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Abstract
Transcription factor (TF) binding site prediction remains a challenge in gene
regulatory research due to degeneracy and potential variability in binding sites
in the genome. Dozens of algorithms designed to learn binding models (motifs)
have generated many motifs available in research papers with a subset making
it to databases like JASPAR, UniPROBE and Transfac. The presence of many
versions of motifs from the various databases for a single TF and the lack of a
standardized assessment technique makes it difficult for biologists to make an
appropriate choice of binding model and for algorithm developers to
benchmark, test and improve on their models. In this study, we review and
evaluate the approaches in use, highlight differences and demonstrate the
difficulty of defining a standardized motif assessment approach. We review
scoring functions, motif length, test data and the type of performance metrics
used in prior studies as some of the factors that influence the outcome of a
motif assessment. We show that the scoring functions and statistics used in
motif assessment influence ranking of motifs in a TF-specific manner. We also
show that TF binding specificity can vary by source of genomic binding data.
We also demonstrate that information content of a motif is not in isolation a
measure of motif quality but is influenced by TF binding behaviour. We
conclude that there is a need for an easy-to-use tool that presents all available
evidence for a comparative analysis.
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            Amendments from Version 1

We thank the reviewers for their comments. The paper has been 
updated in response to their comments as follows:

1. A sentence is added in the background section to update 
information on the performance of PWM models.

2. Most of the figures have been updated or modified, 
especially the captions. Figure 6 was added while Figure 5 
was replaced.

3. We include analysis on the effect of negative sequences 
on motif ranking. We added a subsection, 'How choice of 
negative (background) sequence affects motif ranking' 
and Figure 6.

4. We include data on a re-run of the analysis using PBM 
data. A paragraph has been included in the Data 
subsection (2nd paragraph), a new subsection, 'Effect 
of PBM data on motif assessment' in the results section 
discussed in the discussion section.

5. A subsection of the results section replaced with 'Effect 
of statistics on motif ranking'. This goes with the new 
Figure 5. In addition, Table 2, which offered supporting 
information to the old Figure 5, has also been removed.

6. The notations used in the formulas have been harmonized.

7. We have added a definition of MNCP to the 'Statistical 
measures of performance' subsection of the methodology 
section.

8. A supplementary section containing Supplementary Figure 1 
to Supplementary Figure 4 for PBM data, for comparison 
with the equivalent ChIP-seq Figure 7 to Figure 10, has 
been added.

9. We have added a list of ENCODE ChIP-seq data used to 
the repository as Supplementary Table 3 (Table S3).

10. Finally, we have made other minor changes in response 
to the reviewers comments, as noted in our detailed 
response to the reviews.

See referee reports

REVISED

Background
Understanding gene regulation remains a long-standing problem in 
biological research. The main players, transcription factors (TFs), 
are proteins that bind to short and potentially degenerate sequence 
patterns (motifs) at gene regulatory sites to promote or repress 
expression of target genes. The search for a code to predict binding 
sites and model binding affinity of TFs has led to several experi-
mental techniques and motif discovery algorithms being developed 
(Figure 1).

A position weight matrix (PWM) is the common form of represent-
ing TF binding specificity. For a motif of length L, the correspond-
ing PWM is a 4 × L matrix of probabilities of observing a base b 
(A, C, G or T) at position i through L. Other forms of representing 
TF binding specificity have been introduced1–4, but Weirauch et al. 
showed that a well-trained PWM performs comparably to some of 
the above well trained complex models5. However, recent studies6–8 
have reported significant improvement to the PWM by models that 
consider nucleotide inter-dependencies. The persistent popularity 
of PWM can be attributed to its simplicity and ease of use as well as 

the ease of visualizing a PWM using a sequence logo9. Motifs can 
be found using a variety of methods including algorithms that do 
de novo motif discovery from sequences containing binding 
sites10–12 and in vitro methods such as protein binding microarrays 
(PBM)13 and high-throughput systematic evolution of ligands by 
exponential enrichment (HT-SELEX)14.

Initially, the low resolution of the available experimental techniques 
for TF binding specificity detection was a hindrance to the qual-
ity of binding models. However, next generation sequencing and 
techniques like chromatin immunoprecipitation (ChIP) followed 
by deep sequencing (ChIP-seq)15 and exonuclease cleavage in 
ChIP-exo16 that measure TF in vivo occupancy, have improved the 
resolution to single-nucleotide level. In addition to providing high 
resolution data for motif discovery, they are a useful resource to test 
the quality of the available motifs since they are TF specific. However, 
no benchmark capable of assessing the growing range of published 
motifs is available and quality measures are largely subjective17.

Although it is possible that PWM models’ ability to describe TF 
binding may be getting saturated, the lack of a robust approach to 
test the quality of a model and maximize the best-performing ones 
may also be hampering improvement in performance. How are the 
algorithms being developed, tested and improved? Furthermore, the 
number of motif finding algorithms from dissimilar data sets and 
subsequently the number of motif models for a single TF gener-
ated, continue to increase. There are at least 44 PWM motif models 
available in 14 different databases for Hnf4a alone. How does the 
end-user decide which motif to use? In this study, we review and 
test the approaches used to evaluate TF binding models.

Review of motif assessment approaches
The available motif assessment techniques can be divided into three 
categories: assess by binding site prediction, motif comparison or, 
by sequence scoring and classification.

Binding site prediction
Early review and assessment of motif-finding algorithms tested 
tools on the ability to predict sites of motifs, known or inserted 
into the sequence. Tompa et al. tested motif discovery algorithms 
by their ability to predict sites of inserted motifs using statistical 
measures for site sensitivity and correlation coefficient18. In this 
first comprehensive study, they found that a motif assessment prob-
lem is complex and admitted that inserting random motifs fails to 
capture the biological condition of TF binding. Later, Hu et al.19 
used real RegulonDB binding data in a large-scale analysis of five 
motif-finding algorithms. The tools available at that time performed 
poorly – “15–25% accuracy at the nucleotide level and 25–35% at 
the binding site level for sequences of 400 nt long” – largely due to 
the poor quality of RegulonDB annotations20.

Sandve and colleagues21–23 tested motif discovery algorithms using 
sequences with real and inserted binding sites as benchmarks; from 
Transfac, and the third-order Markov model respectively. Quest 
and colleagues24 developed the Motif Tool Assessment Platform 
(MTAP) as an automated test of motif discovery tools. However, 
this was computationally expensive and was made obsolete by new 
experimental data and algorithms.
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The most comprehensive assessment based on binding site predic-
tion so far has been by the Regulatory Sequence Analysis Tools 
(RSAT) consortium. In their ‘matrix quality’ script, they use 
theoretical – information content (IC) and E-values – and empiri-
cal scores computed by predicting binding sites in RegulonDB, 
ChIP-chip and ChIP-seq positive and negative control sequences20.

Inadequate knowledge of TF binding sites has mainly hampered the 
ability to assess motifs and algorithms by binding site prediction. 
Predicting binding sites that are inserted or known in the sequences 
cannot accurately identify unknown true sites. Techniques that 
identify such sites may be penalized. Until TF binding sites are well 
annotated, this technique cannot be confidently utilized.

Motif comparison
Novel motifs can be assessed by comparison to ‘reference motifs’ 
using the sum of square deviation, Euclidean distance and other 
statistics that measure divergence between two PWMs25,26. 
Thomas-Chollier et al. proposed a motif comparison approach for 
their RSAT algorithm where they combine multiple metrics, includ-
ing Pearson’s correlation, width normalized correlation, logo dot 
product, correlation of IC, normalized Sandelin-Wasserman, sum 
of squared distances and normalized Euclidean similarity for each 
matrix pair27. They then unified all of these scores to ranks whereby 
the mean of the ranks is considered the overall score.

Assessing motifs by comparison, as currently implemented, only 
tests similarity to the available motifs with little information on 
quality and ranks of the motifs. It assumes accuracy of ‘reference 
motifs’, with no way of assessing novel ones. In addition, the defi-
nition of ‘reference motifs’ remains largely subjective.

