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Southeast Asia (SEA) can be considered a hotspot of antimicrobial resistance (AMR) 
worldwide. As recent surveillance efforts in the region reported the emergence of multidrug-
resistant (MDR) pathogens, the pursuit of therapeutic alternatives against AMR becomes 
a matter of utmost importance. Phage therapy, or the use of bacterial viruses called 
bacteriophages to kill bacterial pathogens, is among the standout therapeutic prospects. 
This narrative review highlights the current understanding of phages and strategies for a 
phage revolution in SEA. We define phage revolution as the radical use of phage therapy 
in infectious disease treatment against MDR infections, considering the scientific and 
regulatory standpoints of the region. We present a three-phase strategy to encourage a 
phage revolution in the SEA clinical setting, which involves: (1) enhancing phage discovery 
and characterization efforts, (2) creating and implementing laboratory protocols and clinical 
guidelines for the evaluation of phage activity, and (3) adapting regulatory standards for 
therapeutic phage formulations. We hope that this review will open avenues for scientific 
and policy-based discussions on phage therapy in SEA and eventually lead the way to 
its fullest potential in countering the threat of MDR pathogens in the region and worldwide.
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INTRODUCTION

A recent report identified Southeast Asia (SEA) as a global epicenter of antimicrobial resistance 
and emerging infectious diseases evolution (Chua et  al., 2021). In the report by Chua et  al. 
(2021) and in our paper, SEA is defined as the region that is home to the member states of 
the Association of Southeast Asian Nations (ASEAN; composed of Brunei, Cambodia, Indonesia, 
Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam). The issue of multidrug 
resistance (MDR) remains one of the region’s substantial challenges. Over the last 10 years, 
clinicians and researchers reported the rise of critical MDR organisms in SEA (Table  1). 
Alarming reports from the region also point to the emergence of resistance to colistin, a 
last-resource antibiotic, making MDR a concern of global interest and high priority. The current 
burden of AMR in the region remains unknown. Still, country-specific reports indicated high 
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percentages of carbapenem-resistant Acinetobacter baumannii 
(39–68%), Pseudomonas aeruginosa (15–44%), and Klebsiella 
pneumoniae (4–29%) in Malaysia, Philippines, Thailand, and 
Vietnam (Center for Disease Dynamics, Economics, and Policy, 
2021). Unregulated access to antibiotics, weak antibiotic 
stewardship programs, and low-quality antibiotics are the primary 
culprits of rampant MDR in SEA (Zellweger et  al., 2017). 
Ultimately, the decreasing efficacy of our existing antibiotics 
and the shortage of newly discovered antimicrobials in the 
global pipeline will exacerbate the current situation of MDR. 
The World Health Organization estimates that antibiotic resistance 
will cause 10 million deaths in 2050, nearly half of which 
coming from Asia-Pacific, including SEA (World Health 
organization, 2019).

The threat of an imminent “post-antibiotic” era pushed 
scientists to identify novel agents and therapeutic approaches 
to combat MDR organisms. Harper and Enright (2011) described 
this situation where researchers progressively look for new 
antimicrobial agents or revisit traditional therapeutic options 

as a “perfect storm.” One of the therapeutic prospects to mitigate 
the AMR crisis is phage therapy. Phage therapy refers to the 
use of bacterial viruses, called bacteriophages (or simply phages), 
to treat and control infections. Phage therapy harnesses the 
capabilities of the virus to specifically bind and inject their 
genetic material into their target bacteria, produce progeny 
virions, and eventually lyse their host. Although the pioneering 
works of d’Herelle (1917) and Twort (1915) on phage therapy 
sparked the scientific community’s interest in its prospects for 
therapeutic application against human and animal infections, 
it was quickly overshadowed by the discovery and extensive 
use of penicillin. Members of the medical community continued 
using phages to manage common infections until the late 1940s, 
with applications reported in Europe and the United  States 
(Harper and Enright, 2011; Ghannad and Mohammadi, 2012; 
Jin et al., 2012; Barbu et al., 2016). In recent years, a rekindled 
interest in phage therapy for treating MDR organisms led to 
remarkable breakthroughs. While several recent review articles 
highlight the advances of phage therapy (Khalid et  al., 2021; 
Ng et  al., 2021; Wu and Zhu, 2021), none of these papers 
focus on the ongoing research and practical applicability in 
SEA, particularly in the clinical setting. A recent perspective 
paper discussed phage applications in SEA, focusing on livestock, 
aquaculture, and agriculture sectors (Rajandas et  al., 2021). 
The potential of phage therapy for clinical applications, however, 
is not examined. In this narrative review of the published 
literature, we  assess the current understanding of phages, 
challenges in phage therapy, and strategies that will pave the 
way for a phage revolution, which we  define as the use of 
phage therapy in infectious disease treatment in humans, 
considering the scientific and regulatory standpoint in SEA. 
Asavarut and Hajitou (2014) loosely mentioned “phage revolution” 
in a book review on phage therapy. In our article, we expound 
on the concept of phage revolution by proposing a three-phase 
strategy that can guide member states of the ASEAN region. 
The proposed roadmap is essential for realizing phage therapy’s 
promise in countering the threat of MDR clinical pathogens 
in the region and potentially in the world.

