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Abstract

The identification of therapeutic targets is a critical step in the research and
developement of new drugs, with several drug discovery programmes failing
because of a weak linkage between target and disease.

Genome-wide association studies and large-scale gene expression
experiments are providing insights into the biology of several common
diseases, but the complexity of transcriptional regulation mechanisms often
limits our understanding of how genetic variation can influence changes in gene
expression. Several initiatives in the field of regulatory genomics are aiming to
close this gap by systematically identifying and cataloguing regulatory elements
such as promoters and enhacers across different tissues and cell types.

In this Bioconductor workflow, we will explore how different types of regulatory
genomic data can be used for the functional interpretation of
disease-associated variants and for the prioritisation of gene lists from gene
expression experiments.
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;57573 Amendments from Version 1

Several changes were made to the revised version of this workflow to address the referees’ comments.

The main ones were:

- Most object dumps were removed, thus making the article easier to follow;

- Several sections were reworded or expanded to clarify ambiguous points or to provide more context and background.

- A number of sentences were removed or shortened, especially in the Introduction and the ‘Gene expression data and
differential gene expression analysis’ section.

- Three new figures were added and discussed to illustrate the overall methodology and steps involved (Figure 1) and to
provide more insights into the overall results (Figure 7 and Figure 8);

- Existing figures and figure legends were revised and annotated to make them clearer and more useful.

- All available samples were used in the analysis and were better characterised.

- The InteractionSet package was used to represent and operate on the promoter-capture Hi-C data.

- A new section, ‘Functional analysis of prioritised hits’ was added to provide a better characterisation of the final results
from both biological and drug discovery perspectives.

See referee reports

Introduction

Discovering and bringing new drugs to the market is a long, expensive and inefficient process'~. The majority of drug
discovery programmes fail for efficacy reasons’, with up to 40% of these failures due to lack of a clear link between
the target and the disease under investigation®. Target selection, the first step in drug discovery programmes, is thus
a critical decision point. It has previously been shown that therapeutic targets with a genetic link to the disease under
investigation are more likely to progress through the drug discovery pipeline, suggesting that genetics can be used as a
tool to prioritise and validate drug targets in early discovery™*.

One of the biggest challenges in translating findings from genome-wide association studies (GWASs) to therapies is
that the great majority of single nucleotide polymorphisms (SNPs) associated with disease are found in non-coding
regions of the genome, and therefore cannot be easily linked to a target gene’. Many of these SNPs could be regulatory
variants, affecting the expression of nearby or distal genes by interfering with the transcriptional process®.

The most established way to map disease-associated regulatory variants to target genes is to use expression quantitative
trait loci (eQTLs)’, variants that affect the expression of specific genes. The GTEx consortium profiled eQTLs across
44 human tissues by performing a large-scale mapping of genome-wide correlations between genetic variants and gene
expression'’. However, depending on the power of the study, it might not be possible to detect all existing regulatory
variants as eQTLs. An alternative is to use information on the location of promoters and distal enhancers across the
genome and link these regulatory elements to their target genes. Large, multi-centre initiatives such as ENCODE'',
Roadmap Epigenomics'* and BLUEPRINT'*'"* mapped regulatory elements in the genome by profiling a number of
chromatin features, including DNase hypersensitive sites (DHSs), several types of histone marks and binding of chro-
matin-associated proteins in a large number of cells and tissues. Similarly, the FANTOM consortium used cap analysis
of gene expression (CAGE) to identify promoters and enhancers across hundreds of cells and tissues'.

Knowing that a certain stretch of DNA is an enhancer is however not informative of the target gene(s). One way to infer
links between enhancers and promoters in silico is to identify significant correlations across a large panel of cell types,
an approach that was used for distal and promoter DHSs'® as well as for CAGE-defined promoters and enhancers'’.
Experimental methods to assay interactions between regulatory elements also exist. Chromatin interaction analysis
by paired-end tag sequencing (ChIA-PET)'*!"” couples chromatin immunoprecipitation with DNA ligation to identify
DNA regions interacting thanks to the binding of a specific protein. Promoter capture Hi-C**' extends chromatin
conformation capture by using “baits” to enrich for promoter interactions and increase resolution.

Overall, linking genetic variants to their candidate target genes is not straightforward, not only because of the complex-
ity of the human genome and transcriptional regulation, but also because of the variety of data types and approaches
that can be used. To address this problem, we developed STOPGAP, a database of disease variants mapped to their most
likely target gene(s) using several different types of regulatory genomic data®. The database is currently undergoing a
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major overhaul and will eventually be superseded by POSTGAP. A valid and recent alternative is INFERNO*, though
it does only rely on eQTL data for target gene assignment. These resources implement some or all of the approaches
that will be reviewed in the workflow and constitute good entry points for identifying the most likely target gene(s) of
regulatory SNPs. However, as they tend to hide much of the complexity involved in the process, we will not use them
and rely on the original datasets instead.

In this workflow, we will explore how regulatory genomic data can be used to connect the genetic and transcrip-
tional layers by providing a framework for the discovery of novel therapeutic targets. We will use eQTL data from
GTEx'"’, FANTOMS correlations between promoters and enhancers'’ and promoter capture Hi-C data’' to annotate
significant GWAS variants to putative target genes and to prioritise genes obtained from a differential expression
analysis (Figure 1).

Workflow

Install required packages

R version 3.4.2 and Bioconductor version 3.6 were used for the analysis. The code below will install all required
packages and dependencies from Bioconductor and CRAN:

source ("https://bioconductor.org/biocLite.R")
# uncomment the following line to install packages
#biocLite (c ("clusterProfiler", "DESeqg2", "GenomicFeatures",

"GenomicInteractions", "GenomicRanges", "ggplot2", "Gviz", "gwascat",
"InteractionSet", "recount", "pheatmap", "RColorBrewer", "rtracklayer",
"R.utils", "splitstackshape", "VariantAnnotation"))
RNA-seq data GWAS data
DEGs in SLE vs healthy blood Significant SLE GWAS SNPs

—

Annotate coding, promoter
and UTR SNPs to target genes

Use GTEx blood eQTL data
to annotate intronic and
intergenic SNPs to target genes

Use FANTOMS correlations between
CAGE-defined enhancers and promoters
to annotate intronic and intergenic
SNPs to target genes

Use promoter capture Hi-C data
from primary hematopoietic cells
to annotate intronic and
intergenic SNPs to target genes

Prioritised hits
for target discovery

Figure 1. Diagram showing a schematic representation of the workflow and the steps involved.
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Gene expression data and differential gene expression analysis

We start with a common scenario: we ran a RNA-seq experiment comparing patients with a disease and healthy
individuals, and would like to discover key disease genes and potential therapeutic targets by integrating genetic
information in our analysis.

The RNA-seq data we will be using comes from blood of patients with systemic lupus erythematosus (SLE) and
healthy controls®. SLE is a chronic autoimmune disorder that can affect several organs with a significant unmet
medical need”. It is a complex and remarkably heterogeneous disease, in terms of both genetics and clinical
manifestations®. Early diagnosis and classification of SLE remain extremely challenging”’.

In the original study”, the authors explore transcripts bound by Ro60, an RNA-binding protein against which some
SLE patients produce autoantibodies. They identify Alu retroelements among these transcripts and use RNA-seq data
to check their expression levels, observing that Alu elements are significantly more expressed in SLE patients, and
particularly in those patients with anti-Ro antibodies and with a higher interferon signature metric (ISM).

We are going to use recount? to obtain gene-level counts:

library(recount)

# uncomment the following line to download dataset
#download study ("SRP062966")

load(file.path ("SRP062966", "rse gene.Rdata"))

rse <- scale counts (rse gene)

Other Bioconductor packages that can be used to access data from gene expression experiments directly in R are
GEOquery” and ArrayExpress™.

We have 117 samples overall. This is what the matrix of counts looks like:

assay(rse) [1:3, 1:3]

## SRR2443263 SRR2443262 SRR2443261
## ENSG00000000003.14 19 6 10
## ENSG00000000005.5 0 0 0
## ENSG00000000419.12 489 238 224

Each gene is a row and each sample is a column. We note that genes are annotated using the GENCODE"' v25 annota-
tion, which will be useful later on.

