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Abstract
Recently, specific driver mutations were identified in chondroblastoma, giant cell tumour of bone and central cartilaginous
tumours (specifically enchondroma and central chondrosarcoma), sharing the ability to induce genome-wide epigenetic alter-
ations. In chondroblastoma and giant cell tumour of bone, the neoplastic mononuclear stromal-like cells frequently harbour
specific point mutations in the genes encoding for histone H3.3 (H3F3A andH3F3B). The identification of these driver mutations
has led to development of novel diagnostic tools to distinguish between chondroblastoma, giant cell tumour of bone and other
giant cell containing tumours. From a biological perspective, these mutations induce several global and local alterations of the
histone modification marks. Similar observations are made for central cartilaginous tumours, which frequently harbour specific
point mutations in the metabolic enzymes IDH1 or IDH2. Besides an altered methylation pattern on histones, IDHmutations also
induce a global DNA hypermethylation phenotype. In all of these tumour types, the mutation-driven epigenetic alterations lead to
a highly altered transcriptome, resulting for instance in alterations in differentiation. These genomic alterations have diagnostic
impact. Further research is needed to identify the genes and signalling pathways that are affected by the epigenetic alterations,
which will hopefully lead to a better understanding of the biological mechanism underlying tumourigenesis.

Keywords Bone neoplasm . Chondrosarcoma . Giant cell tumour of bone . Chondroblastoma . IDH mutations . Histone H3.3
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Introduction

The genetic make-up of tumour cells alone is insufficient to
explain differences in cellular behaviour. One factor that can
explain these differences is epigenetics: the stable and herita-
ble change of gene function caused by other factors than al-
terations in the DNA sequence [1]. This involves mainly
changes in the three-dimensional structure of DNA, which is
defined by histones, nucleosomes and chromatin condensa-
tion. By altering the DNA structure, the accessibility for pro-
teins involved in gene transcription is either enhanced or re-
duced, regulating gene expression.

To control DNA accessibility, several enzymes such as
DNA methyltransferases, histone acetyltransferases, ubiquitin
ligases and histone methyltransferases make modifications
(e.g. methylation, acetylation, phosphorylation and
ubiquitination) on DNA itself or on certain amino acid posi-
tions on histone tails [2]. At another level, chromatin remod-
elling complexes (e.g. SWI/SNF and INO80) construct, repo-
sition or evict nucleosomes to change the packaging of the
DNA [2]. Together, the dynamic and reversible epigenetic
modifications define which genetic information is available
for a cell and thereby regulate cellular fate and homeostasis.

Recently, it was shown that epigenetic regulatory genes are
frequently mutated across several tumour types, leading to
deregulation of normal gene expression patterns (e.g. silenc-
ing of tumour suppressor genes and activation of oncogenes)
and thereby promotion of tumourigenesis [3]. Epigenetic al-
terations, unlike genetic causes of diseases, are reversible,
making them interesting targets to develop novel anti-cancer
therapies. In the past couple of years, several drugs targeting
DNAmethylation (i.e. azacitidine and decitabine) and histone
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acetylation (i.e. vorinostat, romidepsin and panobinostat) have
been FDA approved for different haematological malignan-
cies. Many clinical trials are ongoing to evaluate the effect of
epigenetic drugs in a wide variety of tumour types, including
advanced and metastatic sarcoma [4].

Bone and soft tissue tumours are a rare, heterogeneous
group of mesenchymal tumours which frequently harbour epi-
genetic alterations. For instance, the promoter of the tumour
suppressor gene PTEN is frequently hypermethylated in soft
tissue sarcomas, while loss-of-functionmutations in PTEN are
rare in these tumours [5]. Furthermore, several bone and soft
tissue tumours harbour an aberrant DNA methylation pattern
across the whole genome (e.g. chondrosarcoma [6], Ewing
sarcoma [7] and rhabdomyosarcoma [8]).