Assessment by scoring
Motif assessment has since shifted towards scoring positive 
sequences known to contain binding sites and negative back-
ground sequences without binding sites, driven by high-throughput 
sequencing techniques5,28–30. This avoids the need to identify 
binding sites a priori by focusing on the ability to classify the 
two sets of sequences. The differences in the assessments arise 
from the choice of sequences to use as positive and negative, the 
thresholds used to identify binding sites, the length of the sequences 
in both sets, the scoring function and the statistic used to quantify 
the performance of the tool.

For ChIP-seq data, the main difference is that the length of 
sequences (250bp28; 600bp30, 100bp5 or 60bp31) and the choice of 
negative sets (300bp downstream;28,30; random sequences, 5000bp 
from a transcription start site (TSS) or random genomic sequences5, 
or flanking sequences31) differ greatly in sequence scoring. In addi-
tion Agius et al.31, test PWMs and support vector regression (SVR) 
models in the 36bp sliding window of the test sequences, a deviation 
from the rest of the techniques. All these differences, in addition to 
the scoring functions and statistics used, can lead to variations in 
the results of comparative analyses. Users and algorithm developers 
therefore have to frequently re-invent the wheel to test their tools.

Figure 1 shows the evolution of experimental motif discovery 
assessment techniques. We have not focused on the experimen-
tal techniques or motif discovery algorithms as excellent reviews 
are already available17,32. Rather, we focus on TF binding models 
represented as a PWM and aim to determine how the choice and 
length of benchmark sequences, scoring functions, and the statistics 
influence motif assessment. We hope that this study will highlight 

Figure 1. Evolution of motif scoring functions with experimental techniques and algorithms. Tompa et al.18 and Hu et al.19 assessed the 
motifs by binding site prediction while Orenstein et al.28 and Weirauch et al.5 used scoring. The scoring techniques are colour coded for the 
motif discovery or assessment where they were used.
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some of the pitfalls in the previous motif assessments and provide 
a starting point for a standard in motif assessment that will ensure 
comparability and reuse of results.

Methods
Data
Human uniform ChIP-seq data were downloaded from the ENCODE 
consortium33 (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeAwgTfbsUniform) (List of ENCODE 
data used available in Table_S366). For each peak file, we used 
BEDTools v2.17.034 to extract the 500 highest scored sequences 
(only peaks with no repeat masked sequences were used) of 50, 
100, and 250bp centred on the ChIP-seq peaks as a positive set. Our 
choice for top 500 sequences was informed by our understanding 
of previous research35,36; using a TF-specific percentile of the avail-
able peaks did not make any significant difference (data not shown). 
A negative set of a similar number of sequences and length was 
extracted 500bp downstream from the highest coordinate (highest 
coordinate + 500) of the positive sequences.

When using PBM data to rank motifs, we mainly adopted the defi-
nition of positive and negative sets described by Chen et al.37. A 
given motif is used to score a 36bp sequence for each spot using the 
different scoring functions. For this analysis, we only found nine 
TFs that had comparable data in ChIP-seq and PBM. These were: 
Egr1, Esrra, Gata3, Hnf4a, Mafk, Max, Myb, Pou2f2 and Tcf3. 
The data from Badis et al.38 were downloaded from UNIPROBE 
database13. A detailed Ipython notebook on this analysis can be 
found in https://github.com/kipkurui/Kibet-F1000Research.

We used motifs from a number of databases and publications 
listed in Table 1. The TFs used in this analysis were selected based 
on availability of ChIP-seq data with motifs in at least 10 motif 
databases. We converted these motifs from their various formats 
into MEME format and scored the positive and negative sequences 
with GOMER, occupancy, energy and log-odds scoring functions. 

We quantify how each motif performs using AUC, MNCP, 
Spearman’s and Pearson correlation (Figure 2). This was imple-
mented in a Python module which is available free from https://
github.com/kipkurui/Kibet-F1000Research. This repository also 
contains raw data and Ipython notebooks that document how to 
reproduce the analysis we describe in this paper.

Figure 2. Methodology flow diagram. For a given transcription factor, all motifs available in various databases are extracted and used to 
score the given test sequences. The motifs are then ranked based on a given statistic.

Table 1. Source of motifs used in the analysis. 
“Source” refers to the experimental technique used to 
generate the motifs while “mixed” motifs are generated 
using a variety of techniques. The specific motifs in 
MEME format used for this analysis are provided in the 
data repository66.

Database Source Size Reference

JASPAR Mixed 127 39

UniPROBE PBM 386 13

Jolma HT-SELEX 843 14

Zhao PBM-BEEML 419 40

POUR ChIP-seq 292 41

HOCOMOCO Mixed 426 42

SwissRegulon Mixed 297 43

TF2DNA 3D Structures 1314 44

HOMER ChIP-seq 264 45

Chen2008 ChIP-seq 12 35

3DFOOTPRINT 3D Structures 297 46

GUERTIN ChIP-seq 609 47

CSP-BP Mixed 734 48

ZLAB ChIP-seq 409 36
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Scoring functions
When testing motifs by scoring ChIP-seq or PBM data, multiple 
scoring functions are available, which may affect the outcome. In 
the section that follows, we describe the scoring functions tested, 
as well as provide a review of how they have been previously 
applied.

GOMER scoring
The GOMER scoring framework was introduced by Granek et al.49 
but adapted for PBM sequence scoring37,38. It seeks to compute the 
probability g(S,Θ) = exp(f (S,Θ)) that a TF, given PWM Θ, will bind 
to at least one of the sub-sequences of S. This assumes that each site 
can be bound independently

:
1
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where L is the length of sequence S, and S
t:t+k

 is the sub-sequence 
of S from position t to t+k inclusive. See Chen et al.37 for more 
details.

Occupancy score
The occupancy score calculates the occupancy of a PWM Θ for 
sub-sequence Si of length k as the product of the probabilities of 
each base in Si using equation 2.
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For a sequence S of length L, the sum of the occupancies of all sub-
sequences Si (sum occupancy)28,50, the maximum score (maximum 
occupancy)30, or the average occupancy (average motif affinity – 
AMA) have been used. Sum occupancy is defined in equation 3:
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BEEML-PBM energy scoring
The energy scoring framework of binding energy estimation by 
maximum likelihood for protein binding microarrays (BEEML-
PBM)4 computes the logarithm of base frequencies with the idea 
that this is proportional to the energy contributions of the bases. 
The binding energy at each location is computed; the lower the 
binding energy, the higher the binding affinity. For each sequence, 
the sub-sequence with the lowest binding energy represents the score 
of the sequence. It has mainly been used to score PBM data5,30.

The probability that sub-sequence Si is bound is given by 
equation 4,

( )
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where, for a sub-sequence Si, E(Si) is given equation 5,
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for binding site of length L, ∈(b, t) is the energy contribution of 
base b while Si(b, t) is an indicator function of site t within Si(1 with 
base b, 0 otherwise).

Log-odds scoring
In log-odds scoring, used by a majority of the MEME Suite tools51, 
the score for a given site is the sum of the log-odds ratios of a PWM 
at the match site. For a sub-sequence Si of length L scored using 
PWM Θ, the log-odds score is given by equation 6,

,
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where p
b
 the background probability (uniform background prob-

ability of 0.25 is used) and Si(b, t) is an indicator function of 
site t as in equation 5.

The score for a given sequence can then be derived by summing 
individual scores or by finding the maximum score. Sum log-odds 
scoring has generally been used by MEME Suite tools while maxi-
mum log-odds scoring has also been used to compare motifs rep-
resented differently (PWM, k-mer and SVM models) against one 
another30,31. Each of these approaches has inherent advantages but 
may produce inconsistent results.

Statistical measures of performance
With the scores of each motif for the sequences acquired, binding 
prediction can be evaluated by various statistics. The area under 
the receiver operating characteristic curve (AUC)52 has been widely 
used, especially with the advent of PBM5,28,37. In addition to popu-
larizing AUC, Clarke et al.52 also introduced a novel metric, mean 
normalized conditional probability (MNCP), for quantifying the 
correlation between DNA features and gene regulation. This statis-
tic has been applied for motif assessment in GIMME motifs53 and is 
said to be less affected by the presence of false positives compared 
with AUC since it places emphasis on true positives. MNCP is a 
rank-based statistic that determines if mean occurrence of a motif in 
test sequences is higher than the mean occurrence in a random set. 
Each set of sequences is ranked based on the mean occurrence, and 
the MNCP calculated by finding the mean of the normalized ratio 
of the two sets of ranks. We use MNCP to test how it contributes to 
better prediction in an effort to encourage its use.