To check how we can split samples between cases and controls, we can have a look at the metadata contained in the
characteristics column, whichis a CharacterList object:

head (rse$characteristics, 3)

## CharacterList of length 3

## [[1]] disease status: healthy tissue: whole blood anti-ro: control ism:
control

## [[2]] disease status: healthy tissue: whole blood anti-ro: control ism:
control

## [[3]] disease status: healthy tissue: whole blood anti-ro: control ism:
control

We have information about the disease status of the sample, the tissue of origin, the presence and level of anti-ro
autoantibodies and the value of the ISM. However, we note that basic information such as age or gender is missing.
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will also make sure that they are encoded as factors and that the correct reference layer is used:

# disease status
rse$disease status <- sapply(rseScharacteristics,

1

)

rse$disease status <- sub("disease status: ", "", rse$disease status)

rse$disease_status <- sub("systemic lupus erythematosus \\ (SLE\\)",

rse$disease status)

rse$Sdisease status <- factor(rse$disease_status, levels

# tissue

rse$tissue <- sapply(rseScharacteristics, "[", 2)
rseS$tissue <- sub("tissue: ", "', rseS$tissue)
rseStissue <- factor (rseStissue)

# anti-ro

rseSanti ro <- sapply(rseScharacteristics, "[", 3)
rse$anti ro <- sub("anti-ro: ", "", rseS$anti ro)
rse$anti ro <- factor(rse$anti ro)

# ism
rse$ism <- sapply(rseScharacteristics, "[", 4)
rse$ism <-sub("ism: ", "", rseS$ism)

rse$ism <- factor (rse$ism)

We can check how many samples we have in each group (note that we ignore tissue as it’s always whole blood):

metadata <- data.frame (disease status = rseSdisease status, anti ro.ism

paste (rseS$anti _ro, rse$ism, sep = "."))
table (metadata)

0

c("healthy",

0
1

llSLEH,

"SLE") )

0
21

## anti ro.ism

## disease_ status control.control high.ISM high high.ISM low med.ISM high
## healthy 18 0

i SLE 0 23

## anti ro.ism

## disease status med.ISM low none.ISM high none.ISM low

## healthy 0 0

## SLE 2 31

Now we are ready to perform a simple differential gene expression analysis with DESeqg2¥. Note that we remove
genes with a low number of counts (less than 50 across all 117 samples) to speed up execution and reduce the memory

footprint:

library (DESeq?2)

dds <- DESegDataSet (rse, ~ diseaseistatus)
dds <- DESeq (dds)

dds <- dds[rowSums (counts (dds)) >= 50, ]

We used an extremely simple model; in the real world we should be accounting for co-variables, potential confounders
and interactions between them. For example, age and gender are usually included in this type of analysis, but we don’t
have access to this information for this dataset. Similarly, the value of the ISM and the presence of anti-Ro autoanti-
bodies can’t be included in the analysis due to the fact that these variables are collinear with the disease status variable
(i.e.: the value of both anti roand ismis control for all samples with disease statusequaltohealthy.)
Like DESeq2, edgeR* and 1imma™ can also deal with multiple cofactors and different experimental designs, and

constitute good alternatives for performing differential expression analyses.

21
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We can now look at the data in more detail to assess if we can observe a separation between the SLE and healthy
samples and whether any batch effect is visible. We use the variance stabilising transformation (VST)* for
visualisation purposes:

vsd <- vst(dds, blind = FALSE)

We will use the pheatmap and RColorBrewer packages to perform hierarchical clustering of the samples
(Figure 2):

library (pheatmap)

library (RColorBrewer)

sampleDists <- dist(t(assay(vsd)))

sampleDistMatrix <- as.matrix (sampleDists)

annotation = data.frame(colData(vsd) [c("anti ro", "ism", "disease status")],
row.names = rownames (sampleDistMatrix))

colors <- colorRampPalette (rev (brewer.pal (9, "Blues"))) (255)

pheatmap (sampleDistMatrix, clustering distance rows = sampleDists,
clustering distance cols = sampleDists, clustering method = "complete",
annotation col = annotation, col = colors, show rownames = FALSE,

show colnames = FALSE, cellwidth = 2, cellheight = 2)

T L

disease_status

ism
anti_ro
E] disease_status
200 healthy
i SLE
150 jsm
[ — control
100 ISM_high
ISM_low
50 anti_ro
control
0 high
med
none

Figure 2. Heatmap showing Euclidean distances between samples clustered using complete linkage. Disease
status and other experimental factors are visualised as column annotations.
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While there isn’t an unambiguous split between healthy and disease samples, the most distinct clusters (bottom right
and top left) are entirely composed of SLE samples, with the central cluster containing all healthy samples and a
number of SLE ones. The clusters don’t appear to be due to the ISM or the presence of anti-Ro autoantibodies.

Similarly, we can perform a principal component analysis (PCA) on the most variable 500 genes (Figure 3). Note that
we load ggplot 2 to modify the look of the plot:

library(ggplot2)
plotPCA(vsd, intgroup = "disease status") +
coord fixed()

We can see some separation of healthy and SLE samples along both PC1 and PC2, though some SLE samples appear
very similar to the healthy ones. No obvious batch effects are visible from this plot.

Next, we select genes that are differentially expressed below a 0.05 adjusted p-value threshold:

res <- results(dds, alpha = 0.05)
summary (res)

4
## out of 32820 with nonzero total read count

## adjusted p-value < 0.05

## LFC > 0 (up) : 4829, 15%
## LFC < 0 (down) : 2709, 8.3%
## outliers [1] : 0, 0%

## low counts [2] . 2548, 7.8%

## (mean count < 1)
## [1] see ‘cooksCutoff’ argument of ?results
## [2] see ‘independentFiltering’ argument of ?results

We can visualise the shrunken log2 fold changes using an MA plot (Figure 4):

res 1fc <- 1lfcShrink(dds, coef = 2)
plotMA(res_lfc, ylim = c(-3, 3))

We observe large numbers of genes differentially expressed in both directions and across a range of fold changes,
though the majority of significant genes appear to be upregulated in disease.
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Figure 3. Scatter plot showing results of a PCA with samples coloured according to their disease status.
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Figure 4. MA plot showing genes differentially expressed (red dots) in SLE patients compared to healthy
patients.

For convenience, we will save our differentially expressed genes (DEGs) in another object and map the GENCODE
gene IDs to gene symbols using the annotation in the original RangedSummarizedExperiment object

degs <- subset (res, padj < 0.05)

degs <- merge (rowData (rse), as.data.frame(degs), by.x = "gene id", by.y =
"row.names", all = FALSE)

head (degs, 3)

## DataFrame with 3 rows and 9 columns

## gene_id bp_ length symbol baseMean
## <character> <integer> <list> <numeric>
## ENSG00000000003 ENSG0O0000000003.14 4535 TSPANG6 8.739822
## ENSG00000000419 ENSG00000000419.12 1207 DPM1 431.485085
## ENSG00000000457 ENSG00000000457.13 6883 SCYL3 686.579323
## log2FoldChange 1fcSE stat pvalue
## <numeric> <numeric> <numeric> <numeric>
## ENSG00000000003 -0.4750382 0.18374822 -2.585267 9.730366e-03
## ENSG0O0000000419 0.5559772 0.10117967 5.494950 3.908216e-08
## ENSG00000000457 0.1927081 0.05928191 3.250707 1.151185e-03
## padj

## <numeric>

## ENSG00000000003 4.161281e-02
## ENSG0O0000000419 2.182977e-06
## ENSG00000000457 7.922475e-03

Accessing GWAS data

The differential expression analysis resulted in several thousands of DEGs. Since we know that genes with high levels
of differential expression are more likely to harbour disease-associated variants®’ and that therapeutic targets with
genetic evidence are more likely to progress through the drug discovery pipeline®, one way to prioritise them is to check
which of these can be genetically linked to SLE. To get hold of relevant GWAS data, we will be using the gwascat
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Bioconductor package*, which provides an interface to the GWAS catalog®”. An alternative is to use the GRASP"
database with the grasp2db”' package.

library(gwascat)

# uncomment the following line to download file and build the gwasloc object
all in one step

#snps <- makeCurrentGwascat ()