Deregulation of chromatin remodelling complexes is also
commonly seen in sarcomas. For instance, loss of SMARCB1
is the hallmark of malignant rhabdoid tumours and epithelioid
sarcomas [9, 10]. SMARCB1 is a core subunit of the SWI/SNF
chromatin remodelling complex: a group of proteins involved
in positioning the nucleosomes on the DNA. Furthermore,
approximately 80% of all malignant peripheral nerve sheath
tumours have mutations in the EED or SUZ12 subunits of the
polycomb repressive complex (PRC) 2 [11]. This complex is
primarily involved in maintaining the repressive tri-
methylation mark on lysine 27 of histone H3 (H3K27me3)
which has led to the use of an easily applicable immunohisto-
chemical diagnostic tool [12–14]. Moreover, certain translo-
cations, such as the SS18-SSX fusion in synovial sarcomas,
affect epigenetics. The SS18 gene is involved in the SWI/SNF
complex, while SSX1 and SSX2 are subunits of the PRC com-
plexes [15]. Fusion of these genes leads to the formation of an
altered chromatin remodelling complex which lacks the
SMARCB1 subunit, resulting in transcriptional repression of
tumour suppressor genes (e.g. EGR1) and transcriptional ac-
tivation of oncogenes (e.g. SOX2) [15, 16].

Mesenchymal tumours can also harbour mutations in his-
tones themselves or genes indirectly related to epigenetic reg-
ulation. This review will focus on a group of bone tumours
that share mutations in genes involved in epigenetic regula-
tion: H3 histone family member 3A and 3B (H3F3A and
H3F3B) mutations in giant cell tumour of bone and
chondroblastoma, respectively, and isocitrate dehydrogenase
1 and 2 (IDH1 and IDH2) mutations in central cartilaginous
tumours.

Histone H3.3 variants in giant cell tumour
of bone and chondroblastoma

Giant cell tumour of bone

Giant cell tumour of bone (GCTB) is a locally aggressive and
rarely metastasizing neoplasm (Table 1). These tumours

typically arise in the end of long bones and are predominantly
formed in skeletally mature young adults between the age of
20 and 45 [17]. Although GCTB has a high recurrence rate (~
25% of patients), malignant transformation is very rare and
occurs in less than 1% of the patients [32]. Pulmonary metas-
tases are very rare and typically slow-growing. These are
thought to represent pulmonary implants that result from em-
bolization of intravascular growths of GCTB [33].

GCTB is histologically characterized by three types of
cells: the multinucleated osteoclast-like giant cells, the mono-
nuclear macrophage-like osteoclast precursor cells and the
mononuclear spindle-shaped stromal cells. The latter are con-
sidered as the neoplastic component of GCTB; these cells
have the ability to form tumours in mice and can be main-
tained in vitro [34, 35]. The neoplastic stromal cells are of
osteoblastic origin and secrete high levels of chemokines
(e.g. MCP-1 (CCL2) and SDF-1 (CXCL12)) to attract the
mononuclear osteoclast precursor cells to the tumour site
[36]. Subsequently, M-CSF (CSF1) secreted by the neoplastic
stromal cells induces the expression of the RANK
(TNFRSF11A) receptor on the attracted monocytes [37].
RANK ligand (TNFSF11) expression is upregulated by the
neoplastic stromal cells, resulting in monocyte differentiation
and fusion and thereby formation of the characteristic large
giant cells [38]. These newly formed giant cells have bone
resorption properties and cause the characteristic osteolysis.

The current treatment of GCTB is curettage combined with
local adjuvant therapy to fill the bone cavity (e.g.
polymethylmethacrylate or cancellous bone grafts) or, if nec-
essary, en bloc resection. If tumours are unresectable or recur,
patients can be treated with denosumab, a monoclonal anti-
body against RANK ligand [32], or bisphosphonates [39].
Neutralization of RANK ligand will inhibit the formation of
giant cells and consequently the bone resorption process.
However, the neoplastic stromal cells are not affected, requir-
ing life-long treatment and causing relapse if treatment is
discontinued. This underlines the need to develop novel ther-
apeutic strategies directly targeting the neoplastic stromal cells
in GCTB.

