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INTRODUCTION 
 

Nowadays, breast cancer (BC) has transcended lung 

cancer as the most common female cancer worldwide, 

accompanied by approximately 2.3 million new cases 

(11.7%) [1]. It is worth noting that BC metastasis, which 

is a complex, multistage process and is prone to colonize 

to the distant brain, lung, and bone, accounting for the 

leading cause of death from BC [2]. Currently metastasis 

and treatment resistance are the main challenge 

in BC therapy and are intensively associated with cancer 

relapse post-treatment [3]. Early and rapid detection of 

BC with accurate and efficient diagnosis is very 

irreplaceable in clinical practice. Therefore, there remains 

an urgent need to explore and investigate new diagnostic 

and risk models, which are essential for individualized 

treatment and prognostic prediction of BC. 

 

The systematically developed prognostic models for 

diseases have received numerous attention, 
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ABSTRACT 
 

Breast cancer (BC) is an inflammatory tumor caused by a variety of pathological factors, and is still the most 
common malignant tumor in women. Immune-related genes (IRGs) play a prominent role in the oncogenesis 
and progression of BC, and are of tumor-specific expression patterns that would benefit the prognosis 
evaluation. However, there were no systematic studies concerning the possibilities of IRGs in BC prognosis. In 
this study, the Cancer Genome Atlas (TCGA) database was used to integrate the expression profiles of IRG with 
the overall survival (OS) rate of 1039 breast cancer patients. The Cox regression analysis was used to predict the 
survival-related IRGs in BC. Then, we successfully screened a total of 6 IRGs, including PSME2, ULBP2, IGHE, 
SCG2, SDC1, and SSTR1, and accordingly constructed a prognosis prediction model of BC. Based on the IRG-
related model, the BC patients were divided into high- and low-risk groups, and the association between the 
prognostic model and tumor immune microenvironment (TME) was further explored. The prognostic model 
reflected the infiltration of various immune cells. Moreover, the low-risk group was found to be with higher 
immunophenoscore and distinct mutation signatures compared with the high-risk group. The histological 
validation showed that SDC1, as well as M2 macrophage biomarker CD206, were both of higher abundance in 
BC samples of high-risk patients, compared with those of low-risk patients. Our results identify the clinically 
significant IRGs and demonstrate the importance of the IRG-based immune prognostic model in BC monitoring, 
prognosis prediction, and therapy. 
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particularly in cancer prognosis. Generally, these 

models are composed of signatures and patterns by 

including tumor-specific mRNAs, non-coding RNAs, 

and proteins [4]. Notably, immune-related genes (IRGs) 

play a multifaceted role in the promoting or suppressing 

BC oncogenesis and progression [5]. The IRGs, 

typically represented by programmed death 1/program-

ed cell death-ligand 1 (PD1/PD-L1), have attracted 

much attention in tumor immunotherapy in BC [6]. In 

addition, the progression of BC has been implied to be 

closely related to the tumor immunophenotype [7]. 

Hence, it is not a stretch to infer that a robust, reliable, 

and individualized IRG-based classifier can be highly 

valuable for predicting BC outcomes. 

 

For judging the prognosis of colorectal cancer (CRC), 

Wen et al. reported a superior risk model comprised of 

eight IRGs (SLC10A2, UTS2, FGF2, UCN, IL1RL2, 

ESM1, ADIPOQ, and VIP) [8]. Their result showed that 

the overall survival (OS) in the high-risk group was 

markedly lower than that in the low-risk group. It 

emphasized the excellent capability of IRGs in 

predicting the clinical outcomes in CRC. Ren et al. also 

constructed a prognostic model based on six IRGs, 

which monitor and predict the prognosis of clear cell 

renal cell carcinoma [9]. Meanwhile, this model was 

significantly related to the clinicopathological feature, 

as well as various immune cell infiltration in the tumor 

microenvironment (TME). Additionally, an interesting 

study of the prognostic model based on 5 IRGs, 

including ERAP2, CXCL9, AREG, DKK1, and 

IL20RB, deciphered that the high-risk patients 

according to risk score had a poorer survival and a 

significantly higher characteristic immune checkpoint 

profile, in comparison to the low-risk patients in the 

setting of pancreatic cancer [10]. Moreover, this model 

could reflect the infiltration abundance of neutrophils 

and dendritic cells (DCs). Thus, all these results directly 

proved that IRG-based models provide valuable 

information for the survival prediction in various cancer 

types. More importantly, IRG-related risk models 

identify an association between genes and 

characteristics of immune infiltration, conferring the 

potential for immunotherapy response and personalized 

treatment in BC patients. 

 

Nevertheless, although some studies have utilized the 

algorithms to predict prognostic or IRG-related survival 

in BC, there were no systematical studies on the 

possibilities of IRGs in BC prognosis. Hence, to address 

this issue, we intended to screen and validate molecular 

markers that could effectively predict survival in BC 

patients. Firstly, we screened out a total of 6 IRGs and 
accordingly established a prognostic risk scoring model. 