# uncomment the following line to download file

#download.file ("http://www.ebi.ac.uk/gwas/api/search/downloads/alternative",
destfile = "gwas catalog vl1.0.l-associations €90 r2017-12-04.tsv")

snps <- read.delim("gwas catalog vl.0.l-associations e90 r2017-12-04.tsv",
check.names = FALSE, stringsAsFactors = FALSE)

snps <- gwascat:::gwdf2GRanges (snps, extractDate = "2017-12-04")

genome (snps) <- "GRCh38"

head (snps, 3)

## gwasloc instance with 3 records and 37 attributes per record.
## Extracted: 2017-12-04
## Genome: GRCh38

## Excerpt:

## GRanges object with 3 ranges and 3 metadata columns:

#4 segnames ranges strand | DISEASE/TRAIT SNPS
#4 <Rle> <IRanges> <Rle> | <character> <character>
#4 [1] chrl [203186754, 203186754] * | YKL-40 levels rs4950928
#4 [2] chrl3 [ 39776775, 39776775] * Psoriasis rs7993214
#4F [3] chrl5 [ 78513681, 78513681] * | Lung cancer rs8034191
#4 P-VALUE

## <numeric>

#4 [1] le-13

#4 [2] 2e-06

#4 [3] 3e-18

##H o -

## seginfo: 23 sequences from GRCh38 genome; no seqglengths

snps is a gwasloc object which is simply a wrapper around a GRanges object, the standard way to represent
genomic ranges in Bioconductor.

We note here that the GWAS catalog uses GRCh38 coordinates, the same assembly used in the GENCODE v25 annota-
tion. When integrating genomic datasets from different sources it is essential to ensure that the same genome assembly
is used, especially because many datasets in the public domain are still using GRCh37 coordinates. As we will see
below, it is possible and relatively straightforward to convert genomic coordinates between genome assemblies.

We can select only SNPs that are associated with SLE:

snps <- subsetByTraits(snps, tr = "Systemic lupus erythematosus")

We can visualise these as a Manhattan plot to look at the distribution of GWAS p-values over chromosomes on a
negative log,, scale (Figure 5): Note that p-values lower than 1 x 10 are truncated in the figure:

traitsManh (gwr = snps, sel = snps, traits = "Systemic lupus erythematosus") +
xlab ("SLE GWAS SNPs") +
ylab ("-1ogl0 (p-value)") +
theme (legend.position = "none",
strip.text.x = element text(size = 6),

axis.text.x = element blank(),
axis.ticks.x = element blank())

We observe several hits across most chromosomes, with many of them below a genome-wide significant threshold
(p-value < 1 x 10%), suggesting that genetics plays an important role in the pathogenesis of SLE.
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Figure 5. Manhattan plot showing GWAS variants significantly associated with SLE.

We note here that genotyping arrays typically include a very small fraction of all possible SNPs in the human genome,
and there is no guarantee that the tag SNPs on the array are the true casual SNPs*. The alleles of other SNPs can be
imputed from tag SNPs thanks to the structure of linkage disequilibrium (LD) blocks present in chromosomes. Thus,
when linking variants to target genes in a real-world setting, it is important to take into consideration neighbouring
SNPs that are in high LD (e.g.: r> > 0.8) and inherited with the tag SNPs. Unfortunately, at the time of writing there is
no straightforward way to perform this LD expansion step using R or Bioconductor packages, possibly because of the
large amount of reference data required. The 1dblock package* used to provide this functionality by downloading
the HapMap data from the NCBI website, but the dataset was retired in 2016. At present, the best option to do this
programmatically is probably to query the Ensembl REST API*.

Annotation of coding and proximal SNPs to target genes
In order to annotate these variants, we need a a TxDb object, a reference of where transcripts are located on the
genome. We can build this using the GenomicFeatures® package and the GENCODE v25 gene annotation:

library (GenomicFeatures)

# uncomment the following line to download file
#download.file("ftp://ftp.sanger.ac.uk/pub/gencode/Gencode human/release 25/
gencode.v25.annotation.gff3.gz", destfile = "gencode.v25.annotation.gff3.gz")
txdb <- makeTxDbFromGFF ("gencode.v25.annotation.gff3.gz")

txdb <- keepStandardChromosomes (txdb)

We also have to convert the gwasloc object into a standard GRanges object:

snps <- GRanges (snps)
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Let’s check if the gwasloc and TxDb object use the same notation for chromosomes:
seglevelsStyle (snps)

## [1] "ucsc"

seglevelsStyle (txdb)

## [1] "ucsc"

OK, they do. Now we can annotate our SNPs to genes using the VariantAnnotation® package:

library (VariantAnnotation)
snps_anno <- locateVariants(snps, txdb, AllVariants())
snps_anno <- unique (snps_anno)

We use the QUERYID column in snps_anno to recover metadata such as SNP IDs and GWAS p-values from the
original snps object:

snps_metadata <- snps[snps_anno$SQUERYID]
mcols (snps_anno) <- cbind(mcols(snps metadata) [c("SNPS", "P-VALUE")],
mcols (snps_anno))

We can visualise where these SNPs are located (Figure 6):

loc <- data.frame(table(snps_ annoSLOCATION))

ggplot (data = loc, aes(x = reorder(Varl, -Freq), y = Freq)) +
geom bar (stat = "identity") +
xlab ("Genomic location of SNPs") +
ylab ("Number of SNPs")

150 -

100~

Number of SNPs

intron intergenic coding promoter threeUTR  fiveUTR  spliceSite
Genomic location of SNPs

0-

Figure 6. Bar plot showing genomic locations associated with SLE variants.
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As expected’, the great majority of SNPs are located within introns and in intergenic regions. For the moment, we will
focus on SNPs that are either coding or in promoter and UTR regions, as these can be assigned to target genes rather
unambiguously:

snps_easy <- subset (snps anno, LOCATION == "coding" | LOCATION == "promoter" |
LOCATION == "threeUTR" | LOCATION == "fiveUTR")
snps_easy <- as.data.frame (snps easy)

Now we can check if any of the genes we found to be differentially expressed in SLE is also genetically associated
with the disease:

snps_easy in degs <- merge(degs, snps easy, by.x = "gene id", by.y = "GENEID",
all = FALSE)

We have 14 genes showing differential expression in SLE that are also genetically associated with the disease. While
this is an interesting result, these hits are likely to be already well-known as potential SLE targets given their clear
genetic association.

‘We will store essential information about these hits in a results data . frame:

prioritised hits <- unique (data.frame (

snp_1id = snps_easy in degs$SNPS,

snp_pvalue = snps_easy in degs$P.VALUE,

snp_location = snps easy in degs$LOCATION,

gene id = snps easy in degs$gene id,

gene symbol = snps_easy in degsS$symbol,

gene pvalue = snps_easy in degs$padj,

gene log2foldchange = snps_easy in degs$log2FoldChange,

method = "Direct overlap",

row.names = NULL))
head (prioritised hits, 3)
## snp id snp pvalue snp location gene_id gene symbol
## 1 1rsl1887428 le-06 fiveUTR ENSG00000096968.13 JAK2
## 2 rs58688157 5e-13 promoter ENSG00000099834.18 CDHR5
## 3 1rsl1990760 4e-08 coding ENSG00000115267.5 IFTIHL
## gene pvalue gene log2foldchange method
## 1 1.951160e-04 0.636590 Direct overlap
## 2 1.455662e-05 1.033372 Direct overlap
## 3 2.719420e-10 1.745324 Direct overlap

Use of regulatory genomic data to map intronic and intergenic SNPs to target genes

But what about all the SNPs in introns and intergenic regions? Some of those might be regulatory variants affecting the
expression level of their target gene(s) through a distal enhancer. Let’s create a dataset of candidate regulatory SNPs
that are either intronic or intergenic and remove the annotation obtained with VariantAnnotation:

snps _hard <- subset (snps anno, LOCATION == "intron" | LOCATION ==
"intergenic", select = c("SNPS", "P.VALUE", "LOCATION"))

eQTL data. A well-established way to gain insights into target genes of regulatory SNPs is to use eQTL data, where
correlations between genetic variants and expression of genes are computed across different tissues or cell types’. Here,
we will simply match GWAS SNPs and eQTLs according to their genomic locations, which is a rather crude way to
integrate these two types of data. More robust alternatives such as PrediXcan'’, TWAS* and SMR" exist and should
be adopted if possible. One downside of these methods is that they require subject-level or complete summary data,
making them less practical in some circumstances.