Chondroblastoma

Chondroblastoma is a benign, cartilage-forming tumour
which accounts for less than 1% of all primary bone tumours
(Table 1). These tumours typically arise in skeletally immature
patients ranging in age from 10 to 25 years old, predominantly
in the epiphysis of long bones [18]. Chondroblastomas are
successfully treated with curettage combined with bone
grafting, or radiofrequency ablation. Recurrence rates are be-
tween 14 and 18%, and the development of so-called ‘benign’
pulmonary metastases is very rare. The immature cartilage
cells, chondroblasts, located in growth plates are considered
as the cells of origin in chondroblastoma [40], although
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another study suggests that these tumours deposit osteoid ma-
trix and should be reclassified as bone-forming tumours [41].
Additionally, a variable amount of osteoclast-like giant cells is
seen. Chondroblastoma differs from giant cell tumour of bone
by the presence of a sclerotic rim, the relatively younger age of
the patients and histological characteristics (e.g. cell type and
matrix formation), although it is sometimes difficult to distin-
guish (Table 1).

Histone H3.3 variants

Recently, a study was published which described the presence
of histone H3.3 mutations in both chondroblastoma and
GCTB [24]. Interestingly, GCTB exclusively showed alter-
ations in the H3F3A gene (92% of cases), while H3F3B was
predominantly affected in chondroblastoma (95% of cases;
93% H3F3B and 7% H3F3A). H3F3A and H3F3B are
paralogous genes located on different chromosomes (chromo-
some 1 and chromosome 17, respectively) and have a slightly
different DNA sequence, but both encode for the exact same
histone H3.3 protein. The altered amino acids in these genes
are remarkably specific for each tumour type. GCTB specifi-
cally harbours G34W mutations or, less common, G34L var-
iants in H3F3A, while chondroblastoma exclusively shows
K36M alterations in both H3F3A and H3F3B [24]. Histone
H3.3 alterations have also been described in glioma and glio-
blastoma; especially K27M and G34R/Valterations inH3F3A
(up to 60%) [42]. Of note, histone H3.3 variants are rarely
found in other tumours, making these mutations highly

spec i f i c f o r g l i oma , g l iob l a s t oma , GCTB and
chondroblastoma [24, 43]. This has led to development of
novel diagnostic tools that either use sequencing of H3F3A
and H3F3B, or immunohistochemistry using G34W and
K36M mutation-specific antibodies, to distinguish between
chondroblastoma, GCTB and other giant cell-rich tumours
[30, 31, 44] (Fig. 1). Their high frequency of occurrence sug-
gests an important role for these mutations in tumourigenesis,
suggesting that targeting these mutations or the underlying
alterations could be used as novel therapeutic strategies.
Interestingly, within the tumours, the mutation was only ob-
served in stromal-like cells and not in cells from the osteoclast
lineage, indicating that these cells are the neoplastic and driv-
ing component of GCTB and chondroblastoma [24] (Fig. 1).

Epigenetic alterations induced by histone H3.3
variants

Histone H3.3 is a well conserved replacement histone that is
highly structurally related to the canonical histone H3 protein.
H3.3 is the most predominant form of histone H3 in non-
dividing cells, and incorporation is independent of DNA syn-
thesis. Usually, histone H3.3 replaces the canonical histone
H3 protein in the nucleosome of active genes (e.g. promoter
and gene bodies), suggesting that it may be an epigenetic
regulator of transcriptionally active chromatin [45]. The most
frequently modified lysine residues on histone H3.3 are K4,
K9, K27 and K36, which usually acquire mono-, di- or tri-
methylation and acetylation marks. Of note, two histone H3.3

Giant Cell Tumour of Bone

H3F3A

G34W

Chondroblastoma

H3F3

K36M

Central Cartilaginous Tumour

IDH1

R132H

Fig. 1 Histology and mutation-specific immunohistochemistry in chondroblastoma, giant cell tumour of bone and central cartilaginous tumours
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mutations (i.e. K27M and K36M) are exactly at the location of
these lysine residues, while the G34 mutations are closely
situated near the K36 position. This implies that all H3.3 mu-
tations could hamper the formation of modification marks and
thereby change the transcription of genes across the whole
genome.