PHAGES IN SEA

Phages are viral particles composed of genetic material enclosed 
in a capsid or head, and in most cases, a proteinaceous tail. 
The term “bacteriophage” literally translates to “bacteria-eater.” 
Biologists describe them as natural parasites (or predators) of 
bacteria and associate them with maintaining the balance of 
microorganisms on Earth (Wittebole et al., 2014). Tailed phages 
of the class Caudoviricetes including podovirus, myovirus, and 
siphovirus (Liu et  al., 2021), and the polyhedral Microviridae 
family are usually associated with phage therapy applications 
(Supplementary Figure 1; Harper and Enright, 2011; Lin et al., 
2017). Scientists attribute the phages’ antibacterial activity to 
their well-established life cycle (lytic or lysogenic; 
Supplementary Figure  2). In some cases, phages can adapt 
both lysogenic and lytic strategies (i.e., pseudolysogeny) as 
alternative infection steps in response to different host strains, 

TABLE 1 | Reports of critical multidrug-resistant (MDR) organisms from clinical 
isolates in Southeast Asia (SEA) from 2011 to 2021.

Critical MDR 
organisms1

Reporting SEA 
country

References

Carbapenem-resistant 
Acinetobacter 
baumannii

Cambodia Vlieghe et al., 2013
Indonesia Karuniawati et al., 2013; 

Saharman et al., 2018, 2021
Malaysia Kim et al., 2013; Biglari et al., 

2015, 2017
Philippines Velasco et al., 2020b
Singapore Koh et al., 2012; Kim et al., 2013; 

Blackwell et al., 2017; Ng et al., 
2018

Thailand Teo et al., 2015
Vietnam Nhu et al., 2014

Extended-spectrum 
beta-lactamase 
(ESBL)-producing, 
carbapenem-resistant 
Enterobacteriaceae

Indonesia Karuniawati et al., 2013
Malaysia Zainol Abidin et al., 2015
Philippines Sheng et al., 2013; Chou et al., 

2016; Velasco et al., 2017
Singapore Koh et al., 2012; Sheng et al., 

2013
Thailand Rimrang et al., 2012; Sheng et al., 

2013
Vietnam Sheng et al., 2013; Biedenbach 

et al., 2014
Carbapenem-resistant 
Pseudomonas 
aeruginosa

Malaysia Liew et al., 2018
Singapore Koh et al., 2012
Thailand Khuntayaporn et al., 2012, 2013, 

2019
Colistin-resistant 
Gram-negative 
pathogens

Cambodia Ström Hallenberg et al., 2019
Indonesia Rahayuningtyas et al., 2020
Laos Hadjadj et al., 2019
Malaysia Mobasseri et al., 2019; Aklilu and 

Raman, 2020
Myanmar San et al., 2019
Philippines Velasco et al., 2020a
Singapore Teo et al., 2016; La et al., 2019
Thailand Eiamphungporn et al., 2018
Vietnam Berglund et al., 2018; Yamamoto 

et al., 2019

1Critical MDR organisms based on the World Health Organization (2017), except for 
colistin-resistant Gram-negative pathogens.
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host physiology, and environmental changes (Mäntynen et  al., 
2021). Since phages are ubiquitous, it is not surprising that 
they may be  isolated from an extensive range of sampling 
sites like feces, seawater, sewage, soil, sludge, and anywhere 
bacteria may grow (Khawaja et  al., 2016; Bhetwal et  al., 2017).

In the past decade, scientists reported the isolation of diverse 
phages in SEA from different sample types, with potential 
activities against human pathogens (Table 2). Among the phages 
discovered in the region with notable activity against MDR 
organisms are: (1) phages vB_AbaM_PhT2 (Styles et  al., 2020) 
and AB1801 (Wintachai et al., 2019), which exhibited anti-MDR 
A. baumannii activity, in vitro and in vivo, respectively, (2) 
phage UPM2146 (Assafiri et al., 2021), which exhibited activity 
against carbapenem-resistant K. pneumoniae, in vitro and in 

vivo, (3) phage C34 (Guang-Han et al., 2016), which controlled 
naturally resistant Burkholderia pseudomallei bacterial load, in 
vivo, (4) phage ΦHN10 (Phothichaisri et  al., 2018), which 
exhibited the highest breadth of activity against various 
Clostridiodes difficile strains, in vitro, (5) phage ΦKAZ14 (Ahmad 
et  al., 2015), which induced lysis of extended-spectrum beta-
lactamase (ESBL)-producing Escherichia coli, in vitro, (6) phages 
UPMK_1 and 2 (Dakheel et  al., 2019) and ΦNUSA-1 and 10 
(Tan et  al., 2020), which all exhibited lytic activity against 
methicillin-resistant Staphylococcus aureus (MRSA), and anti-
biofilm activity for the first two phages in in vitro experiments, 
(7) cocktail of phages vB_SenS_WP109, WP110, and WP128 
(Pelyuntha et  al., 2021), which induced lysis of multiple 
MDR Salmonella serovars, in vitro, and (8) phages KP1, 2 

TABLE 2 | Phages with potential biomedical applications reported in SEA from 2011 to 2021.