We will use blood eQTL data from the GTEx consortium'’. To get the data, you will have to register and download the
file GTEx Analysis v7 eQTL.tar.gz from the GTEx portal to the current working directory:

# uncomment the following line to extract the gzipped archive file
#untar(”GTExiAnalysisiv7ieQTL.tar.qz@
gtex blood <-

Page 13 of 33


https://www.gtexportal.org/home/

F1000Research 2018, 7:121 Last updated: 09 MAR 2018

read.delim(gzfile ("GTEx Analysis v7 eQTL/Whole Blood.v7.signif variant gene
pairs.txt.gz"), stringsAsFactors = FALSE)
head (gtex blood, 3)

#4# variant id gene id tss distance ma samples ma count
## 1 1 231153 CTT _C b37 ENSG00000223972.4 219284 13 13
#H# 2 1 61920 G A b37 ENSG00000238009.2 -67303 18 20
## 3 1 64649 A C b37 ENSG00000238009.2 -64574 16 16
## maf pval nominal slope slope se pval nominal threshold

## 1 0.0191740 3.69025e-08 1.319720 0.233538 1.35366e-04

## 2 0.0281690 7.00836e-07 0.903786 0.178322 8.26088e-05

## 3 0.0220386 5.72066e-07 1.110040 0.217225 8.26088e-05

#4# min pval nominal pval beta

## 1 3.69025e-08 4.67848e-05

## 2 6.50297e-10 1.11312e-06

## 3 6.50297e-10 1.11312e-06

We have to extract the genomic locations of the SNPs from the IDs used by GTEx:

locs <- strsplit(gtex blood$variant id, " ")

gtex bloodSchr <- sapply(locs, "[", 1)
gtex blood$start <- sapply(locs, "[", 2)
gtex bloodSend <- sapply(locs, "[", 2)

We can then convert the data . frame into a GRanges object:

gtex blood <- makeGRangesFromDataFrame (gtex blood, keep.extra.columns = TRUE)

We also need to ensure that the chromosome notation is consistent with the previous objects:
seglevelsStyle (gtex blood)
## [1] "NCBI" "Ensembl"

seqlevelsStyle (gtex blood) <- "UCSC"

From the publication'’, we know the genomic coordinates are mapped to genome reference GRCh37, so we will have
to uplift them to GRCh38 using rtracklayer’’ and a mapping (“chain”) file. The R.utils package is only required
to extract the gzipped file:

library(rtracklayer)

library(R.utils)

# uncomment the following line to download file

#download.file ("http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/1iftOver/hgl9To
Hg38.over.chain.gz", destfile = "hgl9ToHg38.over.chain.gz")

# uncomment the following line to extract gzipped file

#gunzip ("hgl9ToHg38.over.chain.gz")

ch <- import.chain("hgl9ToHg38.over.chain")

gtex blood <- unlist (liftOver (gtex blood, ch))

We will use the GenomicRanges package® to compute the overlap between GWAS SNPs and blood eQTLs:

library (GenomicRanges)

hits <- findOverlaps (snps_hard, gtex blood)

snps_hard in gtex blood = snps hard[queryHits (hits)]

gtex blood with snps hard = gtex blood[subjectHits (hits)]

mcols (snps_hard in gtex blood) <- cbind(mcols(snps hard in gtex blood),
mcols (gtex blood with snps hard))

snps_hard in gtex blood <- as.data.frame(snps hard in gtex blood)

We have 59 blood eQTL variants that are associated with SLE. We can now check whether any of the genes differen-
tially expressed in SLE is an eGene, a gene whose expression is influenced by an eQTL. Note that gene IDs in GTEx
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are mapped to GENCODE v19', while we are using the newer v25 for the DEGs. To match the gene IDs in the two
objects, we will simply strip the last bit containing the GENCODE gene version, which effectively gives us Ensembl
gene IDs:

snps_hard in gtex blood$ensembl id <- sub (" (ENSG[0-9]+)\\.[0-9]+", "\\1",
snps_hard in gtex bloodSgene id)

degs$ensembl id <- sub (" (ENSG[0-9]+)\\.[0-9]+", "\\1", degs$gene id)
snps_hard in gtex blood in degs <- merge (snps hard in gtex blood, degs, by =
"ensembl id", all = FALSE)

We can add these 17 genes to our list:

prioritised hits <- unique(rbind(prioritised hits, data.frame (
snp_id = snps_hard in gtex blood in degs$SNPS,
snp_pvalue = snps_hard in gtex blood in degsS$P.VALUE,
snp_location = snps hard in gtex blood in degs$LOCATION,
gene id = snps hard in gtex blood in degs$Sgene id.y,
gene symbol = snps hard in gtex blood in degs$symbol,
gene pvalue = snps_hard in gtex blood in degsS$padj,
gene log2foldchange = snps_hard in gtex blood in degsS$log2FoldChange,
method = "GTEx eQTLs",
row.names = NULL)))

FANTOMS data. The FANTOM consortium profiled gene expression across a large panel of tissues and cell types
using CAGE'>"". This technology allows mapping of transcription start sites and enhancer RNAs genome-wide.
Correlations between these promoter and enhancer elements across a large panel of tissues and cell types can then
be calculated to identify significant promoter - enhancer pairs. In turn, we will use these correlations to map distal
regulatory SNPs to target genes.

Let’s read in the enhancer - promoter correlation data:

# uncomment the following line to download the file
#download.file ("http://enhancer.binf.ku.dk/presets/enhancer tss associations.

bed", destfile = "enhancer tss associations.bed")
fantom <- read.delim("enhancer tss associations.bed", skip = 1,
stringsAsFactors = FALSE)

head (fantom, 3)

¥ X.chrom chromStart chromEnd

## 1 chrl 858252 861621

## 2 chrl 894178 956888

## 3 chrl 901376 956888

## name
#4# 1 chrl:858256-858648;NM 152486;SAMD11;R:0.404;FDR:0
## 2 chrl:956563-956812;NM 015658;NOC2L;R:0.202;FDR:8.01154668254404e-08
## 3 chrl:956563-956812;NM 001160184,NM 032129;PLEKHN1;R:0.422;FDR:0
#4# score strand thickStart thickEnd itemRgb blockCount blockSizes

## 1 404 . 858452 858453 0,0,0 2 401,1001

## 2 202 . 956687 956688 0,0,0 2 1001,401

## 3 422 . 956687 956688 0,0,0 2 1001,401

## chromStarts

## 1 0,2368

## 2 0,62309

## 3 0,55111

Everything we need is in the fourth column, name: genomic location of the enhancer, gene identifiers, Pearson
correlation coefficient and significance. We will use the splitstackshape package to parse it:

library(splitstackshape)
fantom <- as.data.frame (cSplit(fantom, splitCols = "name", sep = ";",
direction = "wide"))
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Now we can extract the genomic locations of the enhancers and the correlation values:

locs <- strsplit(as.character (fantomSname_l) , "1™

fantom$chr <- sapply(locs, "[", 1)

fantom$start <- as.numeric (sapply(locs, "[", 2))
fantom$end <- as.numeric (sapply(locs, "I[", 3))
fantom$symbol <- fantom$name 3

fantom$corr <- sub("R:", "", fantom$name 4)

fantom$fdr <- sub("FDR:", "", fantom$name 5)

We can select only the enhancer - promoter pairs with a decent level of correlation and significance and tidy the data
at the same time:

fantom <- unique (subset (fantom, corr >= 0.25 & fdr < le-5, select = c("chr",
"start", "end", "symbol")))

Now we would like to check whether any of our candidate regulatory SNPs are falling in any of these enhancers. To do
this, we have to convert the data . frame into a GRanges object and uplift the GRCh37 coordinates'” to GRCh38:

fantom <- makeGRangesFromDataFrame (fantom, keep.extra.columns = TRUE)
fantom <- unlist (liftOver (fantom, ch))