Pearson and Spearman’s rank correlation are still widely used as 
a measure of motif performance. Spearman’s rank correlation has 
been used for PBM and ChIP-seq sequences28 while Pearson’s cor-
relation was used by Weirauch et al.5. However, Weirauch et al. 

cautioned on the use of Spearman’s correlation for PBM data citing 
its inability to exclude low intensity probes. We wish to check the 
usefulness of correlation statistics in motif assessment.

In addition to comparing the scoring approaches, we use CentriMo 
version 4.10.0 in differential mode54 – an option that tests differ-
ences in motif enrichment between two sequence sets – in a novel 
way for motif assessment. We set differential mode parameters for 
local rather than central enrichment of all the input motifs in the 
positive (primary) and negative (control) set, as described in the 
Data section, by using a very large threshold. The negative log of 
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the E-value is used as the measure of a motif’s enrichment and rank. 
Motif enrichment analysis has previously been performed36 using 
the FIMO algorithm55 to scan for motif matches in sequences and 
calculate an enrichment value.

Results
Length of sequences has a little effect on motif performance
The size of the putative binding region – length of the sequences 
in each data set – is to some extent a proxy for how accurate the 
ChIP-seq experiment was. If the result was accurate a narrow 
region should contain the true site. For the three variants of 
sequence length, we did not observe a significant effect (p=0.113, 
for 50 and 100; p=0.0545, 50 and 250; p=0.678, 100 and 250bp – 
Wilcoxon rank-sum test) on the scoring of the sequences 
(Figure 3). The scores assigned for each sequence length, however, 
seems to indicate how the TFs bind. Motifs with higher scores at 
lower sequence length (50 or 250bp) are generally enriched at the 
ChIP-seq peak, which is also a strong indicator of direct binding56. 
This is consistent with a previous observation that a successful 
ChIP-seq experiment localizes binding within about 100bp of the 
true site57. Others with significantly better AUC values at 250bp 
sequence length like Elf1 (p=0.017, Wilcoxon rank-sum test) 
and Sp1 (p=0.013, Wilcoxon rank-sum test)58, are known to bind 
cooperatively.

Tissue or cell line of the data could affect enrichment
Transcription factors bind to their possible sites in a sequence- 
specific manner. Some actually have alternative binding motifs 
depending on the tissue or cell line. Unless the purpose of motif 
assessment is to identify tissue-specific binding, if data is available 
from more than one cell line, an average of the scores should be used. 
For example, in Figure 4, we show that the rank correlation of the 

motif scores in different cell lines can be as low as 0.8 for GOMER 
scoring (or as low as 0.65 when energy scoring is used), and not 1 or 
very close to 1 as would be expected if the cell line had no effect. In 
addition, FOXA1_1.GUERTIN motif is differentially enriched only 
in the A549 cell line (although this could be an outlier).

In light of this possible effect, the results displayed throughout this 
paper are based on the mean score of all the available ChIP-seq data 
sets to avoid a bias towards cell line-specific motifs.

How choice of negative (background) sequences affect 
motif ranking
In motif discovery, the choice of background sequences has sig-
nificant effects on the motifs identified. We sought, therefore, to 
test whether motif scoring would be affected in a similar way. In 
addition to downstream sequences, we used a dinucleotide shuffled 
set from the positive sequences. The scores obtained using dinu-
cleotide shuffled positive sequences were always lower than those 
for downstream sequences. We then computed and plotted the rank 
correlation of scores normalized by maximum score for each TF, 
from which we find that it affects the ranks of the motifs (Figure 5) 
in a TF-specific manner. However, the scores from the two sets of 
negative sequences used are not significantly different (p=0.484, 
Wilcoxon rank-sum test). For Myb, the low correlation could be 
attributed to how it binds, indirectly59.

Effect of statistic on motif ranking
The statistic used, whether it measures scores correlation or ability 
to classify the two sets of sequences, will definitely have an effect 
on how we interpret the results of the analysis. Generally, the motifs 
ranks based on AUC and MNCP statistics’ are not significantly dif-
ferent (p=0.52, Wilcoxon rank-sum test), but the ranks based on 

Figure 3. Effect of sequence length. Using all the motifs for each of the 15 TFs, we tested the effect of sequence length (50bp, 100bp and 
250bp) using GOMER scoring on ChIP-seq data. For each TF, the mean of the AUC of the motifs is computed and the mean of all the 15 TFs 
computed to obtain the average. The motifs used in this analysis are available as supplementary data in the repository66.
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Figure 4. Cell line-specific binding. In A, we show how the ranks of the motifs can be influenced by the cell line used in the analysis. Foxa 
motifs are used to score each of the five cell lines using GOMER scoring and quantified with AUC values. Similar results are obtained with 
other scoring functions. In B, we show how the ranks assigned to the motifs are correlated among the cell lines.

Pearson and Spearman’s differ significantly from MNCP or AUC 
scores (p=0.006 and 0.002 respectively, Wilcoxon rank-sum test). 
The large standard deviations of the correlation statistics’ scores, as 
shown by the error bars in the Figure 6, shows how unreliable the 
use of correlation statistics to rank the motifs can be. The correla-
tion scores are also quite low.

Effect of scoring function is transcription factor specific
We tested the ability of PWM models to discriminate positive 
(top 500 peaks of width 100bp centred on the peak) and negative 
(500 peaks 100bp wide located 500bp downstream from the 

positive) sequence sets using five scoring functions. Maximum and 
sum log-odds scoring had low discriminative power for most of 
the motifs when AUC (Figure 7) and MNCP (Figure 8) statistical 
measures are used. However, sum log-odds scoring had some good 
performance (over 0.55 AUC scores) for some TF motifs like Max, 
Nrf1, Tcf3 and Pax5.

There is no significant difference in performance when GOMER, 
energy or occupancy scores (sum, maximum and AMA) are used 
for scoring (Figure 7B) with AUC statistic (see Table_S1 for details 
of statistical significance). Also, we did not observe any significant 
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Figure 5. Influence of negative sequences on motif ranking. For each TF, the available motifs are used to score positive and two sets of 
negative sequence; downstream set and a dinucleotide shuffle of the positive set (see text for details). The figure displays a rank correlation 
of normalized MNCP and AUC scores from the two sets of negative sequences. Pearson and Spearman’s correlation do not require negative 
sequences therefore, they are not affected. We only show results based on GOMER scoring, but similar conclusions can be made from the 
other scoring functions.

Figure 6. Effects of statistics on motif ranking. For each TF, the motifs are used to score sequences using GOMER scoring function and 
ranks determined by MNCP, AUC, Pearson and Spearman’s rank correlation. In this figure, we compute the mean normalized scores and 
compute the standard deviation for each TF, which is displayed as error bars.
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Figure 7. Effect of scoring function on motif ranking using AUC statistic. A. For each TF, the mean AUC score is computed for each of 
the scoring functions used. In B, we show how the ranks assigned to various motifs for a given TF by each scoring function are correlated. It 
displays the pairwise rank correlation for all TFs in A. Sumlog: Sum log-odds function, Sumoc: sum occupancy score and Maxoc: maximum 
occupancy.

difference (p=0.85, Wilcoxon rank-sum test) between sum occu-
pancy and maximum (Table 2), contrary to a claim by Orenstein et 
al.28. When using MNCP, there is a higher rank correlation among 
the scores assigned by the different scoring functions except log-
odds scoring (Figure 8B). When using AUC or MNCP statistic, 
Ctcf, Egr1 and Hnf4a score significantly higher in energy while 
other TFs like Pou2f2 and Esrra, the preference is reversed. These 
observations are reflective of the inherent features of the scoring 
functions or the statistics used.

Motif length and information content
Motif length has little bearing on the quality of motif, independent 
of other factors. However, specific motifs with very high IC such 
as those from POUR have a lower performance (Figure 9). In the 
same light, those motifs with low IC also have a lower performance 
in vivo.