Phage/Phage name Host Source Reporting SEA country References

Acinetobacter phages 
(AB1801, vB_AbaM_PhT2)

Acinetobacter baumannii Hospital wastewater Thailand Wintachai et al., 2019; Styles et al., 2020

Aeromonas phages (UP87, 
AecaKS148, phage 2/5, 
B614, TG25P/CT45P, 
PVN02)

Aeromonas spp. (A. hydrophila, 
A. salmonicida, A. caviae)

Sewage, freshwater Philippines, Thailand, 
Vietnam

Dela Cruz-Papa et al., 2014, 2017; 
Wangkahad et al., 2015; Le et al., 2018; 
Hoang et al., 2019; Tu et al., 2020

Burkholderia phages (Phage 
C34)

Burkholderia pseudomallei Seawater, soil Malaysia, Thailand Shan et al., 2014; Guang-Han et al., 2016; 
Withatanung et al., 2016

Clostridioides phages 
(ΦHR24, ΦHN10, ΦHN16-1, 
ΦHN16-2, ΦHN50)

Clostridioides difficile (formerly 
Clostridium difficile)

Clinical isolates (induced)1 Thailand Phothichaisri et al., 2018

Coliphages (ØEC1, EC1-
UPM, ΦKAZ14, YD-2008, 
CS EPEC, BL EHEC, BI-
EHEC)

Coliforms (i.e., 
enteropathogenic/
Enterohemorrhagic 
Escherichia coli)

Poultry and farm feces, 
urban catchment, tissue 
samples

Indonesia, Malaysia, 
Singapore

Lau et al., 2012; Gan et al., 2013; 
Rezaeinejad et al., 2014; Ahmad et al., 
2015; Vergara et al., 2015; Sellvam et al., 
2018; Lukman et al., 2020; Dewanggana 
et al., 2021; Sjahriani et al., 2021; 
Waturangi et al., 2021

Edwardsiella phages (MK7) Edwardsiella ictaluri Tissue samples Vietnam Hoang et al., 2018
Enterobacter phages 
(EnspKS513, EspM4VN)

Enterobacter sp. Sewage, freshwater, soil Thailand, Vietnam Wangkahad et al., 2015; Thanh et al., 2020

Enterococcus phages 
(AIM06, SR14)

Enterococcus faecalis Watershed Thailand Chyerochana et al., 2020

Klebsiella phages 
(KlpnKS648, KP1801, 
UPM2146)

Klebsiella pneumoniae Sewage, Hospital waste, 
freshwater

Malaysia, Thailand Wangkahad et al., 2015; Cornista et al., 
2019; Wintachai et al., 2020; Assafiri et al., 
2021

Lactococcus phages (PLgT-
1, PLgY-30)

Lactococcus gervieae Tissue isolates (induced)1 Vietnam Hoai et al., 2016, 2019

Listeria phages (LP019, 
LP040, LP041)

Listeria monocytogenes Seafood processing 
environment

Thailand Vongkamjan et al., 2017; Vu et al., 2021

Proteus phages (pPM_01) Proteus mirabilis Sewage Malaysia Wirjon et al., 2016
Salmonella phages (Φst1, 
ST-W77, SE-W109, vB_
SenS_WP109, vB_SenS_
WP110, vB_SenP_WP128)

Salmonella enterica Dairy farm, poultry, clinical 
samples

Malaysia, Thailand Wong et al., 2014; Wongsuntornpoj et al., 
2014; Phothaworn et al., 2019, 2020; 
Pelyuntha et al., 2021

  Shigella
Staphylococcus phages 
(UPMK_1, UPMK_2, 
ΦNUSA-1, ΦNUSA-10)

Staphylococcus aureus Sewage, seawater, meats Malaysia Dakheel et al., 2019; Tan et al., 2020

Vibrio phages (VPUSM 1-11, 
PSU2598, PSU4118, PSU 
4211, seahorse, HY01)

Vibrio spp. (V. alginolyticus, 
V. campbellii, V. cholerae, 
V. harveyi, V. parahaemolyticus)

Freshwater, sewage, 
shellfish, marine sediment

Malaysia Al-Fendi et al., 2014; Yingkajorn et al., 
2014; Lal et al., 2016a,b, 2017; 
Thammatinna et al., 2020; Nuidate et al., 
2021

Weisella phage (Φ22, PWc) Weisella spp. (W. ceti, 
W. cibaria)