We can now compute the overlap between SNPs and enhancers:

hits <- findOverlaps (snps_hard, fantom)

snps_hard in fantom = snps hard[queryHits (hits) ]
fantom with snps hard = fantom[subjectHits (hits) ]

mcols (snps_hard in fantom) <- cbind(mcols(snps_hard in fantom),
mcols (fantom with snps hard))

snps_hard in fantom <- as.data.frame (snps hard in fantom)

Let’s check if any of these genes is differentially expressed in our RNA-seq data:

snps_hard in fantom in degs <- merge (snps_hard in fantom, degs, by = "symbol",
all = FALSE)

We have identified 7 genes whose putative enhancers contain SLE GWAS SNPs. Let’s add these to our list:

prioritised hits <- unique (rbind(prioritised hits, data.frame(
snp id = snps _hard in fantom in degs$SNPS,
snp pvalue = snps hard in fantom in degs$P.VALUE,
snp location = snps hard in fantom in degs$LOCATION,
gene id = snps hard in fantom in degsS$gene id,
gene symbol = snps_hard in fantom in degs$symbol,
gene pvalue = snps _hard in fantom in degs$padj,
gene log2foldchange = snps _hard in fantom in degs$log2FoldChange,
method = "FANTOM5 correlations",
row.names = NULL)))

Promoter Capture Hi-C data. More recently, chromatin interaction data was generated across 17 human primary
blood cell types using promoter capture Hi-C'. More than 30,000 promoter baits were used to capture promoter-
interacting regions genome-wide, which were then mapped to enhancers based on annotation present in the Ensembl
Regulatory Build”'. This dataset provides a valuable resource for interpreting complex genomic data, especially in the
context of autoimmune diseases (and other conditions where immune cells play arole). Significant interactions between
enhancers and promoters can be accessed in the supplementary data of the paper:

# uncomment the following line to download file

#download.file ("http://www.cell.com/cms/attachment/2086554122/2074217047/mmc4 .
zip", destfile = "mmc4.zip")

# uncomment the following lines to extract zipped files

Page 16 of 33



F1000Research 2018, 7:121 Last updated: 09 MAR 2018

#unzip ("mmc4.zip")

#unzip ("DATA Sl.zip")

pchic <- read.delim("ActivePromoterEnhancerLinks.tsv", stringsAsFactors =
FALSE)

head (pchic, 3)

## baitChr baitSt baitEnd baitID oeChr oeSt oeEnd oelID
## 1 chrl 1206873 1212438 254 chrl 943676 957199 228
## 2 chrl 1206873 1212438 254 chrl 1034268 1040208 235
## 3 chrl 1206873 1212438 254 chrl 1040208 1043143 236
## cellType.s.

## 1 nCD8

## 2 nCD4,nCD8,Mac0,Macl,Mac2, MK, Mon

## 3 nCD4,nCD8,Mac0,Macl,Mac2, MK

##

sample.s.

## 1

CO066PHL

## 2

S007DDH2,S007G7H4,C0066PH1, SOOC2FH1,S00390H1, S001MJH1, S001S7H2,S0022IH2,500622
H1,S00BS4H1,S004BTH2,C000S5H2

## 3
S007DDH2,S007G7H4,C0066PH1, SOOC2FH1,S00390H1, S001MJH1, S001S7H2,S0022IH2,500622
H1,S00BS4H1,S004BTH2

We will use the InteractionSet package’, which is specifically designed for the representation of chromatin
interaction data. We start by creating a GInteractions object:

library(InteractionSet)

promoters <- GRanges (segnames = pchic$baitChr, ranges = IRanges (start =
pchic$baitSt, end = pchic$baitEnd))
enhancers <- GRanges (seqnames = pchic$oeChr, ranges = IRanges (start =

pchic$oeSt, end = pchic$oeEnd))
pchic <- GInteractions (promoters, enhancers)

As gene identifiers are not provided, we also have to map promoters to the respective genes so that we know which
genes are regulated by which enhancers. We can do this by using the TxDb object we previously built to extract
positions of transcription start sites (T'SSs) and then add the GENCODE gene IDs as metadata to the pchic object:

tsss <- promoters(txdb, upstream = 0, downstream = 1, columns = "gene id")
hits <- nearest (promoters, tsss)
pchicSgene id <- unlist (tsss[hits]Sgene id)

Next, we calculate the overlaps between SLE GWAS SNPs and enhancers (the second region of the GInteractions
object) :

hits <- findOverlaps (snps hard, pchic, use.region = "second")
snps_hard in pchic = snps hard[queryHits (hits)]
pchic with snps hard = pchic[subjectHits (hits) ]

mcols (snps _hard in pchic) <- cbind(mcols(snps hard in pchic),
mcols (pchic with snps hard))

snps_hard in pchic <- as.data.frame(snps hard in pchic)
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We check if any of these enhancers containing SLE variants are known to putatively regulate genes differentially
expressed in SLE:

snps_hard in pchic in degs <- merge (snps hard in pchic, degs, by = "gene id",
all = FALSE)

And finally we add these 13 genes to our list:

prioritised hits <- unique(rbind(prioritised hits, data.frame (
snp_id = snps_hard in pchic in degs$SNPS,
snp_pvalue = snps_hard in pchic in degs$P.VALUE,
snp_location = snps hard in pchic in degsSLOCATION,
gene_id = snps_hard in pchic in degs$gene id,
gene_symbol = snps_hard in pchic in degs$symbol,
gene pvalue = snps_hard in pchic in degs$padj,
gene_ log2foldchange = snps_hard in pchic in degs$log2FoldChange,
method = "Promoter capture Hi-C",
row.names = NULL)))

These are the final results of our target identification exercise. We can have a look at the most significant SNPs
mapped with each of the methods:

top prioritised hits <- prioritised hits[order (prioritised hits$snp pvalue), ]
top prioritised hits <- split(top prioritised hits,

top prioritised hits$method)

do.call(rbind, lapply(top prioritised hits, head, 1))

## snp_id snp pvalue snp location gene id
## Direct overlap rs3757387 le-48 promoter ENSG00000128604.18
## GTEx eQTLs rsl1270942 2e-165 intron ENSG00000166278.14
## FANTOM5 correlations rsl1150754 6e-29 intron ENSG00000204421.2
## Promoter capture Hi-C rsl1270942 2e-165 intron ENSG00000219797.2
## gene symbol gene pvalue gene log2foldchange

## Direct overlap IRF5 5.006707e-03 0.4041349

## GTEx eQTLs C2 1.625111e-03 0.9269526

## FANTOM5 correlations LY6G6C 3.575357e-05 1.4327915

## Promoter capture Hi-C NA 1.919459e-04 0.4556364

## method

## Direct overlap Direct overlap

## GTEx eQTLs GTEx eQTLs

## FANTOMS correlations FANTOMS correlations
## Promoter capture Hi-C Promoter capture Hi-C

We can also visualise the relative contributions from the different approaches we used (Figure 7):

prioritised genes <- unique(data.frame(gene id = prioritised hits$gene id,
method = prioritised hitsSmethod))
ggplot (data = prioritised genes, aes(x = method)) +
geom bar (aes(fill = method), stat = "count") +
ylab ("Number of genes") +
theme (axis.title.x = element blank(),
axis.text.x = element blank(),
axis.ticks.x = element blank())

‘We observe that all methods significantly contributed to the identification of genes associated with GWAS SNPs. The

majority of genes were identified through the integration of the GTEx blood eQTL data, followed by the methods
based on direct overlap, promoter capture Hi-C data and FANTOMS correlations.
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Figure 7. Bar plot showing number of genes identified by each variant mapping method.

Functional analysis of prioritised hits
We will use biological processes from the Gene Ontology> and the clusterProfiler package™ to functionally
characterise our list of genes:

library(clusterProfiler)
prioritised hits ensembl ids <- unique (sub (" (ENSG[0-9]+)\\.[0-9]+", "\\1",
prioritised hits$gene id))
all genes_ensembl ids <- unique (sub (" (ENSG[0-9]1+)\\.[0-9]+", "\\1",
rownames (rse) ) )
gobp_enrichment <- enrichGO (prioritised hits_ensembl ids,

universe = all genes ensembl ids,

OrgDb = org.Hs.eg.db,

keyType = "ENSEMBL",

ont = "BP",

pAdjustMethod = "BH",

pvalueCutoff = 0.05,

gvalueCutoff = 0.05,

readable = TRUE)

We can visualise the most enriched terms (Figure 8):

dotplot (gobp enrichment, showCategory = 20)
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Figure 8. Dot plot showing enrichment of Gene Ontology biological processes for the list of prioritised genes.