This risk model could successfully classify the BC 

patients into high- and low-risk groups. Then, we 

evaluated the risk score in assessing the correlation 

between candidate IRGs and prognostic value, 

clinicopathological characteristics, functional 

enrichment analysis, and tumor-infiltrating immune 

state. Finally, with comprehensive genomic database 

analysis, this robust immune-related prognosis model 

possessed excellent predictive ability in BC prognosis 

and characterization of immune infiltration. Together, 

this well-established risk model could precisely predict 

the prognosis of BC patients, posing a pivotal 

biomarker-encompassing pattern for the immune 

therapy and prognostic evaluation of patients with BC. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

The RNA-sequencing datasets and the corresponding 

clinical characteristics data of BC patients were 

downloaded from The Cancer Genome Atlas (TCGA) 

database (https://cancergenome.nih.gov/). Patients with 

less than 30 days of follow-up and male BC patients 

were excluded. Finally, 1039 patients were included in 

this study and randomized into training group (n = 520) 

and testing group (n = 519) by using the R package 

“caret” for subsequent analysis [11]. The training set 

was used to construct the prognostic immune gene 

signature, while the entire set and testing set were used 

to validate the predictive ability of the established 

prognostic immune model. The list of IRGs was 

downloaded from the Immunology Database and  

the Analysis Portal (ImmPort) database 

(https://www.immport.org/) [12], an open platform of 

human immunology database for clinical and 

translational research. These genes could be identified 

and extensively participate in the important process of 

immunology, thus providing a good foundation for 

immunology research (Figure 1). 

 

Differentially expressed genes (DEGs) and IRGs 

analysis 

 

Then, we performed the DEG analysis on the 

transcriptional data from the TCGA database with 

cutoff values of false discovery rate (FDR) < 0.05 and 

log2 |fold change| > 1. After that, we extracted the 

differentially expressed IRGs from the above DEGs and 

used the limma package of R software 

(http://bioconductor.org/packages/limma/) to acquire 

the differentially expressed IRGs associated with BC 

between cancer and adjacent non-tumor samples 

obtained differentially expressed IRGs associated with 

BC using the limma package of R software 

(http://bioconductor.org/packages/limma/). Finally, the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment pathway analysis and the Gene Ontology 

https://cancergenome.nih.gov/
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www.aging-us.com 5429 AGING 

(GO) annotation were utilized to explore the underlying 

molecular mechanism of these differentially expressed 

IRGs. 

 

Extract Transcription factors (TFs) and construct 

the regulatory network 

 

The Cistrome Cancer Database summarizes the TCGA 

genome data accompanied with more than 23,000 chip-

SeQ and chromatin accessibility maps to demonstrate 

regulatory relationships between TFs and genes [13]. 

The OS time of patients was obtained by downloading 

clinical information from the TCGA database. The 

univariate Cox analysis was performed by using the R 

survival package to screen out the IRGs that were 

closely related to survival prognosis. Accordingly, 

regulatory network was constructed for seeking the 

interrelation between these genes and TFs. In this study, 

TFs were compared with previously obtained IRGs to 

screen differentially expressed TFs related to survival-

related IRGs. The regulatory network diagram of TFs 

and survival-related IRGs was drawn using Cytoscape 

software (version 3.8.0) [14]. 

 

Construction and verification of the immune-related 

prognostic signature 

 

To construct an IRG-based immune-related prognostic 

model, genes significantly associated with prognosis 

were screened by univariate Cox regression analysis, 

and risk coefficients were obtained by Lasso-Penalized 

Cox regression analysis. For predicting OS, BC 

patients were divided into a high-risk group and low-

risk group based on the calculation results of the R 

packages “survival” and “survminer”, using the 

median risk score as the best cut-off value. The time-

dependent prognostic capability of the gene signature 

was measured by calculating the area under the curve 

(AUC) [15], using the R package “survivalROC” [16]. 

In addition, univariate and multivariate Cox regression 

analyses were performed to evaluate the prognostic 

significance and routine clinicopathological features, 

including age, grade, clinical stage, and TNM stage. 

These results were presented through the R package 

“Ggpubr” [17]. The principal components analysis 

(PCA) is used as a statistical method to find key 

variables in multidimensional datasets. PCA could 

predict the analysis and visualize of multidimensional 

data sets [18] through limma [19] and scatterplot 3d 

[20] packages. Subsequently, PCA was performed to 

verify the grouping ability of signatures by identifying 

a small set of synthetic variables through a 

dimensionality reduction process. Finally, the 
m6Ascore was determined in a manner similar to the 

Genomic Grade Index (GGI) [21]: riskScore = ∑ (PC1i 

+ PC2i), where i was the expression of overlapping 

IRGs with a significant difference in prognosis of BC 

patients. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA is a computational method for identifying 

whether defined gene sets are statistically significantly 

and consistently different across biological states [22]. 

We performed GESA using the JAVA program 

(https://www.broadinstitute.org/gsea), to explore the 

potential KEGG pathway enrichment terms of the IRG 

signature in the BC cohort. A total of 1000 random 

sample permutations were included, and enriched gene 

sets with nominal p < 0.05 and FDR < 0.25 were 

considered statistically significant. 

 

Comparison of TME cell infiltration among high- 

and low-risk group 

 

To understand the degree of immune cell infiltration in 

the two subgroups, the relative abundance of each cell 

infiltration in the TME of BC samples was quantified 

using single-sample gene-set enrichment analysis 

(ssGSEA). From the research of Charoentong, we 

obtained the gene sets for each type of TME infiltrating 

immune cells, and stored a relatively comprehensive 

subset of human immune cells, including activated CD8 

T cells, natural killer T cells, activated DCs, 

macrophages, and regulatory T cells. 