Fermented meat, tissue 
samples

Thailand, Vietnam Pringsulaka et al., 2011; Hoai et al., 2018

1Temperate phage induced via mitomycin C.
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(Cornista et  al., 2019), and KP1801 (Wintachai et  al., 2020), 
which were shown to infect ESBL-producing K. pneumoniae, 
in vitro. Although the actual diversity of phages remains 
understudied in SEA, we  believe that there is a significant 
richness of phage strains in this region, a renowned biodiversity 
hotspot not only in terms of fauna and flora but also in 
microbiota. This hypothesis is supported by the growing number 
of genome data entries for phage in the ASEAN Microbial 
Database (AMIBASE), with more than 200 recorded distinct 
phage entries, with each entry containing one or more phage 
strains or genomes (https://www.amibase.org/index.php, accessed 
on 20 December 2021). The majority of the discovered phages 
belong to the class Caudoviricetes (188 records), dominated 
by siphovirus (80 records) and myovirus (60 records). 
Microviridae phages were also reported, although infrequently 
(four records). Clinically important host ranges of the reported 
phages include Acinetobacter, Aeromonas, Bacillus, Bordetella, 
Brucella, Burkholderia, Campylobacter, Caulobacter, Citrobacter, 
Clostridioides, Corynebacterium, Edwardsiella, Enterobacter, 
Enterococcus, Erysipelothrix, Escherichia, Helicobacter, Leptospira, 
Listeria, Mycobacterium, Nocardia, Propionibacterium, 
Pseudomonas, Raoultella, Salmonella, Serratia, Shewanella, 
Shigella, Staphylococcus, Stenotrophomonas, Streptococcus, Vibrio, 
Weissella, and Yersinia. However, most of the phage’s actual 
activities against these hosts have yet to be  described. Phage 
sources listed in AMIBASE include freshwater, wastewater, 
sludge, marine water and sediment, soil, hot spring, bioreactor, 
humans, plants, invertebrates, and air, although the isolation 
procedures were not specified. Singapore contributed most of 
the records (191), followed by Malaysia (187) and Thailand 
(171). Brunei, Laos, and Myanmar have no phage records in 
AMIBASE as of this writing, indicating potential avenues for 
discovering novel phages in these countries. We  hope that 
through this initial report, we  can increase the number of 
phages and phage genomes annotated in the region so more 
data on phages can be  shared and studied by SEA researchers.

PHAGE RESEARCH IN SEA

Our understanding of phages and phage therapy relies on the 
research of basic and applied scientists worldwide. To determine 
the extent and coverage of biomedical phage research in SEA, 
we  conducted a preliminary original article search in PubMed 
(https://www.pubmed.ncbi.nlm.nih.gov/, accessed 20 December 
2021) using the keywords “phage” AND “[ASEAN country]” 
from 2011 to 2021. We  then screened the articles and only 
included original research conducted in SEA countries or those 
which used samples coming from SEA. We attempted a localized 
biomedical literature search but failed due to the unavailability 
of a health research database in most SEA countries. In the 
Philippines (HERDIN, https://www.registry.healthresearch.ph, 
accessed 01 July 2021), Malaysia (Ministry of Health Virtual 
Library, https://www.vlib.moh.gov.my, accessed 01 July 2021), 
and Indonesia (https://www.neliti.com, accessed 01 July 2021), 
the available health research registries reported no local 
biomedical publications on phages. We summarized our literature 

search result in Figure  1. The current literature search 
we  conducted is limited only to PubMed, but it can help 
determine the region’s strengths and priorities on biomedical 
phage research. Thailand, Malaysia, and Singapore were the 
top three contributors to biomedical-related phage research in 
SEA. In the latest economic report, these countries have high 
gross domestic product (Vu, 2020) which may reflect their 
capability to perform high-end scientific explorations for potential 
high-value therapeutics, such as phage therapy. Hence, it is 
not surprising to see these countries as the frontrunners for 
phage research in the region. We  believe that the studies on 
phages in SEA can still be  increased, particularly by focusing 
on its applications against MDR organisms. By leveraging the 
existing phage expertise in the region, a research consortium 
on phages could be  created to further address the research 
gaps on phages in SEA. We  will expound on this concept 
later on in this review.

Most research on phages in SEA consists of genetic studies, 
including genomic characterization of phages and bioengineering 
applications, such as phage typing and phage display. In terms 
of bioengineering phages for therapeutic applications, SEA 
scientists reported the use of phages for targeted gene therapy 
(Namdee et  al., 2018; Przystal et  al., 2019; Chongchai et  al., 
2021) and adaptation of nanomaterial-based phage delivery 
systems (Adamu Ahmad et  al., 2016; Kaikabo et  al., 2017). 
There is also a notable amount of research on in vitro testing 
of phages, including the testing for the phage’s host range, 
biocontrol assays against pathogens, and phage formulation 
techniques. We  retrieved a few publications on in vivo testing 
of phages using invertebrates, such as moth (Wintachai et  al., 
2019; Nale et  al., 2021) and oysters (Le et  al., 2020); in vivo 

FIGURE 1 | Number and types of original research articles on phages 
published in SEA and indexed in PubMed from 2011 to 2021.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://www.amibase.org/index.php
https://www.pubmed.ncbi.nlm.nih.gov/
https://www.registry.healthresearch.ph
https://www.vlib.moh.gov.my
https://www.neliti.com


Carascal et al. Phage Revolution in Southeast Asia

Frontiers in Microbiology | www.frontiersin.org 5 January 2022 | Volume 13 | Article 820572

vertebrate model systems included zebrafish (Assafiri et  al., 
2021), catfish (Le et  al., 2018; Dang et  al., 2021), tilapia (Dela 
Cruz-Papa et  al., 2014, 2017), chicken (Wong et  al., 2014; 
Kaikabo et  al., 2017), and mice (Guang-Han et  al., 2016). 
Lastly, a few publications focused on the applications of phages 
in combating MDR organisms. For instance, SEA researchers 
discovered and characterized phages with activity against MRSA 
(Dakheel et  al., 2019; Tan et  al., 2020), ESBL-producing E.  coli 
(Adamu Ahmad et  al., 2016), MDR K. pneumoniae (Cornista 
et al., 2019; Assafiri et al., 2021), MDR A. baumannii (Wintachai 
et  al., 2019; Styles et  al., 2020), MDR Salmonella species 
(Pelyuntha et al., 2021), and Clostridioides difficile (Phothichaisri 
et al., 2018). The efficacy of these phages has yet to be confirmed 
clinically. Currently, global case reports lean towards phage 
therapy applications for bone, surgical, and other local infections, 
with several cases also reporting usage in critical and systemic 
infections, especially those caused by MDR organisms. With 
the region’s current strength in basic and genetic characterization 
of phages and growing expertise in in vitro and in vivo testing 
of localized external infections in animals, we  expect that the 
future clinical applications of phage therapy in the region would 
also lean towards the treatment of surgical and skin infections 
of known etiology. Unfortunately, at the time of writing our 
review, the region had no published case report on any phage 
therapy applications in humans.