The heat map in Figure 9 shows how the motif scores from the four 
discriminative functions correlate with motif length, full-length 
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Table 2. Mean scores and standard deviation (SD) of AUC and 
MNCP for scoring functions. For each transcription factor, the 
median and mean for AUC or MNCP are computed for all the 
available motifs. Sumlog: Sum log-odds function, Sumoc: sum 
occupancy and Maxoc: maximum occupancy.

Statistic Energy GOMER Sumlog Sumoc Maxoc

Mean AUC 0.68 0.66 0.5 0.66 0.66

Median AUC 0.7 0.67 0.48 0.64 0.64

AUC SD 0.15 0.15 0.11 0.15 0.15

Mean MNCP 1.36 1.36 0.98 1.36 1.35

MNCP SD 0.27 0.32 0.14 0.32 0.31

Figure 8. Effect of scoring function on motif ranking based on MNCP statistic. See caption in Figure 7 for details.

IC and average IC. The examples have no consistent correlation 
between the IC and the scores (Figure 9A). However, there is a 
negative correlation between both the total IC and motif length, 
and the scores except for sum log-odds scoring, which has no sig-
nificant correlation (p=0.34, correlation p-value). This shows that 
motif length, rather than the IC of the motifs, negatively influ-
ences the scores assigned by these functions. This is not a general 
rule. Some TFs exemplify a different scenario. For example, Egr1 
(Figure 9B) has a positive correlation between IC and scores and 
a negative correlation with motif length (except for sum log-odds 
scoring), showing that it has a highly specific binding site60. Mef2a, 
on the other hand, has a positive correlation between motif length 
and scores showing preference for longer low information motifs 
(Figure 9C). This could also reflect variability in binding sites. 
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Ctcf has the highest negative correlation for average IC, with a neu-
tral to positive correlation for motif length (Figure 9D), which may 
indicate preference for longer low IC motifs.

Comparison of motif databases
We have shown that the effect of scoring algorithms is TF-specific. 
We also test to see how, overall, the different databases (DBs) are 
ranked against each other. For TFs with more than one motif in a 
given DB, we use the best performing one to represent the DB. 
We also use motif enrichment-based assessment using CentriMo 
version 4.10.0 to provide more evidence to scoring based techniques’ 

results. Motif enrichment analysis compares how various motifs 
in foreground sequences are enriched compared with background 
sequences. In comparing how two or more motifs for the same TF 
perform, the level of enrichment of the motif in sequences known 
to contain possible binding sites of the TF compared to some 
background should provide a measure of the quality of the motif.

Figure 10 provides a summary of ranking of the various databases 
for the given TFs. We observed that the performance of a majority 
of the motif databases did not differ much, except for TF2DNA 
motifs, but the ranking or the performance of individual motifs 

Figure 9. Effect of motif length and IC on scoring functions. In this figure, we show the correlation of motif length, full length information 
content (IC) and the assessment scores, to determine how performance of scoring functions are influenced by motif characteristics. For each 
motif, the information content is calculated based on information theory for the whole length and also normalized for length. The results for 
average motif affinity (AMA) and maximum occupancy are similar to sum occupancy, and are not included.
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differs. This further supports the observation of TF-specific perform-
ance of scoring function, algorithms and DBs. It also shows that no 
single database currently outperforms the others for all TFs. There 
is agreement in ranking of the best (ZLAB and HOCOMOCO) and 
worst performing (TF2DNA and SWISSREGULON) DBs. We 
observe that, compared with GOMER (Figure 10A), the ranks for 
most DBs remain the same when using energy (Figure 10B) except 
for POUR and JOLMA. This shows that motifs from these DBs, 
or at least the best performing ones, may be favoured by energy 

scoring. It is also noteworthy that POUR and GUERTIN DB motifs, 
discovered and tested on ENCODE ChIP-seq data, generally per-
form poorly.

Effect of PBM data on motif assessment
To test whether the conclusions of the paper are only linked to ChIP-
seq data, we re-ran the whole analysis using PBM data from the 
UniPROBE database13. It is important to note that we only found 
9 TFs that had PBM data from the set used in ChIP-seq analysis. 

Figure 10. Ranking of motif databases. We compare the motif databases by using the best ranking for each motif using GOMER and energy 
AUC and MNCP values, and CentriMo enrichment values. For each scoring function, the scores for each TF are normalized by dividing each 
value with the maximum, which are then averaged to rank the different databases.
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Since this may bias the comparison, we compared with a similar 
set in ChIP-seq and found the observations below were not affected 
by the difference in number of TFs used. These observations 
include:

1. A much higher energy score in PBM (Figure S1 and 
Figure S2) compared with ChIP-seq (Figure 7 and 
Figure 8). We also observe a much lower correlation 
between the energy and the occupancy scores.

2. A stronger negative correlation between the occupancy 
scores and motif length -0.47 compared with -0.28 of 
energy scoring (Figure S3), an observation not made 
when using ChIP-seq data (Figure 9). This may actually 
explain observation 1.

3. Motifs generated using the PBM technique perform best 
when using occupancy scores with MNCP or energy 
scores with AUC or MNCP, except when occupancy 
scoring and AUC are used (Figure S4). Poor ranking 
of UniPROBE PBM-derived motifs by GOMER-AUC 
may be linked to the fact that they penalize long motifs – 
UniPROBE motifs are know to be long (mostly over 
14bp).

4. Energy scoring with either MNCP or AUC, or occupancy 
scoring with MNCP display similar behaviour: a prefer-
ence for specific motifs, which may be longer or have 
a higher IC. This supported by the high negative corre-
lation between motif length and occupancy scores with 
AUC (Figure S3).

5. TF2DNA motifs perform better when PBM data is used 
(Figure S4A) compared with ChIP-seq data (Figure 10A), 
and especially so when GOMER scoring is used together 
with AUC statistic. It is not immediately clear what the 
cause of the difference of performance of TF2DNA 
motifs in PBM and ChIP-seq data is, but the short length 
(7bp) of TF2DNA motifs and the fact that they were gen-
erated in vitro could provide some explanation given that 
PBM data are generated in 8-mers and PBM is also an 
in vitro technique.

Discussion
We have described a comparative analysis on the effect of scor-
ing functions, ChIP-seq test data processing and statistics on motif 
assessment. We chose to focus on TF binding models represented 
as a PWM, since it is most commonly used. The review reveals the 
complexity of the motif assessment problem, showing no appropri-
ate solution is available so far. The available techniques focus on 
testing motif algorithms or the experimental techniques used, but 

little has been done to compare the available motifs for a given TF. 
There is a need for a tool, accessible and easy to use by end-users, 
to aid in choosing motifs.

The use of 100 or 250bp sequence length provides necessary dis-
crimination for the TFs tested (Figure 3). The performance was also 
found to be TF specific, an observation that could reflect inherent 
binding behaviour; direct, indirect or cooperative binding of the TF. 
This supports the observation that direct binding can be inferred 
from ChIP-seq peaks56. We also confirm that 100bp provides 
acceptable specificity in motif assessment given that most TF bind-
ing sites are less than 30bp57.

Since TF binding is cell line specific61, users should be aware of 
bias caused by use of one cell line in an assessment. We observe 
that the use of more than one cell line reduces the bias towards cell 
line specific motifs (Figure 4).

The MNCP rank-order metric is similar to AUC but derived by 
plotting true positive hits against all sequences’ scores. This places 
emphasis on true positives and therefore is less affected by false 
positives. Most of the observations from the PBM-based analysis 
support the conclusion that energy scoring prefers specific motifs 
(long or with a high IC). We also observe an agreement when 
energy scoring is used with AUC and MNCP, or occupancy scoring. 
In MNCP, the preference for specific motifs is expected because 
the MNCP score provides a rank-based measure of the ratio of 
mean occurrence of a motif in test sequences and a random set. 
These observations are not conclusive and further research may be 
required. Although there is no clear winner among the scoring func-
tion, occupancy-based (GOMER, AMA, sum and max) and energy 
scoring functions are preferred. We recommend, based on the pre-
sented evidence, using occupancy scoring with the MNCP statistic 
or energy scoring with normal AUC or the MNCP statistic.