Several research groups have started to elucidate the epige-
netic alterations caused by H3.3 mutations and the mecha-
nisms underlying these changes in chondroblastoma and
GCTB. The K36M mutation in H3F3A and H3F3B
(H3K36M) causes genome-wide reduction of methylation in
chondroblastoma, specifically loss of di-methylation of
H3K36 (H3K36me2) at intergenic regions and H3K36me3 at
gene bodies [46, 47]. Methylation of K36 is associated with
active gene transcription, indicating that the H3K36M muta-
tion inhibits gene transcription across the whole genome [48].
Pathways that are shown to be altered are chondrogenic and
osteogenic differentiation (i.e. downregulation of BMP2 and
RUNX2, respectively) and homologous recombination (i.e.
downregulation of BRCA1 and ATRX) [46].

The reduction in methylation is caused by the inhibition of
histone methyltransferases (HMTs) such as NSD1, NSD2 and
SETD2. The active SET domain within these HMTs contains
tyrosine residues which normally bind to a lysine residue on
histone tails to deposit a methylation mark. However, in the
case of a H3K36M mutation, the lysine is mutated into a
methionine which results in stronger binding of HMTs to the
histone tail. This causes a global reduction in the HMT levels
and its enzymatic activity, leading to a genome-wide alteration
of the H3K36me2/3 landscape. This higher affinity of HMTs
for H3K36Mwas confirmed by solving the crystal structure of
the SETD2-H3K36M complex and by performing pull-down
assays showing an enriched interaction between HMTs and
H3K36M [46, 47, 49, 50].

Additionally, H3K36M mutations cause redistribution of
the repressive H3K27me3 histone mark and its reader com-
plex PRC1. Upregulation of H3K27me3 has been observed in
intergenic regions, while loss was observed at gene loci [47].
Consequently, re-expression of normally H3K27me3 silenced
genes occurs such as Wnt6 and Sox6, genes involved in
blocking mesenchymal differentiation. Thus, H3K36Mmuta-
tions change the K27 and K36 methylation landscape,
resulting in a highly altered transcriptome.

In contrast, the mechanism underlying the observed epige-
netic changes in cells harbouring G34 mutations in H3F3A
(H3F3A G34) is less clear. Although histone modifications
cannot be directly made on the G34 residue, H3F3A G34
mutations may affect the deposition of marks on the K36
position, and possibly also other modification sites, due to
steric hindrance. An interaction study showed that the G34
position is involved in binding SETD2 [50]. SETD2 has a
narrow binding pocket at the G34 position which can only
bind the smallest amino acid: glycine. Consequently, all

H3F3A G34 mutations will prevent SETD2 from binding his-
tone H3.3, leading to a decrease in H3K36me3. However, a
genome-wide reduction of H3K36me2/3 was not observed in
cells harbouring H3F3A G34R/V mutations, but only at sites
where the mutated histone was localized [51]. The inhibitory
effect on the enzymatic activity of SETD2 has also been con-
firmed for H3F3A G34W/L mutations in GCTB, with a con-
comitant decrease in H3K36me3 and, noticeably, an increase
in the repressive H3K27me3mark on the mutated histone tails
[52]. However, another study found an increase of the
H3K36me3 mark in GCTB harbouring H3F3A G34W/Vmu-
tations [44]. Moreover, in glioblastoma, H3F3A G34V muta-
tions inhibit the enzymatic activity of KDM4 H3K36me3
demethylases, leading to increased H3K36me3 and
H3K9me3 in histone H3.3 enriched regions [53]. This sug-
gests that H3F3A G34 mutations can both increase and de-
crease the H3K36me3 mark at particular sites in the genome,
leading to significant change in the transcriptome of cells. In
high-grade H3F3A G34V-mutated glioma, this leads to a
change in the methylation pattern of approximately 150 genes
(e.g. the oncogene MYCN) [54].