CONSIDERATIONS IN PHAGE THERAPY

Not all phages are ideal for therapeutic applications. Therapeutic 
phages should be  obligately lytic to ensure killing of the target 
pathogen (Harper and Enright, 2011; Wittebole et  al., 2014; 
Lehman et  al., 2019). The phage should have a high rate of 
adsorption to the target pathogen, a short generation time 
(Drulis-Kawa et al., 2015), and species-specific activity (Khawaja 
et  al., 2016). As in the case with typical antimicrobial agents, 
scientists also recommend profiling the phages in a phagogram 
or a phage equivalent of an antibiogram (Barbu et  al., 2016). 
A phagogram refers to the continuous testing of the phage 
efficacy against a defined collection of pathogens called a 
pathogen library or diversity panel (Deresinski, 2009; Casey 
et al., 2018). Phagogram profiling will ensure that the therapeutic 
phages are specific to their target pathogen. Standardized 
phagogram profiling is not yet incorporated in most in vitro 
and in vivo testing of phages discovered in SEA, although 
specificity testing in multiple strains of target pathogens have 
been done (Abdulamir et  al., 2015; Phothichaisri et  al., 2018; 
Dakheel et  al., 2019; Tan et  al., 2020).

Therapeutic phages are usually combined with storage media 
to produce a phage formulation. As with other therapeutics, 
phage formulations should be  prepared according to current 
good manufacturing practices (GMP) and established quality 
assurance standards. Phage formulations should neither have 
impurities nor contaminants (i.e., endotoxins and host cell 
proteins; Jennes et  al., 2017; Furfaro et  al., 2018; Lehman et  al., 
2019). Since the delivery route influences the efficacy of phage 
therapy, various studies have explored different ways of phage 

administration for therapeutic purposes. One common way to 
administer phage therapy is through topical applications for skin 
and burn infections (Morozova et  al., 2018). Oral phage 
administration is also a common scheme (Kakasis and Panitsa, 
2019). Considering that the phages will be  taken internally, they 
should be  stable at human body temperature (35–39°C) and 
physiological pH (4–9; Jin et  al., 2012). Other factors, such as 
stability in low gastric pH and bile salts, should also be considered 
(Letkiewicz et  al., 2010). Hence, phage formulations can include 
bicarbonate water or be  enclosed in a gel (Kakasis and Panitsa, 
2019). In a study in Malaysia, researchers constructed chitosan 
nanoparticles loaded with phage ΦKAZ14 as an alternative oral 
delivery platform in chickens. They indicated that the chitosan-
phage nanoparticle is more stable, in vivo, compared to standalone 
phage (Adamu Ahmad et  al., 2016). An extension of this study 
showed that the same nanoparticle controlled the bacterial 
colonization of avian pathogenic E. coli in chicken and decreased 
the symptoms of colibacillosis (Kaikabo et  al., 2017). The 
applicability of using this nanoparticle-based oral delivery method 
in clinical applications can be explored in SEA since the technology 
and knowledge for creating it is already being explored in 
Malaysia. Other administration routes for therapeutic phages 
include the respiratory route through intranasal spray (Cao et al., 
2015; Casey et  al., 2018), systemic route through intraperitoneal 
or intramuscular injection (Criscuolo et  al., 2017; Jennes et  al., 
2017), or rectal route through fecal microbiota transplant 
(Letkiewicz et al., 2010; Broecker et al., 2013). These administration 
routes are yet to be  explored in SEA, in vivo or clinically.

Similar to antibiotic therapies, the pharmacodynamic 
properties of phages must be determined to establish an effective 
dosing regimen for the successful treatment of severe infections. 
Proper phage dosage ensures that an appropriate amount of 
the virus will encounter the target pathogen in the infection 
site (Zhang et  al., 2018). In an inundative therapy (passive 
treatment), a high titer (108–1010) of phages is administered 
to the patients (usually in single-dose regimen) to kill a large 
number of the target pathogen (Danis-Wlodarczyk et al., 2021). 
Although some studies aligned with this strategy (Zhang et al., 
2018), opposing views caution that a too high number of 
phages may result in “lysis from without,” or the non-specific 
lysis of cells caused by phages (Barbu et  al., 2016; Cieplak 
et  al., 2018). More studies are needed to confirm this 
phenomenon. Meanwhile, an active therapy depends on the 
in situ amplification of phages to achieve the inundative 
concentration for bacterial clearance (Danis-Wlodarczyk et  al., 
2021). No formal study on phage pharmacodynamics has been 
done in the SEA population.