 

BC sample validation experiments 

 

Here, we adopted the immunofluorescence (IF) and 

immunohistochemistry (IHC) to verify one of the 

model-associated IRGs (SDC1) in the collected BC 

samples. The BC tumor samples were Surgically 

excised in our department of thyroid and breast surgery 

(Tongji Hospital). Specifically, for immuno-

histochemistry (IHC), all the BC tissues were 

deparaffinized and were heated in citrate buffer in 

sequential. Then, the obtained sections were immune-

stained with a primary anti-SDC1 antibody 

(CD138/Syndecan-1 Rabbit pAb, ABclonal, China 

Catalog: A1235) overnight at 4°C. After washing, these 

incubated sections were then incubated with horseradish 

peroxidase (HRP)-conjugated secondary antibodies. 

DAB peroxidase substrate Kit (Maxin, China) was used 

to observe peroxidase activity and sections were 

restained with hematoxylin. Digital images of sections 

were collected by SOPTOP CX40 microscope (China). 

The IF experiment was conducted to verify the 

distribution of SDC1 and its correlation with M2 

macrophages in the BC samples. For IF, the obtained 
sections were incubated with the above anti-SDC1 

antibody, anti-CD2062 antibody, and nuclear 4,6-

diamidino-2-phenylindole (DAPI, Sigma, USA) for 

https://www.broadinstitute.org/gsea
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counterstaining. Digital image acquisition was realized 

by using a fluorescence microscope (Olympus, Japan).  

 

Statistical analysis  

 

All the statistical analyses were performed by the R 

(v.3.6.3) software. The Fisher’s exact test or Pearson χ2 

test was used to analyze qualitative variables as 

appropriate. P < 0.05 was considered statistically 

significant. 

 

Availability of data and materials 

 

The datasets used and/or analyzed during the present 

study are available from the corresponding author on 

reasonable request. 

 

RESULTS 
 

Data sources and identification of differentially 

expressed IRGs 

 

A total of 4575 DEGs were identified from 1109 BC 

samples and 113 normal samples, including 2698 up-

regulated and 1877 down-regulated genes (Figure 2A, 

2B). Among them, 366 differentially expressed IRGs (193 

up-regulated and 173 down-regulated) were obtained 

from these DEGs by immune gene co-expression analysis 

using the ImmPort database (Figure 2C, 2D). The result of 

GO analysis showed that the differentially expressed 

IRGs were enriched in several biological processes, 

including cellular response to chemokine, leukocyte 

migration, and chemokine-mediated signaling pathway. 

Cellular component analysis demonstrated that IRGs were 

mostly enriched in T cell receptor complex, 

immunoglobulin complex, and circulating, cytoplasmic 

vesicle lumen. And in the molecular function, these genes 

were mostly enriched in receptor-ligand activity and 

cytokine activity (Figure 2G). The KEGG analysis 

indicated that IRGs were mainly involved in Cytokine-

cytokine receptor interaction (Figure 2H). 

 

Identification of survival-related IRGs and 

construction of the TF regulatory network 

 

By integrating the mRNA expression and clinical 

information of BC patients in the TCGA database, we 

finally screened 39 IRGs with significant differences in 

 

 
 

Figure 1. The flowchart of this study. 
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the prognosis of BC patients (P < 0.05) (Supplementary 

Table 1). Then, to further explore the potential molecular 

mechanism of these survival-related IRGs (Supplementary 

Figure 1A), the expression patterns of 318 TFs were 

examined and 80 TFs were found to be differentially 

expressed in BC and non-tumor breast tissues in the 

TCGA database (Figure 2E, 2F). Subsequently, we 

analyzed the relationship between prognostic immune 

genes and differentially expressed TFs, and screened out 

22 TFs and 23 prognostic immune genes, thus constructing 

a regulatory network with a correlation score > 0.4 and p-

value < 0.001. In particular, the visualization of TF-based 

regulatory network clearly showed the interactions 

between these genes (Supplementary Figure 1B). 

 

 
 

Figure 2. Differentially expressed genes, immune-related genes, and TFs. The differentially expressed genes between BC and non-
tumor tissues were shown in the heatmap (A) and the volcano plot (B). Heatmap (C) and the volcano plot (D) indicated the differentially 
expressed immune-related genes (IRGs). Heatmap (E) and volcano plot (F) referred to the differential TFs between breast cancer and non-
tumor tissues. Red dots represented the upregulated genes or TFs, green dots represent downregulated genes or TFs, and black dots 
represented not differentially expressed genes or TFs. N, normal tissue. T, tumor. The GO (G) and KEGG (H) functional enrichment analysis 
of immune-related genes (IRGs). 
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Table 1. Univariate Cox proportional hazards regression analysis of the top 20 IRGs. 