There is no significant correlation (p=0.513, correlation p-value) 
between the IC and the motif scores (Figure 9). This compares with 
the conflicting observations that the best-quality motifs may have 
low IC motifs5, or high IC motifs62. Weirauch et al. did not normal-
ize for motif length, which results in high IC motifs that are gener-
ally longer but not necessarily more specific5. A shorter motif with 
higher IC per position will be more specific but have lower total 
IC. We argue that the effect of IC on motif quality is dependent on 
the TF binding behaviour. TFs with short and specific binding sites 
will favour high IC while those with long and variable binding sites 
will be more accurately modelled with low IC. Furthermore, it has 
been shown the low IC flanking motif sites contribute to specificity 
of binding in vivo62. We have also shown that the techniques used in 
motif assessment have a direct effect on motif discovery. We observe 
how motifs generated from similar data using the same techniques 
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could have highly variable performance in POUR, ZLAB and 
GUERTIN motifs (Figure 10). This difference in quality can be 
explained by motif discovery algorithms used, data processing 
as well as the assessment techniques used in each motif discov-
ery pipeline. POUR motifs are learned from full-length sequences 
of the top 250 peaks using five motif finding algorithms (MEME, 
MDscan, Trawler, AlignAce and Weeder)41, the ZLAB group used 
100bp of the top 500 sequences centred on the ChIP-seq peaks using 
MEME-ChIP63, while GUERTIN reports the top 5 motifs for each 
technique generated using MEME. For quality assessment, POUR41 
used a TFM-PVALUE64 to match motifs against the testing ChIP-
seq data set and the most enriched motifs against a background 
composed of intergenic non-repetitive regions. ZLAB group used 
FIMO55, which uses a log likelihood score for motif scanning.

The worst performing motifs, from TF2DNA, are generated from 
3D models of TF from experimental or homology-modelled PDB 
files. When generating these models, they determined the accu-
racy of the models based on similarity to UniPROBE and JASPAR 
motifs at a given threshold. They claimed their technique success-
fully identifies true motifs 41–81% of the time depending on the 
quality of templates used in modelling 3D structures. We speculate 
that part of the reason for this low performance could be use of 
motif comparison against ‘reference motifs’ as a measure of motif 
quality, in addition to being in vitro derived. Better performance 
of TF2DNA motifs in PBM data (Figure S4) further supports this 
observation. Although JASPAR and UniPROBE are widely used, 
reliance on reference motifs is problematic, especially with the 
advent of motif databases like HOCOMOCO and CIS-BP that have 
motifs with better prediction quality. As a general principle, it is 
not reasonable to use historical data as a benchmark for assessing 
potentially better new methods.

We also show that the choice of data used in motif assessment has 
a direct effect on the ranks of the motifs. It goes without saying 
that PBM-derived motifs will perform better when tested with PBM 
data or for ChIP-seq based motifs tested on ChIP-seq data. The main 
criteria for choosing the test data should be based on the intended 
use of the motifs. In addition, we confirm the effect of negative 
(background) sequences in motif assessment, an effect well known 
in motif discovery.

We have confirmed that motif assessment has transcription-specific 
variability, an observation previously made65. Assessments should 
be less focused on how a particular motif database or algorithm 
performs but on how different motifs, for a particular TF, perform 
compared to the other potential motifs. For the end user, no single 
database can provide the sole measure of quality of new data. This 
raises the need for collation of the different motifs tested using a 
variety of motif assessments to provide information to the end user 
on their ranks.

Conclusions
We have demonstrated that the scoring techniques used in motif 
assessment influence ranking of motifs in a TF-specific manner. 
Motif assessments and tools developed to date have focused on 
comparing algorithms, experimental techniques or databases. 
This does not help the user choose which motif to use for a given 
TF. Some TFs reviewed here have at least 44 PWM motifs avail-
able, raising the need for a tool that can be utilized to rank these 
motifs. We have also shown that data processing as well as motif 
assessment can have a significant influence on the quality of motifs 
derived. Therefore, the choice of an assessment approach should be 
given as much thought as that of the motif discovery algorithm to 
use. We have also shown the effect of IC on motif quality is influ-
enced by TF binding behaviour.

In short, a single measure of motif quality is likely to remain elu-
sive, pointing to the need for tools and methods for comparative 
analysis using multiple methods. Lessons learned from this analysis 
will be useful in a number of ways. Firstly, we are working on a 
web-based application that can allow users to compare motifs avail-
able in different databases for a specific TF. Secondly, we intend 
to extend the motif by comparison approach to avoid ‘reference 
motifs’ bias. Thirdly, we have shown the effect of motif scoring 
on motif discovery. We intend to use the robust motif assessment 
techniques we introduce to improve motif finding.
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Supplementary information
This section provides supporting figures for the paper.

Figure S1. Effect of scoring function on motif ranking using AUC statistic for PBM data. A. For each transcription factor (TF), the mean 
AUC score is used to represent it for each scoring functions used. In B, we show how the ranks assigned to various motifs for a given TF by 
each scoring function are correlated. It displays the pairwise rank correlation for all TFs in A. Sumlog: Sum log-odds function, Sumoc: sum 
occupancy score and Maxoc: maximum occupancy.
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Figure S2. Effect of scoring function on motif ranking based on MNCP statistic in PBM data. See caption in Figure S1 for details.
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Figure S3. Effect of motif  length and IC on scoring functions using PBM data.  In this figure, we show the correlation of motif length, 
full length information content (IC) and the assessment scores, to determine how performance of scoring functions are influenced by motif 
characteristics. For each motif, the information content is calculated based on information theory for the whole length and also normalized for 
length. The results for average motif affinity (AMA) and maximum occupancy are similar to sum occupancy, and are not included.
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Figure S4. Ranking of motif databases when based on PBM data. We compare the motif databases by using the best ranking for each 
motif using GOMER and energy AUC and MNCP values, and CentriMo enrichment values. For each scoring function, the scores for each TF 
are normalized by dividing each value with the maximum, which are then averaged to rank the different databases.
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I accept this revised version of the manuscript. I am satisfied with the updates provided by the authors.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 31 March 2016Referee Report

doi:10.5256/f1000research.8713.r12883

 Jan Grau
Institute of Computer Science, Martin Luther University of Halle-Wittenberg, Halle, Germany

I am happy to state that the authors thoroughly addressed most of my concerns regarding the previous
version of the manuscript.
However, I still have a few minor comments, which the authors might consider, as listed in the following.

In the introduction, the authors state that Chip-seq has improved "resolution to single-nucleotide
level", whereas at the beginning of the Results section, they state that "a successful ChIP-seq
experiment localizes binding within about 100bp of the true site", which still is quite accurate but
not exactly single-nucleotide accuracy. Please clarify.
 
In section "Background", sub-section "Motif comparison", the authors list as possible measures of
motif divergence "sum of square deviation, Euclidean distance". As the former is just the square of
the latter, I would suggest to give another example (for instance, correlation-based meaures) in the
introduction of that sub-section.
 
In section "Methods", sub-section "Data", the authors now describe the selection of negative
sequences, which were "extracted 500bp downstream from the highest coordinate".

a) However, as ChIP-seq peaks lack an orientation, I wonder which direction "downstream" refers
to. Does this mean that the authors considered the forward strand of the available genomic
sequence, or do they also take, e.g., the orientation of closely located genes into account?
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b) In the response, the authors explain that "our focus was to get negative sequences [...] which
maintains the nucleotide composition". As I mentioned in my previous review, sequences located
500bp downstream of a transcription factor binding site might already be located in coding
sequence, which affects nucleotide composition. Could the authors please comment on this issue?
 
In section "Methods", sub-section "Data", the authors explain that they "only found nine TFs that
had comparable data in ChIP-seq and PWM". However, there are additional, similar data sets for
at least Foxo1, Zfx, Tbx5, and Nr5a2 available (see Grau ., 2013 for details). Please clarify.et al
 
In equation 1, parentheses might help to spot the argument of the product.
 
In equation 4, the parameter μ is not explained.
 
In Figure 3, the authors discuss the influence of sequence length on AUC. However, I would
consider the influence of sequence length on the ranking of motifs more relevant for the topic of the
manuscript.
 