Biofilm formation is an important virulence factor in most 
MDR pathogens. Remarkably, phages have been studied for their 
activity against bacterial biofilms. In vitro studies in SEA showed 
that certain bacteriophages degrade biofilms of A.  baumannii 
(Wintachai et al., 2019), E. coli (Jassim et al., 2012), K. pneumoniae 
(Wintachai et  al., 2020), and S. aureus (Abdulamir et  al., 2015; 
Dakheel et  al., 2019). This activity can be  attributed to the 
production of various hydrolases (i.e., extracellular polymeric 
substance depolymerases) in the capsid that can effectively disrupt 
and disperse bacterial biofilms (Lin et  al., 2017). Some phages 
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would also have tail fibers with inherent depolymerase activities 
(Dufour et  al., 2016). A deeper understanding of the role and 
mechanisms of phages in disrupting biofilms remains to be gained, 
as in vivo studies and reports in the clinical setting have yet 
to be  described.

Finally, phage resistance is another aspect that should 
be  considered in phage therapy. Researchers believe that the 
evolutionary pressure exerted by the phage greatly exceeds any 
resistance mechanisms acquired by the target bacteria (El-Shibiny 
and El-Sahhar, 2017; Harper, 2018). In addition, the rapid 
evolution of phages helps improve their virulence towards the 
target bacteria, making adaptive bacterial resistance ineffective 
to phages (Golkar et  al., 2014). However, the occurrence of 
phage-resistant bacteria is inevitable and should be  considered 
when designing phage therapy treatment (Cairns and Payne, 
2008; Casey et  al., 2018). For instance, a P. aeruginosa small 
colony variant resistant to phage PB1 has been described in 
Singapore (Lim et  al., 2016), but its susceptibility to other 
phages has not been explored. To prevent phage resistance, 
one should be on the lookout for bacterial mechanisms against 
phages after administering phage therapy. These mechanisms 
may include the CRISPR-Cas system, superinfection exclusion, 
and abortive infection. Phage cocktails could also be  explored 
as an option to help prevent the rise of phage resistance, as 
we will describe later. In summary, the considerations in phage 
therapy should be  observed starting from the characterization 
of the isolated phages, their preparation, and the administration 
to the patients (Supplementary Figure  3).

PERSPECTIVES OF PHAGE THERAPY IN 
SEA

Frederick Twort and Félix d’Hérelle independently observed 
the bactericidal activity of phages in 1915 and 1917, respectively. 
In 1919, d’Hérelle used phages to treat bacterial infections, 
marking the start of non-randomized trials worldwide and 
launching the term “phage therapy” (Wittebole et  al., 2014; 
Criscuolo et  al., 2017). In SEA, the earliest documented phage 
therapy application was from the expeditions of d’Herelle and 
colleagues in Laos and Vietnam from 1916 to 1930 (Chanishvili, 
2012). According to the historical accounts, d’Herelle used 
phages isolated from plague-infected rats to treat plague victims 
and introduced phages from cholera patients into village wells 
to decrease mortality rates from cholera in the region (Vandamme 
and Mortelmans, 2019).

Despite the decline in the medical field’s enthusiasm on 
phage therapy (i.e., due to the discovery of penicillin and lack 
of experimental support for phage) in the late 1940s, phage 
therapy centers were continuously built in the USSR, Georgia 
(George Eliava Institute, 1916), Poland (Hirtszfeld Institute; 
Institute of Immunology and Experimental Therapy of Polish 
Academy of Sciences, 1952), and France (Pasteur Institute in 
Lyon and Paris, 1917). In SEA, the Phage Directory (https://
www.phage.directory/, accessed on 20 December 2021), an 
online directory to find and track phage laboratories worldwide, 
conceptualized and maintained by an independent, two-person 

organization, recorded several phage laboratories and phage 
collections, but no registered phage therapy center. The listed 
phage laboratories are found in Indonesia (University of Jember-
KeRis Terapi Bakteriofag), the Philippines (University of Santo 
Tomas-Papa Lab), and Thailand (Silpakorn University-Akoy 
Lab, Kasetsart University-Kasetsart Phages). In Malaysia, the 
Center for Excellence for Omics-Driven Computational 
Biodiscovery (COMBio) of the Asian Institute of Medicine, 
Science and Technology also explores phages isolated from 
rainforests against key human pathogens (Rajandas et al., 2021). 
Meanwhile, the listed phage collections are found in Indonesia 
(University of Jember-KeRis Terapi Bakteriofag Phage Collection) 
and Thailand (Silpakorn University-Nasanit/Akoy Lab Phage 
Collection) only. Some institutions and phage laboratories not 
listed in the Phage Directory, but whose members contributed 
to recent biomedical and pre-clinical research literature on 
phages, can be found in Indonesia (Atmajaya Catholic University, 
Brawijaya University, Universitas Airlangga), Malaysia 
(International Medical University, Monash University Malaysia, 
Universiti Putra Malaysia, Universiti Sains Malaysia, University 
of Malaya), Philippines (University of the Philippines), Singapore 
(Nanyang Technological University, National University 
Singapore), Thailand (Chulabhorn Research Institute, Chulabhorn 
Royal Academy, Chulalongkorn University, Mae Fah Luang 
University, Mahidol University, Prince of Songkla University, 
Srinakharinwirot University, University of Phayao, Walailak 
University), and Vietnam (Ho Chi Minh City University of 
Technology, Vietnam National University). Although the list 
of institutions and laboratories presented in this review is based 
only on what is retrievable in PubMed (https://www.pubmed.
ncbi.nlm.nih.gov/, accessed 20 December 2021) and may not 
be  complete, this report shows that there is an interest among 
SEA academic laboratories in studying phages.