We observe a significant enrichment for interferon responses, antigen processing and presentation, and T cell
stimulation, all processes which are well-known to play key roles in the pathogenesis of SLE™=".

From a drug discovery perspective, JAK2 is probably the most attractive target: rs1887428 (p-value = 1 x 10 is
located in its 5° UTR and the genes is significantly upregulated in disease. Tofacitinib, a pan-JAK inhibitor, showed
promising results in mouse™ and is currently being tested or safety in a phase I clinical trial. We find 7 GWAS SNPs
that are blood eQTLs linked to the expression of C2, a protease active in the complement signalling cascade. The
most significant variant is rs1270942 (p-value = 2 x 10'%) and is found in an intron of CFB, another component of
the complement system. As with other autoimmune diseases, the complement plays a key role SLE in and has been
investigated as a therapeutic approach®’. Another potentially interesting hit is TAX1BP1: rs849142 (p-value = 1 x 9°')
is found within an intron of JAZF1, but can be linked to TAX1BP1 via a chromatin interaction with its promoter.
TAX1BPI inhibits TNF-induced apoptosis”’ and is involved in the IL1 signalling cascade®', another relevant pathway
in SLE that could be therapeutically targeted®.

Conclusions

In this Bioconductor workflow we have used several packages and datasets to demonstrate how regulatory genomic
data can be used to annotate significant hits from GWASs and prioritise gene lists from expression studies, providing
an intermediate layer connecting genetics and transcriptomics. Overall, we identified 46 SLE-associated SNPs that we
mapped to 49 genes differentially expressed in SLE, using eQTL data'’ and enhancer - promoter relationships from
CAGE" and promoter capture Hi-C experiments’'. These genes are involved in key inflammatory signalling pathways
and some of them could develop into therapeutic targets for SLE.

The workflow also demonstrates some real-world challenges encountered when working with genomic data from
different sources, such as the use of different genome assemblies and gene annotation systems, the parsing of files
with custom formats into Bioconductor objects and the mapping of genomic locations to genes. While options for the
visualisations of genomic data and interactions are outside the scope of this workflow, at least three good alternatives
exist in Bioconductor: ggbio®, Sushi® and Gviz® coupled with the Genomiclnteractions package®. We refer the reader
to these publications and package vignettes for examples.

As the sample size and power of GWASs and gene expression studies continue to increase, it will become more and
more challenging to identify truly significant hits and interpret them. The use of regulatory genomics data as presented
here can be an important tool to gain insights into large biomedical datasets and help in the identification of biomarkers
and therapeutic targets.
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Data and software availability
Download links for all datasets are part of the workflow. Software packages required to reproduce the analysis can
be installed as part of the workflow. Source code is available at: https://github.com/enricoferrero/bioconductor-
regulatory-genomics-workflow. Archived source code as at the time of publication is available at: https://doi.org/
10.5281/zenodo.1154124%.
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| want to preface this long review with some very broad comments. | think this undertaking is very
worthwhile from several perspectives. Bioconductor is used along various avenues to create a unifiable
analytic process from very diverse data resources: state-of-the-art transcriptomics from recount, current
GWAS catalog from EMBL/EBI, variant annotation for SLE GWAS hits from the eponymous package
using GENCODE for gene models, eQTL data from GTEx, enhancer annotation from FANTOMS5,

and promoter capture data whose origins could be better described. This is a tour de force but | feel it
should be communicated more clearly and executed more cleanly. The paper is full of "dumps" of show
events for R objects that impede the narrative flow drastically. A diagram that shows how the various
resources combine in a scientifically coherent way would be a huge step forward for the paper and for
practitioners. More reckoning of limitations that arise from complexity is also in order. eQTLs are far from
simple, and should not be used as 'lists'. Enhancer and promoter 'lists' also need to be used with care.

What then about this paper? It shows the resources and it shows a path. Isn't that enough? | don't think
so. If Bioconductor and online publication make it easier to do and to publish complex analyses, then the
presentation should be of at least as high a quality as we find in articles that are behind paywalls. In this
case | feel the quality would be improved through condensation. The object dumps should be removed
and replaced by meaningful tabulations and diagrams. The big picture should be stated more clearly and
concisely. The limitations should also be discussed clearly. | would love to see a small set of functions
that carry out the salient operations chained together to produce the solution.

Then, given the programmatic compactness, we can discuss how to evaluate the robustness of the
results of the analysis by carrying out sensitivity analysis. In particular, it would be great to see how the
different elements of the system contribute to the ultimate enumeration of targets.

The premise of this article is that "therapeutic targets with a genetic link to the disease under investigation
are more likely to progress through the drug discovery pipeline". GWAS, PheWAS, eQTLs, epigenomic
roadmap projects, and other general studies of gene regulation should be harvested to improve capacity
to define genetic and genomic origins of disease, with an aim to fostering design of treatments that are
focused on the molecular events underlying the disease process. The introduction concludes with
mention of STOPGAP, and POSTGAP, and INFERNO, but it is not clear whether the paper is intended to
describe how content of STOPGAP is developed from basic data resources like those readily available to
Bioconductor users. | feel that the introduction, though well-referenced, is too long and does not clearly
state the paper's main goal.

There is no discussion of the experimental design underlying the RNA-seq study. Presumably the data
were generated from this component of ref 28:

"Finally, we tested the levels of Alu transcripts in blood cells of SLE patients and controls(22) using
RNAseq (99 active SLE, 18 healthy controls; Fig. S12). RNA-seq reads mapping to Alu elements were
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found at significantly higher levels in SLE subjects than controls (p=6.5E-6), Fig. 4E). Hierarchical
clustering of the most highly expressed Alu RNAs (Fig. S13) segregated Interferon Signature Metric
(ISM)-high SLE subjects from control and ISM-low patients"....

There is no discussion of heterogeneity of SLE or the difficulty of learning from a collection of 18 cases. A
reference to https://www.ncbi.nlm.nih.gov/pubmed/25102991 may be in order.

Even though online publications are often free from page count limitations, entirely too much space is
consumed by long row-broken R print events. On the one hand the recoding of SRA annotation on
phenotype is important and should be exposed, on the other hand, the author could carry out the recoding
programmatically in a well-parameterized function and simply update the key object by applying this
function. The function can go in a package related to the paper/workflow. Instead of printing out a
dataframe on p.7, it would be much better to have a contingency table showing the final layout of case
and control characteristics.

p.7 "For simplicity, we select the first 18 (healthy) and the last 18 (SLE) samples from the original
RangedSummarizedExperiment object". Is this essential to the performance of the workflow? Would a
more systematic matching be possible? What kind of "simplicity" does this arbitrary selection create? |
understand that the main purpose of the paper is to illustrate a process, but if this thinning of the data
is not essential to the illustration, why do it?

p. 8: "Note that we used an extremely simple model; in the real world you will probably need to account for
co-variables, potential confounders and interactions between them. edgeR and limma are good
alternatives to DESEQ2 for performing differential expression analyses." This suggests that you can't
adjust for confounders in DESeq2, is this so? Did you not have access to any relevant cofactors in the
SLE data?

p. 9: You are really using 59000 genes after vst to do exploratory visualization of SLE vs control
expression patterns? Would gene filtering be helpful? Is there any chance of batch effect or other
surrogate variable effect that should be assessed prior to such presentations?

By page 12 we have completed a relatively elementary differential expression analysis. It seems to me
that the length of this part of the process is excessive, because the real interest is in learning about
regulatory elements from other resources.

At this point | hope | have made clear how | think the rest of the paper should be revised to make its points
more effectively.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

Page 25 of 33


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691329/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691329/#SD1

FIOOOResearch F1000Research 2018, 7:121 Last updated: 09 MAR 2018

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Enrico Ferrero, GlaxoSmithKline, UK

Vincent, many thanks for reviewing my paper in depth.
In response to your comments (please note that | took the liberty to format some of your points and
omit some parts for readability):

- [...] I think this undertaking is very worthwhile from several perspectives [..] and promoter capture
data whose origins could be better described.