In section "Results", sub-section "Effect of PBM data on motif assessment", 5th item of the list, the
authors state that "PBM data are generated in 8-mers". As far as I know, PBMs are typically
designed such that they cover all 10-mers (see, e.g., ).http://the_brain.bwh.harvard.edu/pbm.html
In addition, the authors might clarify which data they used for the assessment (the probe
sequences and intensities, I assume?).
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 Jan Grau
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The manuscript "Transcription factor motif quality assessment requires systematic comparative analysis"
by Kibet and Machanick addresses the assessment of transcription factor binding motifs. This question is
especially important for selecting appropriate motifs for computational predictions given the large number
of different motifs for the same transcription factor available from databases. Kibet and Machanick
specifically consider different measures for motif scoring and assessment, and investigate different
factors that might influence the assessment and, hence, the chosen motif.
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factors that might influence the assessment and, hence, the chosen motif.

The topic is of great relevance in any research dealing with sequence motifs and a systematic analysis of
the factors influencing their assessment may help to develop a standardized framework for motif
assessment.
However, I have several reservations regarding the current version of the manuscript as outlined below.

As a general comment (that does not necessarily require a response by the authors), I found it slightly
disappointing that the present manuscript does pose many important questions and potential obstacles in
motif assessment, but does not provide a solution, be it guidelines for reasonable motif assessment or be
it even a platform for performing such analyses.

DATA:

1. I wonder why the authors decided to only consider ChIP-seq data but no data (PBMs orin-vitro 
SELEX). While  binding may of greater relevance for many applications, problems like cellin-vivo
type-specificity of motifs (also addressed by the authors) would have a minor influence. In addition,
competitive or interaction effects with other transcription factors might be ruled out. Finally, some of the
motif sources considered derive their PWMs from  data. In summary, an analysis also using in-vitro in-vitro
data might affect the conclusions of the paper.

2. For all ChIP-seq data sets under consideration, the authors extract (only) the top 500 highest scoring
sequences for the assessment. This may have largely differing effects for different transcription factors,
where, for instance, one transcription factor might have several hundred ChIP-seq positive regions,
whereas another transcription factor might have tens of thousands of ChIP-seq positive regions. Hence, in
one case also lowly occupied sequences are collected whereas in the other case, the positive data set
may only contain the most stringent binding sequences. This may affect all downstream analyses and, for
instance, could be one of the reasons why the authors observe transcription factor-specific effects for
some factors. Hence, I would strongly suggest to conduct the analysis with a transcription factor-specific
selection of sequences (where the simplest idea might be to use just a percentile).

3. a) The authors state that they construct a "similar" negative set. Here, the authors should clearly define
what "similar" means, how sequences are selected, and how many negative sequences are in the set. 
b) In addition, the specific selection of negative sequences described by the authors (500bp
"downstream", where "downstream" is also unclear as ChIP-seq regions lack an orientation), might
introduce a specific bias, because under the assumption that transcription factor binding sites are often
located close to the transcription start, which might mean that the negative sequences may already be
coding and, hence, per se different from promoter sequences.
c) Finally, from my experience, the choice of the negative data set strongly affects the performance
assessment of motifs. Hence, the authors might consider to test an additional set of negative sequences
(e.g., di-nucleotide shuffled positive sequences) in their analysis.

METHODS:

4. The "Methods" section, especially formulas needs substantial revision:
a) In general, notation should be harmonized between the different formulas. For instance, the sequence
S appears with different indexes with different meanings; the indicator function is denoted by S_i(b,m) in
eqn. (5) and by I(S_{i,b}) in equation (6).

In addition:
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In addition:
b) In eqn. (1), parentheses are missing around (1 - P(...)). In addition, the notation S_{t+1:t+k}^{i} is not
explained
c) In eqn. (2), it is unclear if i and [S_{t=i}] are indexes or if this should denote a product of \theta, i and
S_{t=i} (which I consider unlikely). In addition, the variable t (in the index) is neither bound nor explained.
d) In eqn. (3), the upper limit of the sum is |s|, where it should be |S|, I assume. In addition, there seems to
be something missing (a \theta?) in the product.
e) Before eqn. (5), the authors refer to T as the length of the sequence. However, considering the formula,
the length should be L, and the first sum from A to T refers to the alphabet. In addition, eqn. (6) again
denotes the sum over the alphabet differently.
f) In eqn. (5), the text refers to sequence S but the formula to sequence S_i
g) In eq. (6), the variable P_b is not defined (the authors later only refer to p, which might have the same
meaning). In addition, the authors to not explain, which background distribution they use in the
assessment, which will be relevant, e.g., for the results presented in Fig. 6.

5. The energy scoring framework (eqn. 4 and 5) and the LogOdds scoring framework are formally defined
only for sub-sequences and it remains unclear how these are applied to longer sequences from ChIP-seq.
Are those subjected to the occupancy definitions (maximum and/or average) as well?

6. LogOdds scoring is referred to as "Log likelihood scoring" in the section's title (page 6, left column),
which is not fully correct.

7. On page 6, right column, second paragraph, the authors state that they "wish to check the usefulness
of correlation in motif assessment" (which I would find interesting), but I did not find any results regarding
correlation as performance measure in the results.

RESULTS:

8. In several cases, the figure captions are too minimalistic to understand the contents of the figure. I
would suggest to spend a few more sentences in the captions to explain the main idea of each figure. In
addition, not all of the abbreviations are explained in the caption of Fig. 6.

9. On page 6, penultimate paragraph, the authors state that "the Foxa motif from the POUR data set is
significantly differentially enriched only in the A549 cell line", which I could not read from Fig. 4. Please
clarify.

10. On page 8, right column, the authors state that "MNCP prefers specific motifs, which will have more
true positives". Could the authors elaborate on these findings and also possibly give an (mathematical)
explanation?

11. In Fig. 6, the authors show AUC values for different motifs and scoring functions. 
a) First, it remains unclear which data sets have been used in this analysis for the different transcription
factors. Is it just the average over all motifs and data sets for each factor? 
b) Second, I did, unfortunately, not get the general idea of this analysis. If I understood it correctly, the
main question of this manuscript is to study the effects of different factors on motif assessment with the
goal of selecting the most appropriate motif for a given transcription factor. However, here it seems to be
that exactly this information is averaged out. Wouldn't be the more interesting question how the scoring
functions affect the ranking (by AUC) of the different motifs for each transcription factor?
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12. On page 10, left column, the authors state that they "did not observe any significant difference
(p=0.85, Wilcoxon rank-sum test) between sum occupancy and maximum (Table 3)". However, I did not
find maximum occupancy listed in Tab. 3.

13. On page 11, right column, the authors state that Egr1 has strong positive correlation between IC and
scores. However, I found this correlation not too strong for Average_IC and in most cases not even
positive for Motif_IC.

14. a) In remains unclear, what exactly is shown in Fig. 8. I speculate that the authors computed the
correlation of AUC values, IC and motif length for different data sets and motifs? Or is it really correlation
between occupancy/energy and IC/length? 
b) In addition, most of the entries of the heatmaps show correlations between the occupancies/energy,
which, however, is not discussed. If correlation between occupancies/energy is not of interest, the authors
might consider omitting all but the first three rows of the heatmaps. 
c) Further, I wonder why the correlation between identical entries (e.g., Motif_IC with Motif_IC) is not
equal to 1 in panel A.

15. On page 12, second paragraph, the authors explain that they used the best performing motif to
represent each database. However, this will introduce a bias towards larger databases, because these
may contain a larger number of motifs for a transcription factor and, hence, are allowed to try a larger
number of options, of which the best is chosen. I would suggest to use another, less biased statistic (e.g.,
the median) instead/in addition.

16. The authors also use CentriMo scoring for comparing databases, which they did not consider before,
and I wonder what is the reasoning behind using CentriMo in this case (and not before).

17. In Figure 9, panel C, the authors rank the databases by average CentriMo score, while the magnitude
of scores differs greatly between transcription factors and, hence, is dominated by data sets with large
scores (e.g., cebp). I would suggest to level the influence of transcription factors, for instance by dividing
the values in each column by their maximum value before averaging.

18. On page 12/14, the author state that "This supports our view that use of motif comparison against
‘reference motifs’ as a measure of motif quality is not reliable". While I agree with the general conclusion
of the authors, I do not see why the performance of TF2DNA supports this conclusion. If only 41-81% of
the TF2DNA motifs are correct (according to comparison against reference motifs), I would have
expected a lower performance compared to the other databases.