ID HR HR.95L HR.95H p-value 

IGHE 1.059742 1.031821 1.088418 2.05E-05 

SCG2 1.004126 1.002015 1.006241 0.000125 

SSTR1 1.042095 1.020016 1.064653 0.000161 

ULBP2 1.124144 1.053613 1.199397 0.000401 

PSME2 0.985116 0.97654 0.993767 0.000775 

SDC1 1.002568 1.001053 1.004085 0.000888 

CCL24 1.090964 1.031501 1.153854 0.00233 

MMP9 1.000283 1.0001 1.000467 0.002478 

TRDV1 0.665198 0.496953 0.890401 0.006139 

FLT3 0.88369 0.808757 0.965565 0.006237 

TNFRSF8 0.512282 0.311931 0.841316 0.008227 

PLAU 1.005204 1.001327 1.009097 0.008479 

IL18 0.935109 0.888893 0.983728 0.009476 

TSLP 0.192396 0.054878 0.674515 0.010019 

TNFSF4 1.121123 1.026726 1.224199 0.010844 

NPR3 1.036536 1.007298 1.066621 0.013968 

ADM 1.017638 1.0033 1.032182 0.015736 

TRBC2 0.982984 0.96928 0.996882 0.016577 

CXCL9 0.996502 0.993567 0.999445 0.019878 

TRBV28 0.968825 0.943218 0.995128 0.020489 

 

Construction of the immune-related prognostic 

model 

 

BC patients were randomly divided into a training set 

and a test set, including 520 and 519 BC patients, 

respectively. By performing univariate Cox regression 

on the training data, it found that 40 IRGs were retained 

in the training data with p < 0.05 (Table 1, 

Supplementary Table 2). The Cox regression analysis 

and least absolute shrinkage selection operator 

(LASSO) regression were used to analyze the 

expression profiles of differentially expressed IRGs in 

the training group, to define the candidate genes (Figure 

3A, 3B). Finally, a total of 6 IRGs were obtained, 

including PSME2, ULBP2, IGHE, SCG2, SDC1, and 

SSTR1. The specific calculation formula was as 

follows: [Expression level of PSME2* (−0.0143)] + 

[Expression level of ULBP2* (0.1070)] + [Expression 

level of IGHE* (0.0619)] + [Expression level of SCG2* 

(0.0044)] + [Expression level of SDC1* (0.0021)] + 

[Expression level of SSTR1* (0.0451) (Table 2). Based 

on these prognostic genes, we successfully established 

the immune-related prognosis model for OS. 

 

Validation of the immune-related prognostic model 

 

Then, we examined the comparisons of survival 

differences between the high- and low-risk group in the 

training set (Figure 3C), the testing set (Figure 3D), and 

the entire set (Figure 3E). The Kaplan-Meier log-rank 

analysis revealed significant differences in OS between 

the two risk groups. In addition, we found that the 

AUCs of OS in training set, test set and entire set were 

0.782, 0.888, and 0.775, respectively (Figure 3F–3H). 

Our IRG model had the maximum AUC value 

compared to other clinical features, demonstrating good 

predictive power. Subsequent risk curve, scatter 

diagram, and heatmap were used to analyze the risk 

score distribution (Figure 4G–4I), survival status 

(Figure 4J–4L), and the expression of the candidate 

genes (Figure 4M–4O) for each BC patient in the 

training set, testing set, and the entire set, respectively. 

The univariate and multivariate Cox regression analysis 

verified that the IRGs in the prognosis model could 

serve as independent predictors of prognosis (Figure 

4A–4F). 

 

Next, by analyzing the model and different 

clinicopathological factors, the prognosis of low-risk group 

was significantly better than that of high-risk group in 

terms of age (≤ 65/ > 65) (Supplementary Figure 2A and 

2B), T stage (T1 + T2/T3 + T4) (Supplementary Figure 2C 

and 2D), and stage (I + II/III + IV) (Supplementary Figure 

2E and 2F). Similarly, the patients without lymph node 

metastasis (Supplementary Figure 2G) and distant  

metastasis (Supplementary Figure 2H and 2I) had a similar 

outcome. The PCA was further to detect the  

difference between the low-risk group and 
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Table 2. Six immune-related genes identified from TCGA by Cox regression analysis. 

ID coef HR HR.95L HR.95H P-value 

PSME2 −0.01427717 0.98582426 0.97744488 0.99427548 0.001045 

ULBP2 0.106960761 1.11289059 1.03636684 1.19506473 0.00325327 

IGHE 0.061897277 1.06385306 1.03658715 1.09183615 2.97E-06 

SCG2 0.004393524 1.00440319 1.00225846 1.00655251 5.62E-05 

SDC1 0.002059167 1.00206129 1.00045621 1.00366894 0.01181509 

SSTR1 0.045059224 1.04608981 1.02363949 1.06903252 4.69E-05 

 

 

 
 

Figure 3. The LASSO coefficient profiles about 6 immune-related genes were shown in (A, B). The lower X-axis indicated log (λ), the upper 
X-axis indicated the average number of OS-related genes, and the Y-axis showed the partial likelihood deviance error. Red dots indicated 
the average partial likelihood deviances about the model with a given λ, the vertical bars represented the range of the partial likelihood 
deviance errors, and the vertical black dotted lines meant the best fit with the optimal λ values. The training set (C), the testing set (D) and 
the entire set (E) showed the survival curves of high-risk group and low-risk group respectively. The survival-dependent receiver operating 
characteristic (ROC) curves prognostic value in 1 year of the three sets were shown in the (F–H). 
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the high-risk group according to the immune-related 

signals (Figure 5A), immune genes (Figure 5B), 

differential expression genes (Figure 5C), and the 

entire gene expression profiles (Figure 5D). As seen in 

Figure 5, compared with the other three groups, the 

high-risk group and the low-risk group in 

Supplementary Figure 2A were distributed in different 

directions, proving that our prognosis model could 

effectively distinguish the high-risk group from the low-

risk group. 

