy. )e optimized GANobfuscator algorithm is shown
in Algorithm 4.

7.1. Experiment. When ε � 2, δ � 10− 5, randomly select
different numbers of samples in the generated data, establish
a classifier, and then use the MNISTdataset for testing. After
repeating 100 times, the experimental accuracy is obtained
as shown in Figure 6. Experimental results show that the
accuracy of the GANobfuscator model is higher than that of
the GAN without noise, and this model greatly increases the
number of samples, making the availability of the generated
model high.

7.2. Comparative Analysis. Both the GANobfuscator and
the DPGAN model are based on the WGAN model and
add noise to the gradient in the discriminator training
process to achieve differential privacy.)eir difference lies
in the way in which the noise is clipped. DPGAN pruning
guarantees that fw(x)􏼈 􏼉w∈W are all Kw − Lipschitz and
limits the gradient of each data point in a way.
GANobfuscator monitors the change in a gradient
through adaptive pruning and dynamically adjusts the
pruning range to achieve faster convergence and stronger
privacy. )e author of [58] conducted an experiment on
the ability of the model to resist inference attacks. )e
experimental results are shown in Figure 7. It can be seen
that, under the CelebA dataset, the GANobfuscator model
has a stronger ability to resist inference attacks than the
GAN, dp-GAN, and DP-GAN models.

8. Conclusion

In the current era of information explosion, the widespread
application of deep learning makes user privacy easy to leak.
)e development of differential privacy technology provides
new ideas for privacy protection in deep neural networks
(DNNs). Using differential privacy to protect data in DNNs is
usually achieved by adding noise during the stochastic gra-
dient descent process. We compared and analyzed several
examples of combining differential privacy with DNNs, and
then we classified them.)e application of differential privacy
in deep learning is classified into three categories. )e first

category adds noise to the model gradient. On this basis, it
discusses how to assign the privacy budget and how to add
noise. )e second type is based on the functional mechanism,
adding noise to the objective function instead of its result.
And the third is a new framework designed to support various
models flexibly. It relies on the aggregation and noise of
multiple teacher models to make decisions. We also pay
attention to the application of differential privacy in Gen-
erative Adversarial Network: GANobfuscator and DPGAN.
)ey are implemented by adding noise to the discriminator,
but their gradient clipping methods are different.

Although the application of differential privacy in deep
learning is currently in its infancy, it is potential and many
methods are worth exploring. Differential privacy can be
widely applied in various scenarios that require privacy
protection, such as recommendation systems, face recog-
nition, and action recognition. In the future, differential
privacy may be combined with federated learning and
transfer learning or defend against adversarial attacks to
improve the robustness of the model.
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