In 2009, the Nestlé Research Center (Switzerland) started 
the first randomized, double-blind, placebo-controlled phase 
I  trial on the safety of phage therapy in Bangladesh. The study 
reported that orally administered phages do not affect the 
normal flora of the participants, particularly the native E. coli 
populations (Sarker et  al., 2016). In SEA, a clinical trial in 
Singapore evaluated phage therapy in wound care for critical 
limb ischemia. This trial, registered as “ongoing” at the clinical 
trial registry of the Singapore Health Sciences Authority (HSA, 
https://www.eservice.hsa.gov.sg, accessed 20 December 2021) 
in 2015, was sponsored by D&D Pharma (Pte.) Ltd. (Protocol 
number SGH001). The Singapore General Hospital and Mount 
Elizabeth Novena Hospital & Specialist Centre served as the 
trial sites. However, the trial’s interim data or publications 
were unavailable when writing this review. There is currently 
no registered clinical trial that explicitly targets multidrug-
resistant pathogens in the region (based on www.clinicaltrials.
gov as of 20 December 2021).

Although clinical studies on phage therapy are lacking in 
SEA, in vivo pre-clinical studies have been reported. For instance, 
phages have been shown to successfully control A. baumannii 
(Wintachai et  al., 2019) and Salmonella spp. (Nale et  al., 2021) 
in Galleria mellonella larvae. These findings are initial evidence 
of phage efficacy in reducing surface colonization of pathogens 
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in animals, including humans. Researchers in SEA also showed 
the safety of using phages in controlling K. pneumoniae infection 
in Danio rerio larvae (Assafiri et  al., 2021). Another study of 
lung infections caused by B. pseudomallei in mice indicated 
that phages administered peritoneally successfully protected the 
animals from disease progression and mortality (Guang-Han 
et  al., 2016). Other in vivo phage therapy studies focused on 
treating infections in poultry (Wong et al., 2014; Kaikabo et al., 
2017) and aquaculture (Dela Cruz-Papa et  al., 2014, 2017; Le 
et  al., 2018; Dang et  al., 2021). The implications for clinical 
use, however, may not be  apparent especially if the bacterial 
pathogen is specific only to the animal (i.e., A. hydrophila in 
freshwater fishes, avian pathogenic E. coli in birds, and Vibrio 
alginolyticus in oysters). However, with the potential zoonotic 
transmission of infections, the expanded use of specific phages 
for treating both animals and humans could be  possible.

The lack of actual clinical experience, established phage 
collections, and phage consortium in SEA are gaps of knowledge 
that need to be  filled, thus providing an opportunity to build 
the foundation for shifting the paradigm of treatment. In the 
next section, we  propose systematic strategies to start a phage 
revolution in SEA and invite more biologists, biomedical 
scientists, and clinical decision-makers in the region to explore 
phage therapy against MDR organisms.

STRATEGIES FOR PHAGE REVOLUTION 
IN SEA

A structured research and implementation approach is necessary 
to encourage phage therapy against multidrug-resistant infections 
in SEA (Figure  2). The first phase involves the extensive 
isolation, characterization, and matching of phages to their 
target pathogen, guided by the existing knowledge on phage 
biology and the mechanisms of phage infection. The second 

phase involves designing appropriate models, both laboratory-
based and clinical-based, to implement phage therapy protocols. 
Lastly, establishing regulatory guidelines for standardized phage 
therapy will be  the peak phase of the revolution, which could 
hopefully pave the way to create appropriate regulations for 
phage therapy in SEA.

Phase One: Extensive Phage Isolation and 
Characterization
Starting the phage revolution entails mastery of phage isolation 
and characterization. As discussed earlier, isolation and 
characterization of phages involve determining their morphology, 
lytic activity, specificity, generation time, and adsorption rates 
using traditionally accepted methods. These methods remain 
to be  useful but present certain limitations. We  summarized 
these limitations in Supplementary Table  1, but a thorough 
discussion on this topic is presented by Hyman (2019). With 
the advancements in instrumentation and understanding phage 
biology, other non-traditional methods can be  explored to 
improve phage isolation and characterization further. For instance, 
specific samples could be  explored in isolating phages with 
targeted activities. As discussed earlier, phages can be  isolated 
practically in all types of samples. However, to acquire phages 
with activities against MDR clinical pathogens, we  propose 
exploring the sites heavily contaminated with clinical samples 
and hospital sewage, as indicated in some studies (Kakasis 
and Panitsa, 2019). Hospital wastewater systems are the most 
readily accessible sites for this purpose. Meanwhile, clinical 
samples, such as blood, stool, and urine, can also be  used as 
the primary source of phages (Letkiewicz et  al., 2010; García-
Quintanilla et al., 2013). We believe that this approach is more 
straightforward in isolating specific phages, given that the 
clinical samples contain the actual bacterial target. Working 
on the ecological principle that predators are present where 