 

 
 

Figure 4. The univariate (A–C) and multiple (D–F) regression analysis of BC, including the relationships of the age, stage, T stage, distant 

metastasis, lymph node metastasis, and riskScore in the three sets. The training set (A, D), the testing set (B, E), and the entire set (C, F). 
The green squares indicated that the median value of hazard ratio (HR) was less than 1, while the red squares indicated that the median 
value of HR was greater than 1. Analysis of risk score, OS, and the expression of the six genes in the training set (G–I), testing set (J–L), and 
entire set (M–O). The risk score, OS, and heat map were listed from top to bottom. 
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Assessment of the correlation between candidate 

genes and clinicopathological characteristics 

 

We then analyzed the relationship between the 

expression of 6 candidate IRGs and different clinical 

features, including age, gender, tumor grade, T stage, 

clinical stage, lymph node metastasis, and distant 

metastasis. Among 6 candidate IRGs, IGHE and SDC1 

were correlated with age, but IGHE expression was 

increased in patients over 65 years old, while SDC1 

expression was increased in patients under 65 years old 

(Figure 5E, 5G). Besides, the expression difference of 

SDC1 between lymph node metastasis groups was 

statistically significant (Figure 5F). Finally, the risk

 

 
 

Figure 5. The PCA based on the immune-related signature (A), immune-related genes (B), differently expressed genes (C), and the entire 
gene expression profiles (D) between the high-risk group and low-risk group. The correlation of the immune-related signature with 
clinicopathological characteristics. SDC1 was associated with age (E) and lymph node metastasis (F). IGHE were associated with age (G). The 
risk score of our prognostic model was significantly associated with a higher tumor stage (H). 



www.aging-us.com 5436 AGING 

score based on our prognostic model was significantly 

associated with the higher tumor grade (Figure 5H). 

 

Different states of functional enrichment analysis 

between high-risk and low-risk groups 

 

GSEA was used to investigate the differences between 

the high- and low-risk groups. The results revealed that 

the GO biological process “Regulation of cell substrate 

junction organization” (Figure 6A) and “Regulation of 

chondrocyte differentiation” (Figure 6B), molecular 

function “Extracellular matrix structural constituent” 

(Figure 6C) were differentially enriched in low-risk 

groups (P < 0.01). Besides, the biological process 

“Glycosyl compound catabolic process” (Figure 6D), 

molecular function “Oxidoreductase activity acting on 

 

 
 

Figure 6. Enrichment plots of Gene Ontology annotation from gene set enrichment analysis (GSEA). GSEA results showed that 

the regulation of cell substrate junction organization (A), Regulation of chondrocyte differentiation (B), and Extracellular matrix structural 
constituent (C) were differentially enriched in low-risk phenotype, while Glycosyl compound catabolic process (D), Oxidoreductase activity 
on NADPH (E) and Oxidoreductase complex (F) were enriched in the high-risk phenotype. The expression abundance of different TME 
infiltrating cells in the high- and low-risk group (G). The upper and lower end of the box represented the quartile range of the value, the 
middle line represented the median value, and the asterisk represented the statistical p-value (*P < 0.05, **P < 0.01, ***P < 0.001). 
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NADPH” (Figure 6E) and cellular component 

“Oxidoreductase complex” (Figure 6F) were associated 

with the high-risk groups (P < 0.01). 

 

Besides, the KEGG pathway analysis showed that the 

genes of low-risk group were mainly enriched in the 

“TGF beta signaling pathway” (Supplementary Figure 

3A), “Hedgehog signaling pathway” (Supplementary 

Figure 3B), and “Adherens junction” (Supplementary 

Figure 3C) (P < 0.01) while the “Antigen processing 

and presentation” (Supplementary Figure 3D), 

“Cytosolic DNA sensing pathway” (Supplementary 

Figure 3E) and “Oxidative phosphorylation” 

(Supplementary Figure 3F) were enriched in high-risk 

group (P < 0.01). The function enrichment of IRGs 

between high- and low-risk groups was explored, 

showing that the IRGs in our model were mainly 

involved in immune-related signaling pathways 

(Supplementary Figure 1C, 1D). 

 

The tumor-infiltrating immune cells in risk 

signature 

 

Subsequently, to explore the relationship between the 

IRG-based prognostic risk model and TME, the 

differences in tumor-infiltrating immune cells between 

the high- and low-risk groups defined in our prognostic 

model were analyzed. It was found that the abundance 

of activated B cells, activated CD4 T cells, immature 

DCs and eosinophils were significantly more abundant 

in the low-risk group of the OS model (Figure 6G). 

These results potentially shed light on the regulatory 

mechanisms of BC TME. 

 

The immune-related risk signature and mutation 

profile 

 

Using somatic mutation data available from the TCGA 

database, the relationship between mutation 

characteristics and this model was evaluated in BC 

patients. The frequently mutated genes in the high- and 

low-risk groups were presented in Figure 7A, 7B. It was 

intriguing that tumor mutation burden (TMB) was 

significantly higher in low-risk groups and associated 

with longer OS (Figure 7G). 