--> Promoter capture Hi-C is indeed briefly introduced as a technique in the introduction. | have
now added some more context on the Javierre et al., 2016 dataset and emphasised its relevance
for this workflow at the beginning of the "Promoter capture Hi-C data" subsection.

- [...] The paper is full of "dumps" of show events for R objects that impede the narrative flow
drastically.

--> | didn't realise how annoying this was until you mentioned it. | removed the great majority of
dumps, leaving only a few to document the structure of datasets just imported or very final objects.
For all dumps, | also ensured that a minimal amount of rows were printed.

- A diagram that shows how the various resources combine in a scientifically coherent way would
be a huge step forward for the paper and for practitioners.

--> | included a diagram providing a schematic overview of the workflow as figure 1 and referenced
it in the last paragraph of the introduction. Please note that the diagram is created in R with the
DiagrammeR package but the code is hidden as it is not strictly relevant for the purposes of the
workflow.

- More reckoning of limitations that arise from complexity is also in order. eQTLs are far from
simple, and should not be used as 'lists'. Enhancer and promoter 'lists' also need to be used with
care.

--> | added a few sentences at the beginning of the "eQTL data" subsection cautioning on the
complexity of GWAS/eQTL integration and provided a short overview of available alternatives
which are more methodologically robust.

- [...] In particular, it would be great to see how the different elements of the system contribute to
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the ultimate enumeration of targets.
--> | added figure 7 to show the relative contributions of the different approaches to the final results.

- [...] The introduction concludes with mention of STOPGAP, and POSTGAP, and INFERNO, but it
is not clear whether the paper is intended to describe how content of STOPGAP is developed from
basic data resources like those readily available to Bioconductor users.

--> | expanded that paragraph to provide more context on STOPGAP, POSTGAP and INFERNO
and to clarify the intent of mentioning those resources in the introduction.

- | feel that the introduction, though well-referenced, is too long and does not clearly state the
paper's main goal.

--> | shortened the introduction by removing the paragraph about GWAS and PheWAS and by
removing or shortening several other sentences. | added a short, final paragraph stating more
clearly the main goals of the workflow.

- There is no discussion of the experimental design underlying the RNA-seq study. Presumably the
data were generated from this component of ref 28: [...]

--> That's correct. | added more context on the original study, including an overview of the
experimental design, in the third paragraph of the "Gene expression data and differential gene
expression analysis" section.

- There is no discussion of heterogeneity of SLE or the difficulty of learning from a collection of 18
cases. A reference to https://www.ncbi.nlm.nih.gov/pubmed/25102991 may be in order.

--> | addressed this point with a better introduction to SLE and its heterogeneity in the second
paragraph of the "Gene expression data and differential gene expression analysis" section.

- [...] Instead of printing out a dataframe on p.7, it would be much better to have a contingency table
showing the final layout of case and control characteristics.

--> | agree this is a more effective way to summarise the data. | removed the dataframe printing
and included a contingency table showing features of case and control samples.

- p.7 "For simplicity, we select the first 18 (healthy) and the last 18 (SLE) samples from the original
RangedSummarizedExperiment object". Is this essential to the performance of the workflow?
Would a more systematic matching be possible? What kind of "simplicity” does this arbitrary
selection create? | understand that the main purpose of the paper is to illustrate a process, but if
this thinning of the data is not essential to the illustration, why do it?

--> Indeed, this was mostly done to speed up execution while compiling the document. | removed
that chunk and all 117 samples are now used in the analysis.

- p- 8: "Note that we used an extremely simple model; in the real world you will probably need to
account for co-variables, potential confounders and interactions between them. edgeR and limma
are good alternatives to DESEQ2 for performing differential expression analyses." This suggests
that you can't adjust for confounders in DESeq2, is this so? Did you not have access to any
relevant cofactors in the SLE data?

--> | reworded that sentence to clarify that DESEQ2 is equivalent to edgeR and limma when it
comes to multiple cofactors in the model. | also included a better description of the metadata
available for this dataset and explained why it is not possible to include demographic statistics
(unavailable) or other experimental factors (collinear with disease status) in the model.
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- p. 9: You are really using 59000 genes after vst to do exploratory visualization of SLE vs control
expression patterns? Would gene filtering be helpful? Is there any chance of batch effect or other
surrogate variable effect that should be assessed prior to such presentations?

--> | have now applied a simple filter to remove genes with extremely low counts directly on the dds
object and ahead of VST, as documented in the DESeq2 vignette [1] and the Bioconductor
RNA-seq workflow [2]. This reduces the number of genes considerably, helping to speed up code
execution too. | also clarified in the "Gene expression data and differential gene expression
analysis" section that one of the aims of the hierarchical clustering and PCA in figure 2 and 3 is
indeed to assess presence of batch effects or surrogate variables. Note that all available
experimental variables are now included as annotation in the heatmap in figure 1.

- By page 12 we have completed a relatively elementary differential expression analysis. It seems
to me that the length of this part of the process is excessive, because the real interest is in learning
about regulatory elements from other resources.

--> The "Gene expression data and differential gene expression analysis" has now been
considerably condensed by removing superfluous object dumps, merging code chunks and
reducing the text to a minimum. One could go as far as removing the exploratory data analysis and
figures, but I'd rather keep them to provide some context and a minimal differential expression
analysis to be used as the starting point for the integration of the GWAS data.

- At this point | hope | have made clear how | think the rest of the paper should be revised to make
its points more effectively.

--> Indeed. The workflow was largely redacted, condensed and improved by limiting R object
dumps, providing more context on the features of the datasets used and more insights into the
methodology and results of the analysis through the use of visualisations and data summaries.

[1] https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
[2] https://www.bioconductor.org/help/workflows/rnaseqGene/

Competing Interests: No competing interests were disclosed.

Referee Report 05 February 2018

doi:10.5256/f1000research.14748.r30355

?

Aaron T. L. Lun
CRUK (Cancer Research UK) Cambridge Institute, University of Cambridge, Cambridge, UK

This workflow is clear, well-written and makes good use of existing resources and Bioconductor software.
It addresses an interesting problem in the integration of RNA-seq, GWAS, eQTL and Hi-C data for causal
gene discovery in disease contexts. However, it would benefit from some more elaboration in certain
sections. | have listed my comments below in more detail, ordered by the location in the workflow they
refer to. For most part, | believe they are easily addressed.

- The final paragraph of the introduction seems out of place; | do not see any reference to POSTGAP,
STOPGAP or INFERNO anywhere else in the article. Was the workflow presented here used to identify
the candidate genes in these resources?
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- A more comprehensive description of the SLE data set, and the motivation behind using it, would be
helpful.

- There seems to be a typo when loading the SRP062966 dataset; it should be
load(file.path("SRP062966", "rse_gene.Rdata")), at least on my machine.

-1 don't see why it's desirable to call scale_counts(). Major DE analysis frameworks are easily capable of
handling differences in library sizes. Direct scaling would actually be detrimental to NB models like edgeR
and DESeq?2, as it distorts the mean-variance relationship. In particular, scaled counts can have
sub-Poisson variation, which cannot be handled by NB models. It seems better to call read_counts() to
obtain the gene-level read counts.

- rse$FIELD can be used instead rather than colData(rse)$FIELD, which may simplify the code.

- Some explanation of the other factors (anti-rho, ISM) would be helpful, given that the effort has already
been taken to define them.

- The simplicity of the model used in the DE analysis is probably unhelpful in the context described in the
workflow. | would like to see more elaboration on how to handle batch effects and other confounding
factors that are almost definitely present in large-scale studies. For example, what happens to the DE
genes when additional explanatory factors are added to the model, e.g., anti-rho or ism status?
Presumably age and sex are also relevant factors, if that information is available in the data set.

- Generally, some of the plots could be accompanied by more commentary in text, explaining how to
interprete the plot. For example, the MA plot in Figure 3 shows that DE genes are detected in both
directions, at a range of abundances. It would be similarly useful to have text for the heatmap in Figure 1
and the Manhattan plot in Figure 4, among others.