For GCTB, the genes undergoing a change upon redistri-
bution of the H3K36me3 marks as a result of the H3F3A
G34W/L mutations remain to be identified. Changes that are
observed in primary GCTB cells harbouring a G34W muta-
tion are increased proliferation, migration and colony forma-
tion capacity as compared to wild-type counterparts [55, 56].
Furthermore, splicing aberrations and alternative transcription
start sites are frequently observed in H3F3A G34W-mutated
cells, suggesting an alteration in the RNA processing pathway
[55]. Future studies are needed to elucidate which genes and
signalling pathways are affected by the H3F3AG34mutation-
driven epigenetic alterations.

Therapeutic implications for epigenetic alterations
induced by histone H3.3 variants

Currently, there are limited reports on in vitro or in vivo stud-
ies describing promising epigenetic therapeutic strategies for
GCTB. Therapies directly targeting the mutated histones are
lacking, and reversal of genome-wide epigenetic alterations is
not feasible without major side-effects on the healthy, normal
epigenetic landscape. However, the use of histone
demethylase inhibitors, such as GSKJ4, may counteract the
observed reduction or redistribution of H3K36me3 and
H3K27me3. On the other hand, reduction of H3K36me3
may be a promising therapeutic target and recently it was
shown that WEE1 inhibition in GCTB results in a global
reduction of H3K36me3 and a decrease in proliferation [35].
Nevertheless, further research is needed to identify the genes
affected by the epigenetic changes to develop targeted, effec-
tive therapeutic strategies. Additionally, most research has
been performed on methylation changes across the genome,
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while the effect on other modification marks, such as acetyla-
tion, phosphorylation and ubiquitination, has not been exam-
ined yet. Another promising therapeutic strategy could be to
stimulate the enzymatic activity of SETD2 and KDM4 or to
overcome the strong binding between KDM4-H3F3A G34,
but this kind of compounds are currently lacking.

IDH1 and IDH2 mutations in Enchondroma
and Chondrosarcoma

Enchondroma and Chondrosarcoma

Enchondroma is a benign, cartilage producing tumour which
accounts for 10–25% of all benign bone tumours [19]
(Table 1). These tumours can occur at all ages and mainly
affect bones of the hands and feet and long tubular bones.
Normally, enchondromas are not treated, since most tumours
are solitary and rarely undergo malignant transformation.
Non-hereditary syndromes causing multiple enchondromas
(i.e. Ollier disease and Maffucci syndrome) increase the risk
of progression to chondrosarcoma to ~ 40% [57].

Chondrosarcomas are malignant, cartilage-forming tumours
andmake up 20% of all malignant bone tumours [20] (Table 1).
These tumours usually develop during adulthood, mainly af-
fecting the pelvis and long bones, and either arise as primary
tumours (i.e. in a previously healthy bone) or as secondary
tumours (i.e. in a benign precursor lesion). Conventional
chondrosarcoma is the most prevalent form (85%), followed
by dedifferentiated chondrosarcoma (10%). Most conventional
chondrosarcomas arise in the medulla of the bone (central con-
ventional chondrosarcoma). Histological grading is considered
as the most important prognostic marker to predict the 10-year
survival rate of conventional chondrosarcoma patients: 88% for
atypical cartilaginous tumours and chondrosarcoma grade I
(ACT/Grade I), 62% for Grade II and 26% for Grade III [23].
Furthermore, the metastatic potential of conventional
chondrosarcoma also increases in higher grade tumours: 0%,
10% and 71% for ACT/Grade I, Grade II and Grade III, respec-
tively [21]. Chondrosarcomas are intrinsically resistant towards
conventional chemo- and radiotherapy, and surgery is consid-
ered as the only curative treatment option. Although mutations
in for instance IDH1 and -2, COL2A1 and TP53 combined with
aberrations in signalling pathways such as IHH/PTHrP, pRB
and PI3K/mTOR have been identified as key molecular chang-
es in chondrosarcoma [20], the development of novel targeted
therapies has not yet been successful.