 

The immune-related risk signature and response to 

immune checkpoints-inhibitors (ICIs) 

 

At last, we further explored the relationship between 

IPSips and this prognostic model. The IPS, IPS-PD1, 

IPS-CTLA4 and IPS-PD1/CTLA4 scores were designed 

to evaluate the feasibility of ICIs applying for BC 
patients. This result showed that the IPS was 

significantly increased in the low-risk group compared 

with the high-risk group (Figure 7C–7F). Moreover, the 

expression of PD1 and CTLA4 was higher in the low-

risk group (Figure 7H, 7I). These results collectively 

suggested that IPS levels were higher in the low-risk 

group, and that these patients exhibited more 

immunophenotypes and were peculiarly prone to benefit 

from immune checkpoint therapy. 

 

The validation of immune-related SDC1 expression 

in BC samples 

 

In the end, the IHC and IF were performed to verify the 

SDC1 expression characteristics, which was one of the 

6 IRGs in our risk model. The IHC results showed that 

SDC expressions were significantly higher in BC 

samples of high-risk patients, compared with those of 

low-risk patients (Figure 8A). Additionally, IF results 

showed the SDC1, as well as M2 macrophage 

biomarker CD206, were both of higher abundance in 

BC samples of high-risk patients, suggesting that SDC1 

was indeed a tumor-promoting factor as previously 

reported and was positively linked to the expression of 

M2 macrophages (Figure 8B). The histological 

verification of BC samples successfully confirmed that 

the expression feature of IRGs in our model was in line 

with expectations. 

 

DISCUSSION 
 

IRGs are a very critical category of genes that are not 

only involved in immune fine-tuning and tumor 

malignant progression, but also are very closely related 

to the prognosis of cancer patients. Therefore, the 

construction of IRGs-related prognostic prediction 

models for BC is of great scientific value and has the 

potential to be a useful supplement to conventional 

diagnosis and treatment. In this study, we successfully 

filtrated the differentially expressed mRNA in BC 

patients and accordingly screened 6 IRGs, including 

PSME2, ULBP2, IGHE, SCG2, SDC1, and SSTR1, to 

establish the prognostic model of BC patients. Then, we 

found the connection of the IRGs with clinico-

pathological characteristics, and different states of 

functional enrichment. More importantly, this IRG-

based model had classical features in tumor-infiltrating 

immune cells and response to ICIs. 

 

The existing tumor risk prediction models are still hot. 

The objects of interest used in different studies are 

varying, including IRGs, m6A-associated genes, death 

modality-associated genes, and others [23]. These 

characteristic models generated based on bioinformatics 

provide positive and meaningful strategies for clinical 

evaluation. Here, we focused on the model construction 

approach with IRGs as the main starting point, immune 

correlation, prognostic evaluation efficacy, and so on. 

For example, Chen et al. established a risk signature 
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based on 8 differentially expressed IRGs for predicting 

the prognosis in squamous-cell lung cancer (SQLC) 

patients [24]. The risk score calculated from this model 

was able to accurately predict the prognosis and 

immune status of patients with this tumor. Yang et al. 

constructed a 11 IRG-constituting risk model in cervical 

cancer (CC) [25]. Their study highlighted that this risk 

model was an independent predictor of OS and 

progression-free interval, and the high-risk group 

classified therein was associated with lower numbers of 

 

 
 

Figure 7. The waterfall diagram of tumor somatic mutation in patients with high- (A) and low- (B) risk groups. (C–F) The association 

between IPS and the risk model, the IPS, IPS-PD1, IPS-CTLA4, and IPS-PD1/CTLA4 scores were significantly increased in the low-risk group. 
Kaplan-Meier curve was used to analyze the survival of the high and low TMB load (G). The results showed that the survival of the two 
cohorts with high and low TMB load was significantly different. (H, I) Wilcoxon test was used to analyze the difference of PD1 and CTLA4 
expression between high- and low-risk groups. 
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CD8 T cells and resting mast cells. In addition, IPS 

analysis showed that the lower risk group with higher 

IPS indicated an immunogenic phenotype that was more 

prone to respond to ICI. In BC, Zhu et al. constructed a 

prognostic model using 12 IRGs to categorize BC 

patients into high-risk and low-risk groups [26]. 

Moreover, risk scores were adversely correlated with 

infiltration of B cells, CD4+ T cells, CD8+ T cells, 

neutrophils, and dendritic cells. In our study, the related 

results gave a consistent performance emphasizing that 

our prognostic model performs well in prediction. In the 

clinical direction, the constructed prognosis model also 

displayed the potential to predict the difference of 

prognosis between high- and low-risk groups, in age (≤ 

65/> 65), clinical-stage (I and II/III and IV), T stage (T1, 

T2/T3, and T4), distant metastasis and lymph node 

metastasis (N0/NI and NII and NIII). These results 

indicated that our model was effective in predicting the 

BC prognosis under different clinicopathological 

conditions. Next, PCA analysis presented that our 

prognostic model based on immune gene expression and 

immune cell infiltration had a unique role in judging the 

prognosis of patients and rapidly adjusting the treatment 

plan. The degree of immune cell infiltration was 

negatively correlated with the prognosis risk score, 

indicating that low-risk patients were with more active 

immune state and better immune defense ability than 

high-risk patients. T and B cells play an important role 

in immune surveillance and tumor clearance. Combined 

with previous studies, it was speculated that the tumors 

 