- LD expansion seems like quite an important step, especially when SNPs are being linked to genes
based on overlaps to promoters/UTRs. If the LD blocks are large, expansion would result in many more
potential causal SNPs and a greater number of overlaps (and thus candidate genes). While | appreciate
the attempt to simplify the workflow, skipping this step seems like it would unnecessarily reduce the
number of candidate genes.

- snps seems to have GRCh38 coordinates. Is this also the case for GENCODE 257 It would be helpful to
have a cautionary note regarding the need to make sure the same version of the genome is used
throughout a workflow. | recognise that this is mentioned later when liftOver() is used, but it is better to be
explicit about this where possible.

- Oscillating between head() and tail() to preview the dataset is unhelpful and confusing.

- While | don't expect a thorough examination of the set of (7 easy, 4 hard, 3 via Hi-C) candidate genes for
SLE, some discussion of the biological significance of the detected genes would be appreciated. It would
provide a high-level validation of the workflow and link it back to the drug discovery context.

- For the promoter Hi-C section, you could consider using the linkOverlaps() method in the
InteractionSet package, to link SNPs to gene promoters via the identified Hi-C interactions. This might be
simpler than the current code, and possibly faster; the nearest() step in particular takes quite a long time.
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Referee Expertise: Computational biology, bioinformatics

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Enrico Ferrero, GlaxoSmithKline, UK

Aaron, many thanks for reviewing my paper in depth.
In response to your comments:

- The final paragraph of the introduction seems out of place; | do not see any reference to
POSTGAP, STOPGAP or INFERNO anywhere else in the article. Was the workflow presented
here used to identify the candidate genes in these resources?

--> | expanded the paragraph to provide more context on STOPGAP, POSTGAP and INFERNO
and to clarify why they are mentioned in the introduction but not used in the actual workflow.

- A more comprehensive description of the SLE data set, and the motivation behind using it, would
be helpful.

--> More background and details on the dataset have been added in the second and third
paragraph of the section "Gene expression data and differential gene expression analysis".

- There seems to be a typo when loading the SRP062966 dataset; it should be
load(file.path("SRP062966", "rse_gene.Rdata")), at least on my machine.
--> Fixed, thanks.
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- | don't see why it's desirable to call scale_counts(). Major DE analysis frameworks are easily
capable of handling differences in library sizes. Direct scaling would actually be detrimental to NB
models like edgeR and DESeq2, as it distorts the mean-variance relationship. In particular, scaled
counts can have sub-Poisson variation, which cannot be handled by NB models. It seems better to
call read_counts() to obtain the gene-level read counts.

--> For this section, | followed the recount quick start guide [1] and workflow [2]. Both show scaling
of the counts with scale_counts() before feeding these to DESeq2. | tried switching to
read_counts() but, somewhat counter-intuitively, the function returns values with decimal numbers,
which in turn causes an error ("some values in assay are not integers") when calling the
DESeqDataSet() function. As both scale_counts() and read_counts() seem to be acceptable, but
the first one is the preferred approach by the recount developers, | switched back to scale_counts()
after encountering the DESeq2 error above. The other option would have been to manually round
the numbers returned by read_counts() but that seemed more questionable to me than scaling
them.

- rse$FIELD can be used instead rather than colData(rse)$FIELD, which may simplify the code.
--> Simplified, thanks.

- Some explanation of the other factors (anti-rho, ISM) would be helpful, given that the effort has
already been taken to define them.

--> | added context for these experimental factors in the third paragraph of the "Gene expression
data and differential gene expression analysis" section and after printing the rse$characteristics
object is printed.

- The simplicity of the model used in the DE analysis is probably unhelpful in the context described
in the workflow. | would like to see more elaboration on how to handle batch effects and other
confounding factors that are almost definitely present in large-scale studies. For example, what
happens to the DE genes when additional explanatory factors are added to the model, e.g.,
anti-rho or ism status? Presumably age and sex are also relevant factors, if that information is
available in the data set.

--> | agree this is not ideal, but there are good reasons why other factors are not included. First,
age, gender or other demographics are not available for this dataset. Second, the ISM and anti-Ro
factors are disease characteristics and are obviously only measured on the SLE patients (and not
on the healthy ones). If either or both of those factors are included in the model, you get the classic
"model matrix is not full rank" error [3] because they are both collinear with the disease status (all
healthy samples are "control" for both anti-Ro and ISM). I've been more explicit about these
shortcomings in the paragraph following the code chunk where the model is built.

- Generally, some of the plots could be accompanied by more commentary in text, explaining how
to interprete the plot. For example, the MA plot in Figure 3 shows that DE genes are detected in
both directions, at a range of abundances. It would be similarly useful to have text for the heatmap
in Figure 1 and the Manhattan plot in Figure 4, among others.

--> | expanded the main text and legends for figures 2, 4 and 5 (previously 1, 3 and 4) to include a
better description and explanation of the plots. | believe figures 3 and 6 (previously 2 and 5) were
already adequately described. | also added 3 new figures (1, 7 and 8) to clarify the steps involved
in the workflow and to provide a more in-depth understanding of the final results.

- LD expansion seems like quite an important step, especially when SNPs are being linked to
genes based on overlaps to promoters/UTRs. If the LD blocks are large, expansion would result in
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many more potential causal SNPs and a greater number of overlaps (and thus candidate genes).
While | appreciate the attempt to simplify the workflow, skipping this step seems like it would
unnecessarily reduce the number of candidate genes.

--> Unfortunately | can't come up with a good way to perform this step in R as part of the workflow
at present. The Idblock package hasn't been updated in a while and its functions rely on
downloading the HapMap data from the NCBI website, which was retired in 2016 and is no longer
available for download [4]. Even if it was still available, it would require downloading several GBs of
data, one chromosome at a time. The previously referenced trio package uses data structures
specific to case - parent trio studies which are not compatible with the use case presented in the
workflow and are not designed for hundreds of SNPs, and was thus removed. The Ensembl LD
Calculator is a web Ul with a limit of 20 SNPs per query that can't be integrated in a programmatic
workflow, so it was removed too. | guess the Ensembl REST API could be an option, but it would
require introducing a few new libraries and a considerable amount of code to interact with the API
and parse its output into R/Bioconductor objects, with the risk of distracting the reader from the
main purpose of this (Bioconductor) workflow. It would also require performing several hundreds
queries in a for loop making compilation of the document extremely long and following the workflow
impractical. | modified the text in the manuscript to communicate more clearly the reasons for
skipping this step. If you have other suggestions on how to do this, | would be happy to consider
them.

- snps seems to have GRCh38 coordinates. Is this also the case for GENCODE 257 It would be
helpful to have a cautionary note regarding the need to make sure the same version of the genome
is used throughout a workflow. | recognise that this is mentioned later when liftOver() is used, but it
is better to be explicit about this where possible.

--> | added a clarification and a warning about this in the third paragraph of the "Accessing GWAS
data" section, after importing the GWAS data.

- Oscillating between head() and tail() to preview the dataset is unhelpful and confusing.
--> | removed all instances of tail() and replaced them with head().

- While | don't expect a thorough examination of the set of (7 easy, 4 hard, 3 via Hi-C) candidate
genes for SLE, some discussion of the biological significance of the detected genes would be
appreciated. It would provide a high-level validation of the workflow and link it back to the drug
discovery context.

--> | added a new section "Functional analysis of prioritised hits" (and a new figure, 8) where |
describe the biological significance and functional relevance of the results, while also discussing
some of the hits in more detail from a drug discovery perspective.

- For the promoter Hi-C section, you could consider using the linkOverlaps() method in the
InteractionSet package, to link SNPs to gene promoters via the identified Hi-C interactions. This
might be simpler than the current code, and possibly faster; the nearest() step in particular takes
quite a long time.

--> Thanks, | had heard of the InteractionSet package but hadn't used it before. | agree it's better to
represent the promoter capture Hi-C data in this native structure. | still had to use the nearest()
function (which executes almost instantaneously on my laptop) to map promoters to gene IDs
though. Also, note that | didn't need the linkOverlaps() function in the end and simply used
findOverlaps(..., use.region = "second") instead.
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[1] https://bioconductor.org/packages/3.7/bioc/vignettes/recount/inst/doc/recount-quickstart.html
[2] https://f1000research.com/articles/6-1558/v1

[3] http://seqanswers.com/forums/showthread.php?t=33032

[4] https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
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