OTHER/MINOR:

19. In section "Background", second paragraph, the authors refer to Weirauch ., stating that aet al
well-trained PWM performs comparably to more complex models. While this correctly describes the
finding of Weirauch ., several publication in the meantime came to different conclusions (e.g.,et al
Kulakovskiy ., 2013 ; Mathelier & Wasserman, 2013 ; Mordelet ., 2013 ; Keilwagen & Grau,et al et al
2015 ). Hence, the authors might consider to make this statement more balanced.

20. In section "Background", fourth paragraph, the authors state that "the quality of models derived has
not improved in a comparative manner". I am not fully sure if I understand the statement correctly, but if

the authors mean that the experimental techniques have improved, but the motifs did not (or much less), I

1 2 3
4
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the authors mean that the experimental techniques have improved, but the motifs did not (or much less), I
would challenge this statement and at least encourage the authors to provide a reference.

21. The authors should provide a list (or a link to a list in their repository) of the specific ENCODE data
sets used in the analysis.

22. Table 1: Chen2008 should be ChIP-seq data.

23. As performance measures, the authors consider the area under the ROC curve and MNCP. While the
former might be familiar for most working in the field, the authors might consider to give a short formal
definition of MNCP. In addition, the area under the precision-recall curve might be another useful measure
for imbalanced data sets. [However, depending on the construction of the negative data set, the test data
might even be balanced.]

24. Typos & Grammar:
- Page 4, second paragraph: "Sandev" should be "Sandve"
- Page 4, 5th paragraph: "Sandelinâ-Wasserman" should be "Sandelin-Wasserman"
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 10 Feb 2016
, Rhodes University, South AfricaCaleb Kipkurui

Thank you very much for your insightful comments and recommendations. They have helped us
improve the paper.

The main aim of this paper is to identify the weaknesses and potential pitfalls in the current
techniques used in motif assessment. As part of our conclusions, we state that we will use the
findings of this paper to develop a motif assessment platform to address the questions and the
gaps. That work is almost done and should be available by March 2016, and is therefore out of the
scope of this paper.

1. We focused on ChIP-seq data in assessment since we believe that, for most cases, the final
utility of the motifs learned is predicting  binding of the motifs. That said, we agree that datain vivo

Page 27 of 33

F1000Research 2016, 4(ISCB Comm J):1429 Last updated: 01 APR 2016

http://www.ncbi.nlm.nih.gov/pubmed/23427986
http://dx.doi.org/10.1142/S0219720013400040
http://www.ncbi.nlm.nih.gov/pubmed/24039567
http://dx.doi.org/10.1371/journal.pcbi.1003214
http://www.ncbi.nlm.nih.gov/pubmed/23812975
http://www.ncbi.nlm.nih.gov/pubmed/23812975
http://dx.doi.org/10.1093/bioinformatics/btt221
http://www.ncbi.nlm.nih.gov/pubmed/26116565
http://dx.doi.org/10.1093/nar/gkv577


F1000Research

1. We focused on ChIP-seq data in assessment since we believe that, for most cases, the final
utility of the motifs learned is predicting  binding of the motifs. That said, we agree that datain vivo
used in testing the motifs does have an effect on the ranking of the motifs. This is an observation
we confirm with our re-analysis using PBM data. We have included a section on how assessment
in PBM and ChIP-seq are influenced differently (Effect of PBM data on motif assessment). 

2. Our choice for top 500 sequences was informed by our understanding of previous research.
However we did not make it clear that such prior work supports this point, and we have now cited a
reference. As advised, we decided to test if this would affect the results from this analysis. The
ChIP-seq peaks we use have a median of 14000 peaks, the highest having 92,258 peaks and a
minimum of 101 peaks. Where the number of the available peaks was less than 500, we used all
the peaks. Given the median number of peaks, we found 5% of the peaks to be appropriate and we
used  this when 5% the of the total was more than 500, else we used top 500 peaks (or all of them,
for data sets smaller than this). We also tested for 10% of the peaks. In all this, we found that the
size of the peaks used had no significant effect on the results obtained. We, therefore, eliminate
that as being one of the reasons for cell line specific binding.  This may, however, have an effect on
cell line specific ranking behaviour even if we did not observe that in our examples, given that the
number of peaks differs for a given TF in different cell lines.  We will definitely consider this
suggestion when developing our tool to avoid any potential bias caused by this.

3. a) The manuscript has been updated. By similar we mean in size and sequence length.

b) In our analysis, downstream is based on the coordinates of the peaks. We extracted sequences
located 500bp from the highest coordinate (highest coordinate + 500). Our focus was to get
negative sequences which are not expected to contain binding sites for the given TF but
which maintains the nucleotide composition. That distance, whether it falls in a promoter region or
not, should be appropriate in for our specific analysis. 

c) On other negative sequences that can be chosen, we agree that this can have some influence in
the analysis. The scores obtained when a negative set generated using
 dinucleotide shuffled positive sequences were always lower than those from downstream
sequences. However, the ranking of the motifs did not change in any significant manner. We
expect random negative sets to have a significant influence on the ranks of the motifs and their
probable difference in GC content from the binding region makes their appropriateness
questionable. 

4. The notations used in the formulas have been updated for uniformity. Thank you!

5. For energy scoring, the subsequence with the lowest energy is used to represent the sequence
while for logOdds scoring, the score can either be obtained by getting the sum or the maximum
score for all the sub-sequences. Clarified in the paper, thank you.

6. Corrections have been made in response to 6, 8 and 9.

7. We have updated the Figure 5 to include details on the usefulness of correlation statistics. We
find them to produce significantly different ranks from MNCP or AUC or even between Pearson
and Spearman correlations.

8. Done

9. Done
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9. Done

10. We have updated the paper in to add a line giving more information about MNCP. Simply put,
the MNCP is a rank-based statistic that determines if the mean occurrence of a motif in test
sequences is higher that the mean occurrence in a random set. Each set of sequences is ranked
based on the mean occurrence, and the MNCP is calculated by finding the mean of the normalized
ratio of the two ranks. 

11. We have updated Figure 6 (now Figure 7) to address the comments. Our earlier figure actually
averaged the information on the effect of scoring functions on the ranks of the motifs. We have
updated by using the rank correlation of the motifs for various TFs to show how it affects ranking.  

12. Table 3 (now Table 2) has been updated to include maximum occupancy.

13. On Egr1 motifs correlation of motif IC and scores, we have updated the statement to be in
accordance with the data. 

14. In Figure 8 (now Figure 9) we have updated the figure to only retain relevant columns. We have
also corrected the error that led to identical entries’ correlation being more than 1. 

15. On why we chose to use the best motif's score to represent a database, we argue that since
the focus of this analysis is to test our ability to choose for the best motif, irrespective of the
database, we find using the best motif score to represent the DB to be sufficient. Besides, using
median will still lead to biased results since DBs with many motifs of low quality and a few of high
quality will be poorly ranked. 

16. We only introduce CentriMo at a later stage of our analysis as an alternative method of scoring
techniques to motif assessment. The focus of the paper was to systematically assess the factors
that do influence motif assessment, so we wanted to maintain that focus. 

17. We have taken your suggestion on Figure 9 (now 10) to normalize the scores. Thank you.

18. On the performance of TF2DNA, we agree that the low performance would be expected. We
also believe that a different approach to motif assessment during motif discovery may have
produced better motifs. In addition, testing using PBM data produced a much better performance.
This may be a consequence of the motifs being short and only generated using  methods.in vitro

19. The background section has been updated to include to making the observations balanced and
including recent citations.

20. We accept that our statement on the lack of significant improvement of the motifs may have
been misleading and unsupported. We have updated it to reflect current evidence. 

21. A list of the ENCODE data we use has been added to the repository

22. The source of Chen2008 updated to ChIP-seq from PBM in table 1. Thank you

23. A definition of MNCP has been added to the paper. We had previously tested area under
a precision-recall curve and found it to produce similar results to AUC. 
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24. Typos corrected

Once again, thank you. 