IDH1 and IDH2 mutations

Eighty-seven percent of the solitary and multiple
enchondromas, ~ 50% of the primary central conventional
chondrosarcomas and 86% of the secondary central

chondrosarcomas harbour heterozygous point mutations in
IDH1 and IDH2 [6, 25, 26]. The introduction of an IDH1
mutation alone is sufficient to induce enchondromatosis in
mice [58]. Furthermore, introduction or imitation of IDH mu-
tations in mesenchymal stem cells impairs osteogenic differ-
entiation and promotes chondrogenic differentiation in vitro
[59, 60]. Thus, IDH1 and IDH2 mutations represent an early
event in the development of central cartilaginous tumours.
Over time, central chondrosarcomas acquire additional muta-
tions (e.g. COL2A1 and TP53), which probably become more
important drivers of tumourigenesis than IDHmutations [61].

IDH1 and IDH2 mutations also frequently occur in for
instance acute myeloid leukaemia (AML), glioma and chol-
angiocarcinoma [62]. Most of the point mutations occur at
specific arginine residues: the R132 position in IDH1 and
the R140/R172 positions in IDH2. Some of these variants
can be detected with the use of immunohistochemistry and
mutation-specific antibodies, displaying the mosaicism for
IDH mutations in central cartilaginous tumours (Fig. 1). The
identification of IDH mutations in central cartilaginous tu-
mours facilitates the diagnosis of dedifferentiated
chondrosarcoma on a small biopsy, and the distinction be-
tween chondroblas t ic os teosarcoma and cent ra l
chondrosarcoma [63]. Interestingly, the most frequent point
mutations in either IDH1 or IDH2 differ among the above
listed tumour types. Central chondrosarcoma and cholangio-
carcinoma predominantly harbour R132C mutations in IDH1
(50%), glioma has mainly R132H mutations in IDH1 (90%)
and AML has most often R140Q mutations in IDH2 (30–
50%) [62]. However, none of the mutations are exclusively
observed in one tumour type, suggesting a similar effect of all
IDH1 and IDH2 mutations on tumourigenesis.

IDH1 and IDH2 are enzymes with a similar function in the
tricarboxylic acid cycle (TCA cycle) where they convert
isocitrate into α-ketoglutarate (α-KG) and CO2. Due to the
arginine point mutations, the IDH enzymes acquire a gain-of-
function, leading to additional conversion of α-KG into the
oncometabolite D-2-hydroxyglutarate (D-2-HG). Of note, dif-
ferent IDH1 and IDH2 mutations produce variable levels of
D-2-HG: R132C is a strong D-2-HG producer, while R132H
and R140Q produce lower levels of the oncometabolite [62].
This could explain why some tumour types harbour specific
point mutations more frequently than others, suggesting that
enchondromas rely on high levels of the oncometabolite.

D-2-HG and α-KG have a high structural similarity, lead-
ing to competitive binding of α-KG-dependent enzymes by
D-2-HG. Some of these α-KG-dependent enzymes are in-
volved in maintaining the epigenetic landscape of cells, such
as DNA demethylases (family of TET enzymes) and histone
demethylases (family of Jumonji enzymes). IDH mutations
also affect other processes within the cell, such as metabolism,
cell growth signalling pathways and DNA damage repair [64],
but these alterations go beyond the scope of this review.
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Epigenetic alterations induced by IDH1 and IDH2
mutations

It has been shown that D-2-HG inhibits the activity of Tet
Methylcytosine Dioxygenase 2 (TET2) in vitro [65]. Normally,
TET2 mediates the demethylation of DNA by hydroxylation of
5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC),
which results in a DNA hypermethylation phenotype if this en-
zyme is inhibited by D-2-HG. Several studies confirmed the
global DNA hypermethylation phenotype in several IDH-mutat-
ed tumours, including enchondroma and central chondrosarcoma
[6, 66]. However, an immunohistochemistry study including 9
enchondromas and 92 central chondrosarcomas showed that the
5-mC and 5-hmC levels are highly variable and not associated
with the IDHmutation status [67]. Additionally, long-term treat-
ment of chondrosarcoma cell lines with the IDH1 mutant inhib-
itor AGI-5198 does not alter the DNA methylation phenotype,
suggesting that the epigenetic alterations might have become
independent of the IDH1 mutation [61]. Another study also ob-
served a persistence of the aberrant DNAmethylation phenotype
in 25% of the loci after withdrawal of doxycycline induced ex-
pression of the IDH1 mutant in astrocytes [68]. To conclude,
enchondromas and central chondrosarcomas have an altered
DNA methylation phenotype, but this might have become par-
tially static and no longer directly dependent on D-2-HG medi-
ated inhibition of TET2.