 
 

Figure 8. The SDC1 expression features in BC samples. (A) The IHC assay showed the SDC1 expression level in the high-risk and low-

risk patients. (B) The IF assay verified the SDC1 and CD206 expression levels, as well as their co-expression in the high-risk and low-risk 
patients. CD206, green; SDC1, red; DAPI, nucleus. 
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with immune rejection phenotype were characterized by 

the presence of a large number of immune cells, which 

stayed in the matrix around the tumor cell nest and do 

not penetrate its parenchyma. The stromal activation in 

the high-risk group inhibited the anti-tumor effect of 

immune cells in BC. 

 

SDC1 is essentially a heparan sulfate proteoglycan and 

a pivotal cellular adhesion protein that sustains the cell 

morphology and interaction with the surrounding 

microenvironment [27]. Moreover, SDC1 is engaged in 

malignant biological behaviors, including oncogenesis, 

invasion, metastasis, and angiogenesis a broad range of 

tumors, therefore being closely associated with tumor 

prognosis and therapy response. SDC1 also has a pro-

metastatic role in the mouse model of breast cancer 

brain metastasis (BCBM), by which SDC1 regulates 

cytokines of the BBB and tames BC cells across the 

BBB [28]. For instance, by utilizing next-generation 

sequencing (NGS), Yeh et al. showed that SDC1 

expression was negative with OS, suggesting that SDC1 

might serve as a valid independent prognostic 

biomarker for breast ductal carcinoma [29]. A meta-

analysis by Qiao et al. indicated that the overexpression 

of SDC1 protein in tumors was linked to a worse 

prognosis, including DFS and OS, and an aggressive 

phenotype is associated with negative ER expression 

and positive HER2 expression [30]. Here, our study 

confirmed coincident results that SDC1 possessed a 

high expression abundance in the high-risk patients, but 

not in the low-risk cohorts. Nevertheless, Qian’s study 

further pointed out the association between SDC1 and 

different BC subtypes of prognosis, which is lacking in 

our study, which is a superior thing to what we did in 

our study. 

 

However, there are still many unresolved issues in 

terms of our study. Firstly, there are still ongoing 

reports of modeling studies related to IRGs that have 

shown good predictive performance. It is worth noting, 

however, that the number and genes of IRGs used in 

different studies are inconsistent and thus have some 

influence on the efficacy of the final models. Then, 

how to build the optimal number and gene of 

correlation models is a question worthy of in-depth 

consideration. Secondly, at present, our study is still 

mainly based on the existing database resources, which 

still need a large amount of external, clinical samples, 

and real-world data for further assessment. The 

credible external validation of other databases will be 

more convincing. Thirdly, although we have evaluated 

the SDC1 as the example to partially validate the 

efficacy of our IRGs model, the biological functions of 

the other 5 IRGs are also of necessity in regard to the 

model. It is also imperative to follow up with an in-

depth and subsequent study on the relevant 

mechanisms. Therefore, there still has a long way in 

driving the clinically predictive value associated with 

this model. 

 

CONCLUSION 
 

In conclusion, our study developed a novel risk score 

based on IRGs and its relationship with immune 

microenvironment, thus providing a predictive tool with 

considerable efficiency in clinical practice. Importantly, 

the correlations between IRGs and tumor immunity in 

BC warrant further investigation. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The 427 immune-related differential genes in high- and low-risk groups were shown in Venn diagram (A). The 

regulatory network of transcription factors (TFs) and (IRGs). Regulatory networks based on survival-related TFs and IRGs in breast cancer. 
Pink circles indicated high-risk genes, green circles indicate low-risk genes, and purple triangles indicated transcription factors in the 
regulatory network (B). GO functional annotation (C) and KEGG (D) enrichment analysis were performed for the IRGs. 
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Supplementary Figure 2. The OS differences under different classification between the high-risk group and the low-risk 
group. Age (A, B), stage (C, D), T stage (E, F), distant metastasis (G) and lymph node metastasis (H, I). 
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Supplementary Figure 3. KEGG pathway analysis from gene set enrichment analysis (GSEA). GSEA results showing (A), 
Hedgehog signaling pathway (B), Adherens junction enriched in the low-risk group (C), while Antigen processing and presentation (D), 
Cytosolic DNA sensing pathway (E), Oxidative phosphorylation were enriched in the high-risk group (F). 
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Supplementary Tables 
 

Supplementary Table 1. General characteristics of breast cancer survival-related immune genes. 