 No competing interests were disclosed.Competing Interests:

 05 January 2016Referee Report

doi:10.5256/f1000research.7983.r11604

 Trevor W. Siggers
Department of Biology, Boston University, Boston, MA, USA

The manuscript by Kibet “Transcription factor motif quality assessment requires systematicet al. 
comparative analysis” addresses an important issue in the field of regulatory genomics, namely how we
analyze motif enrichment in genomic datasets. The authors have addressed this issue in a systematic
way by compiling many datasets and versions of motifs, and analyzing the impact of different scoring
methods.

This type of meta-analysis will be of interest to a wide audience. However, the current manuscript needs
considerable revision. In particular, the connections between the data presented and the conclusions
reached need to be strengthened and clarified. Furthermore, a lot more clarification about what is being
shown in the figures is needed to properly evaluate the conclusions. Below I have outlined specific
examples through to Figure 8.  The figure legends could definitely use more detail to help clarify what is
being shown, and there needs to be more explicit and careful connection between the data and the
conclusions (see examples below). I think that the type of analyses contained in this manuscript will be of
interest to a wide audience; however, the manuscript needs to be substantially revised.

 
Is Chen2008 databases, Reference 39, really PBM data?Table 1. 

 
  For each peak file, the 500 highest scored sequences were identified “after eliminatingMethods/Data.

repeat masked sites”.  It is a little unclear what this statement means. Does that mean that no peak was
selected if there was any repeat masked seqeuence within the 50, 100 and 250bp windows? Or was the
repeat masked sequence just masked and the genomic window extended to attain the 50, 100 and 250
bp cutoffs? Also, for the negative set, does ‘similar’ mean length-matched? It was exactly clear how this
negative set was constructed.
 

 It was not clear why only a subset of 15 of the Encode ChIP-seq datasets were usedFigure 3 /results.
and shown here, and how many datasets were used in the ‘Average’?  Also, the figure caption notes that
‘all the motifs for the 15 TFs’ were used, but it’s not clear how many that was and whether the reported
AUC values were averages over their individual AUC values? I little more clarification would be helpful.
 

  The authors write, “Unless the interest is tissue-specific binding, if more than one set of data isPage 6.
available, an average should be used”. Used for what? For motif discovery? 
 

  Why was ‘energy scoring’ used for this enrichment analysis, while GOMER scoring was used inFigure 4.

Figure 3? Are the results dependent on these scoring differences? If not, then for consistency sake, it
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Figure 3? Are the results dependent on these scoring differences? If not, then for consistency sake, it
would be helpful to limit the enrichment analyses to a single scoring scheme.
 

 The authors conclude, “the Foxa motif from the POUR data set is significantlyPage 6/Figure 4.
differentially enriched only in the A549 cell line and not so much in the other cell lines”.  I have no idea to
what the authors are referring here, and this is the only conclusion from Figure 4. There are 5 different
FOXA_discX.POUR motifs, all of which seem to score about the same on the different ChIP datasets.
There is a FOXA1_2.GUERTIN that seems to be quite different, but this seems like an outlier within the
dataset. I do not see how the data supports the contention that there are specific FOXA motifs that are
better suited to particular ChIP datasets, it seems that for the most part they agree. Much more clarity is
needed here.  
 
Page 8 / Figure 5. 
“However, in some situations like Hnf4a and Ctcf, they are not (Figure 5)”. I only see Ctcf data
represented in Figure 5, this should be clarified.
 
“The motifs ranked higher only by MNCP are generally long or with high IC (Table 2)”.  It would be much
easier to see this if they were indicated somehow in Figure 5, perhaps with arrows are stars or something.
Second, these conclusions don’t seem to follow from the data at all. The CTCF_disc1.POUR seems also
to score high with Energy_AUC, so it’s not clear that the MNCP is the only factor of relevance here.  The
CTCF.1_5.ZLAB seems to be most affected by the Energy vs GOMER scoring, and not the MNCP
approach.  Even if these issues were resolved, it is impossible to know whether these motifs are
‘generally long or with high IC’ from Table 2, because the other motifs aren’t shown. It would be much
clearer if the mean and variance of the length & IC for all motifs were also provided for context, or even
better correlate the relative score AUC to MNCP differences by length or IC, to truly see if a trend exists.
 

 Figure 6.
Please clarify in the figure legend whether these values are for averages over multiple ChIP datasets (as
was discussed above), and if so how these averages are determined.
 
“Maximum and sum log-odds scoring had low discriminative power for most of the motifs when all three
statistical measures are used (Figure 6)”. What are the three statistical measures you’re referring to, and
where’s the data? I only see data for AUC. Please clarify.
 

Please be explicit in the figure legend about what the ‘Mean’ and ‘Median’ refer to (i.e., meanTable 3. 
and median AUC values calculated over X single motif analyses described in Figure 6)
 

 “The variation in the scores is particularly reduced when MNCP statistic is usedFigure 7/ page 10.
(Figure 7)”.  How am I supposed to see this? What is a significant difference in MNCP and how does it
compare to a difference in AUC.  Based on the coloring scheme presented the results in Figure 6 and
Figure 7 look very similar- it is not clear at all that there is any qualitative difference between these two
figures except for the different measures used (i.e., an appropriate normalization might make them near
equivalent).
 

  It is not clear (nor mentioned) what is being shown in this figure. I assume – but I could beFigure 8.
wrong – that we’re looking at AUC values for each factor (i.e., Mef2a etc) averaged over some ChIP-seq
datasets, but how are these being compared to each other? Further, how is Motif_IC which is a function
just of the PWM being compared to a scoring function. I can’t speak to the conclusions being reached as I
don’t currently know what data is being shown. Much more clarification is warranted in the text and figure

caption.

Page 31 of 33

F1000Research 2016, 4(ISCB Comm J):1429 Last updated: 01 APR 2016



F1000Research

caption.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 10 Feb 2016
, Rhodes University, South AfricaCaleb Kipkurui

Thank you very much for taking the time to review our paper and provide recommendations.Your
comments have been very helpful in improving the paper.

Table 1
Corrected

Methods/Data
On repeat masked sequences, we have updated the paper to clarify the we did not include any
sequences in test or negative sequences that contained masked positions. By a similar set of
negative sequences, we mean matched in length and number of sequences. 

Figure 3/Results
The figure caption is updated to clarify. The number of the TFs used was decided based on the
availability of ChIP-seq data as well as having motifs in more than 10 of the databases used. A list
of the motifs used is provided in the data repository as well as the specific ChIP-seq data used.
See also Methods / Data paragraph 3. 

Page 6:
On cell line specific binding, an average of the scores of all the available cell lines should be used
in motif assessment.  We have updated the statement for clarity.

Figure 4
We have changed to using results from GOMER scoring since they are similar; the effect
described is only pronounced in Energy scoring. 

Page 6/Figure 4

We had incorrectly mentioned the wrong motif to be significantly enriched. We have corrected this
and also provided further evidence to the effect that the cell line used in the assessment does
actually have an effect on the ranking of the motifs. The conclusions remain valid. 

Page 8/Figure 5 (now Figure 6).

We acknowledge that the figure we had used did not present the intended information correctly.
We changed the figure to present the general information on the effect of statistics on the ranking
of the motifs. We observe that, when normalized, the MNCP and AUC scores do not differ, except
for slight difference in some TFs like Hnf4a, Ctcf, Gata3. However, the Pearson
and Spearman's correlation scores vary greatly. The plot of the standard deviation of scores as
represented by error bars in Figure 6 demonstrates why we consider correlation scores to be
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and Spearman's correlation scores vary greatly. The plot of the standard deviation of scores as
represented by error bars in Figure 6 demonstrates why we consider correlation scores to be
reliable than the other scores. We have added clarification of this point to the paper. Thank you
again for pointing out the problem.

Figure 6 (now Figure 7)

The caption has been updated for clarity. 

Table 3 (Now Table 2)

Clarified

Figure 7 (now Figure 8)/page 10

The figure has been updated to include information on correlation statistics. 

Figure 8 (now Figure 9)

Our apologies for the lack of detail. The figure caption has been updated for clarity. We correlate
the scores for the various motifs (for each scoring function) to the length and information content of
the motifs to determine whether the scores obtained are in any way influenced by the
motif characteristics. 

 No competing interests were disclosed.Competing Interests:
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