Another group of enzymes that are inhibited by D-2-HG is
the Jumonji-C domain-containing histone lysine demethylases
(KDM enzymes), including the KDM4 family members which
are also affected by histone H3.3 mutations [69]. Inhibition of
these enzymes results in a global increase of several di- and tri-
methylation marks on histone tails. Introduction of an IDH1 or
IDH2mutation in HEK293Tcells leads to elevated levels of the
H3K4me3, H3K9me2/3, H3K27me3, H3K36me3 and
H3K79me2 histone marks [70]. An induction in H3K9me3
and H3K27me3 is also observed in glioma samples harbouring
an endogenous IDH1 mutation [70]. However, in vivo studies
with IDH1 mutant knock-in mice show that none or only a
subset (i.e. H3K4me3, H3K36me3 and H3K79me3) of the his-
tone methylation marks are aberrant [70, 71]. This implies that
an IDH mutation alone is not enough to alter the histone meth-
ylation landscape. Similar conflicting results are also observed
in enchondroma and central chondrosarcoma: an immunohis-
tochemistry study on 101 primary tumours shows high levels of
the H3K4me3, H3K9me3 and H3K27me3 histone modifica-
tion marks, irrespective of the IDH1 or IDH2 mutation status
[67]. Additionally, long-term AGI-5198 treatment of
chondrosarcoma cell lines could not alter the expression of
H3K4me3, H3K9me3 and H3K27me3 [61]. Both studies sug-
gest that the methylation histone modification marks in
enchondromas and central chondrosarcoma are regulated by
additional mechanisms besides D-2-HG-dependent inhibition
of the KDM enzymes.

Although the specific genes affected by IDH mutation-
induced epigenetic alterations remain to be elucidated, most stud-
ies point towards reduced differentiation capacity. Both neural
and haematopoietic differentiations are impaired due to aberrant
histone methylation marks or DNA hypermethylation [70, 72].
In IDH1-mutated cholangiocarcinoma, reduced expression of
H3K4me3 at the HNF4A promoter inhibits hepatocyte differen-
tiation [73]. Furthermore, introduction of an IDH mutation or
addition of D-2-HG impairs osteogenic differentiation and in-
duces chondrogenic differentiation in mesenchymal stem cells
[59, 60]. IDH mutations also reduce the expression of DNA
repair protein ATM [74], although these findings have not yet
been described in central chondrosarcoma and are contradictory
to the observed chemo- and radiotherapy resistance in these tu-
mours. Furthermore, hypermethylation of theNAPRT1 promoter
seems to correlate to NAMPT inhibitor sensitivity in IDH-mu-
tated glioma [75]. Chondrosarcoma cell lines are also sensitive to
NAMPT inhibition and show a hypermethylated NAPRT1 pro-
moter, although this phenotype is independent of the IDHmuta-
tion status [76].

Therapeutic implications for epigenetic alterations
induced by IDH1 and IDH2 mutations