ID HR HR.95L HR.95H P-value 

PSME2 0.98511606 0.97654026 0.99376718 0.00077519 

ULBP2 1.12414412 1.05361278 1.199397 0.00040065 

CXCL9 0.996502 0.9935673 0.99944536 0.01987772 

CXCL13 0.99649413 0.99305749 0.99994265 0.04631633 

S100A11 1.00025859 1.00002757 1.00048967 0.02824391 

MMP9 1.00028343 1.00009984 1.00046705 0.00247757 

PLAU 1.00520427 1.00132679 1.00909677 0.00847936 

PLTP 1.00445817 1.00005618 1.00887953 0.04714064 

SOCS3 0.9913671 0.98328682 0.99951378 0.03785364 

JUN 0.99648985 0.99306484 0.99992667 0.04531569 

IL18 0.93510883 0.88889297 0.98372758 0.00947637 

TNFSF4 1.12112275 1.02672558 1.2241988 0.01084408 

CCR7 1.01305579 1.00127558 1.02497459 0.02973711 

CCL24 1.09096389 1.03150135 1.15385424 0.00233001 

VAV3 0.99162762 0.98397554 0.99933921 0.03340306 

FOS 0.99827108 0.99658311 0.99996191 0.04506121 

NFKBIE 0.9613734 0.92951814 0.99432036 0.02194824 

IGHE 1.05974172 1.0318211 1.08841787 2.05E-05 

CXCR3 0.94015595 0.88939062 0.99381892 0.02934 

ADM 1.01763819 1.00329978 1.03218151 0.01573582 

FGF7 1.08206807 1.00944347 1.15991766 0.02607287 

SCG2 1.00412622 1.00201544 1.00624145 0.00012544 

TSLP 0.1923959 0.05487823 0.67451488 0.01001861 

ADRB1 0.80855291 0.66812286 0.97849939 0.0290163 

FLT3 0.88368991 0.80875706 0.96556542 0.00623679 

IL2RG 0.98406789 0.97071868 0.99760068 0.02118435 

LIFR 0.93736412 0.87897813 0.99962839 0.04869056 

NPR3 1.03653553 1.00729834 1.06662134 0.01396767 

SDC1 1.00256793 1.00105283 1.00408533 0.00088839 

SSTR1 1.04209544 1.02001597 1.06465285 0.0001608 

TNFRSF8 0.51228195 0.31193119 0.84131632 0.00822689 

CD3D 0.97714889 0.95766 0.9970344 0.02451843 

TRAV12-3 0.80263302 0.66324643 0.97131282 0.02388121 

TRAV41 0.70015573 0.50332291 0.9739633 0.03429223 
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TRBC2 0.98298393 0.96927987 0.99688174 0.01657655 

TRBV18 0.81249942 0.66168806 0.99768358 0.04746785 

TRBV20-1 0.94364961 0.89055263 0.99991236 0.04965428 

TRBV28 0.96882537 0.94321751 0.99512847 0.02048896 

TRDV1 0.66519769 0.49695342 0.8904013 0.00613947 

 

 

Supplementary Table 2. Univariate Cox proportional hazards regression analysis of IRGs. 

ID HR HR.95L HR.95H p-value 

PSME2 0.985116 0.97654 0.993767 0.000775 

ULBP2 1.124144 1.053613 1.199397 0.000401 

CXCL9 0.996502 0.993567 0.999445 0.019878 

CXCL13 0.996494 0.993057 0.999943 0.046316 

S100A11 1.000259 1.000028 1.00049 0.028244 

MMP9 1.000283 1.0001 1.000467 0.002478 

PLAU 1.005204 1.001327 1.009097 0.008479 

PLTP 1.004458 1.000056 1.00888 0.047141 

SOCS3 0.991367 0.983287 0.999514 0.037854 

JUN 0.99649 0.993065 0.999927 0.045316 

IL18 0.935109 0.888893 0.983728 0.009476 

TNFSF4 1.121123 1.026726 1.224199 0.010844 

CCR7 1.013056 1.001276 1.024975 0.029737 

CCL24 1.090964 1.031501 1.153854 0.00233 

VAV3 0.991628 0.983976 0.999339 0.033403 

FOS 0.998271 0.996583 0.999962 0.045061 

NFKBIE 0.961373 0.929518 0.99432 0.021948 

IGHE 1.059742 1.031821 1.088418 2.05E-05 

CXCR3 0.940156 0.889391 0.993819 0.02934 

ADM 1.017638 1.0033 1.032182 0.015736 

FGF7 1.082068 1.009443 1.159918 0.026073 

SCG2 1.004126 1.002015 1.006241 0.000125 

TSLP 0.192396 0.054878 0.674515 0.010019 

ADRB1 0.808553 0.668123 0.978499 0.029016 

FLT3 0.88369 0.808757 0.965565 0.006237 

IL2RG 0.984068 0.970719 0.997601 0.021184 

LIFR 0.937364 0.878978 0.999628 0.048691 

NPR3 1.036536 1.007298 1.066621 0.013968 

SDC1 1.002568 1.001053 1.004085 0.000888 
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SSTR1 1.042095 1.020016 1.064653 0.000161 

TNFRSF8 0.512282 0.311931 0.841316 0.008227 

CD3D 0.977149 0.95766 0.997034 0.024518 

TRAV12-3 0.802633 0.663246 0.971313 0.023881 

TRAV41 0.700156 0.503323 0.973963 0.034292 

TRBC2 0.982984 0.96928 0.996882 0.016577 

TRBV18 0.812499 0.661688 0.997684 0.047468 

TRBV20-1 0.94365 0.890553 0.999912 0.049654 

TRBV28 0.968825 0.943218 0.995128 0.020489 

TRDV1 0.665198 0.496953 0.890401 0.006139 

 

 

 