The most straightforward way to target the epigenetic alterations
is direct inhibition of the IDH1 or IDH2 mutant enzyme and
thereby prevention of the formation of the oncometabolite.
However, in vitro experiments do not show a beneficial effect
in chondrosarcoma cell lines: proliferation, migration and colony
formation capacity are not affected, only at high concentrations
[61, 77]. Several clinical trials are ongoing to evaluate the effect
of IDH mutant inhibitors in patients, but the results for
chondrosarcoma patients have not yet been published. Since sev-
eral in vitro studies indicate that the observed changesmight have
become static and independent of the IDHmutation over time, it
may be more promising to directly target these changes. To
counteract the DNA hypermethylation phenotype, the use of
DNA methyltransferase inhibitors, such as decitabine, could be
a promising therapeutic strategy. An in vitro study shows that
decitabine induces the re-expression of several epigenetically
silenced tumour suppressor genes and reduces the proliferation
and migration of chondrosarcoma cells [78]. Contradictory to
these findings, use of decitabine in the Swarm rat
chondrosarcoma model results in a more progressive phenotype
[79]. These conflicting results indicate thatmore research is need-
ed before epigenetic therapies can be used for central
chondrosarcoma patients. For example, identification of the
genes that are mainly affected by the epigenetic alterations could
lead to more targeted therapeutic approaches instead of global
DNA demethylation. Besides that, the non-epigenetic effects of
D-2-HG could also play a major role in tumourigenesis,
warranting a more wide-spread therapeutic approach to target
multiple D-2-HG-affected pathways at once.
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Conclusion and future perspectives

Chondroblastoma, GCTB and central cartilaginous tumours all
harbour driver mutations that induce wide-spread epigenetic al-
terations (Fig. 2). Interestingly, these epigenetic alterations do not
seem to be associated with malignant potential, as the IDH and
H3.3 mutations are considered drivers only in benign
(enchondroma, chondroblastoma) and locally aggressive
(GCTB) neoplasms. This is in line with the fact that these epige-
netic changes predominantly affect differentiation, instead of pro-
liferation. In the case of malignant chondrosarcoma, the IDH
mutation is no longer associated with tumourigenic behaviour
and probably other mutations have taken over the driver function
of the IDH mutation [61]. Similarly, metastases in GCTB are
associated with downregulation of decorin and lumican [80].
Further research is needed to identify the genes affected by the
mutation-driven epigenetic alterations in the different tumour
types, as these genes probably differ between the tumour types.
Moreover, it remains to be elucidated why the occurrence of
certain histone H3.3 mutations is highly tumour type specific.
This will hopefully lead to a better understanding of the

biological mechanisms underlying the development of these
bone neoplasms.

The identification of specific histone H3.3 variants in both
chondroblastoma (i.e. H3K36M) and GCTB (i.e. H3F3A G34)
has led to development of novel diagnostic tools.Mutant protein-
specific immunohistochemistry and/or sequencing of H3F3A
and H3F3B both support pathologists to differentiate between
chondroblastoma, GCTB and other giant cell containing neo-
plasms [30, 31, 44] (Table 1). While the IDH1 R132H
mutation-specific antibody is commonly used in neuropathology
[81], an antibody recognizing the most common IDH1 R132C
mutation in central cartilaginous tumours is not yet available but
would be very helpful in distinguishing enchondroma and
chondrosarcoma from their histologic mimics [63] (Table 1).

Of note, only the neoplastic stromal-like cells harbour the
histone H3.3. variants, both in chondroblastoma and GCTB,
which suggests a close interplay between wild-type (e.g. giant
cells) and mutant cells. A similar relation between wild-type
and mutant cells has been observed for central cartilaginous
tumours, which display intra-neoplastic mosaicism for the
IDH mutations. This makes it tempting to speculate that this
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close interplay between wild-type and mutant cells is essential
for the development of these bone neoplasms driven by epi-
genetic alterations.

As only ~ 50% of the chondrosarcomas harbour IDH1 or
IDH2 mutations, alternative driving mechanisms should be
considered. It remains to be elucidated whether these alterna-
tive driver mechanisms induce similar epigenetic alterations
as observed in IDHmutant chondrosarcomas. Also, one could
speculate that the IDH wild-type cells may overgrow the IDH
mutant cell population over time. While IDH mutations are
essential for the initiation of enchondroma, the additional ac-
quired mutations that take over the driver function of IDH
mutations in chondrosarcomamay occur in the wild-type cells
which might explain the observed IDH wild-type genotype in
half of the chondrosarcomas.
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