FIGURE 2 | A three-phase strategy for implementing a phage revolution, with perspectives for SEA.
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the prey is, phages can also be isolated from infectious samples 
(Chibani-Chennoufi et  al., 2004). Despite this proposal, we  do 
not discourage exploring other potential sources of phages for 
clinical applications. As proposed by Rajandas et  al. (2021), 
other biodiverse habitats, such as the rainforests, which are 
commonly found in SEA, can be explored as sources of clinically 
relevant phages. This notion is supported by the isolation of 
phages with activities against clinical pathogens from farms 
(Wongsuntornpoj et  al., 2014; Sellvam et  al., 2018), freshwater 
(Al-Fendi et  al., 2014; Wangkahad et  al., 2015), marine 
environment (Guang-Han et  al., 2016), and soil (Shan et  al., 
2014; Withatanung et  al., 2016) in SEA. There is now also 
increasing availability of widely studied phages with known 
activities against clinical infections. These phages are curated 
or produced by several phage organizations as listed in Phage 
Directory (https://phage.directory/orgs, accessed on 20 December 
2021) and The Bacteriophage Ecology Group (http://companies.
phage.org/, accessed on 20 December 2021). To promote access 
to these phages, a mechanism to collaborate with these external 
phage resources should be  established in SEA.

With the advancement in molecular biology, additional phage 
characterization steps before therapeutic use are now possible. 
Some scientists suggest structural protein analysis for each 
phage using sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE), although without suggested practical 
reason (Kwiatek et  al., 2015). Phage protein profiling can aid 
in phage classification, bioengineering, and identifying potential 
immune reactions; however, more studies are needed to establish 
these applications. With the movement to pursue genome-based 
phage classification (Turner et  al., 2021), we  would also 
recommend whole-genome sequencing (WGS) for the 
characterization of newly discovered phages. WGS can be used 
as a crude screening method for choosing the ideal therapeutic 
strain. In SEA, novel phages have been screened using WGS 
for their lysogenic and endotoxin production potentials (Gan 
et  al., 2013; Lal et  al., 2016a; Wirjon et  al., 2016; Thanh et  al., 
2020; Dewanggana et  al., 2021; Nuidate et  al., 2021), which 
are important properties to avoid in choosing therapeutic 
phages. WGS can also aid in the more detailed classification 
and identification of the phages, as also applied in SEA strains 
with promising therapeutic potentials (Gan et  al., 2013; Hoai 
et  al., 2016; Lal et  al., 2016a,b; Wirjon et  al., 2016; Sellvam 
et  al., 2018; Handoko et  al., 2019; Thanh et  al., 2020; Tu 
et  al., 2020; Nuidate et  al., 2021). Metagenomic sequencing of 
phages in the prospect samples will be  helpful in the initial 
screening of phage genomes even before the isolation of the 
actual virions. This strategy has been used in studying phages 
found in Brunei and Malaysia (Kerfahi et  al., 2019).

In terms of preparing the phage formulations, extensive 
optimization and characterization are also warranted. For phage 
delivery platforms, different methods can be studied to optimize 
phage stability and activity. For instance, researchers in Thailand 
used novel microencapsulation of phage cocktails against S. 
typhimurium via freeze-drying (Petsong et  al., 2021). The 
researchers also showed that microencapsulated phages are more 
stable and elicit similar efficacy against the target bacteria in 
an in vitro surface contamination experiment (Petsong et al., 2019). 

To deliver phages via systemic routes, one should consider 
phage clearance by the immune system. In an in vivo study 
in Malaysia, an intraperitoneal phage administration was found 
to be  effective in reducing B. pseudomallei infection in mice 
(Guang-Han et  al., 2016). Although the formulation appears 
tolerable among mice, the appropriate concentration to be used 
and the immune interaction has yet to be  formally described, 
more so if administered to humans. Scientists recommended 
optimizing the phage titer in preparations for every strain and 
target (Górski et  al., 2015). However, the kinetics of phages in 
human peripheral blood is still not established (Schooley et  al., 
2017). We believe it will be beneficial to consider a personalized 
pharmacokinetics study of the specific phages for systemic 
infections. As different patients may have different rates of phage 
clearance, trials of multiple phage dosages may be  necessary 
(Lin et al., 2017). As mentioned earlier, an appropriate phagogram 
profiling should also be  conducted for each new phage. The 
phagogram profiling should be  done on all potential strains of 
the target pathogens.

In addition to understanding phage formulation components 
and qualities, phage banks should also be  established in SEA. 
Although university-based phage collections are present in the 
region as described earlier, the phage revolution could benefit 
from maintained and monitored phage repositories that could 
act as the central source of viruses for therapy. Like any other 
biobank, the creation and maintenance of phage banks require 
equipment and process investments. Although they are not 
widespread, ultralow-temperature freezers (−80°C) are already 
present in SEA and could serve as a starting point for the 
long-term storage of promising specimens. Otherwise, efficient 
preservation methods, such as the use of pH-neutral solutions 
with low ionic contents, or lyophilization with sugar stabilizers 
can also be explored for long-term storage with less equipment 
requirements (Duyvejonck et  al., 2021). The quality assurance 
systems and protocols also need further attention; these are 
currently non-existent for the biobanking of phages in the 
region. For instance, the proper delineation and characterization 
of the banked phage (master seed lot), phage products (working 
seed lots), and therapy-ready preparations need to be considered 
(Pirnay et  al., 2015; Pelfrene et  al., 2016).

Phase Two: Laboratory- and Clinic-Based 
Phage Therapy Applications
The second revolutionary phase entails the appropriate modeling 
and implementation of phage therapy. Modern applications of 
phage therapy not only include the traditional use of phage 
formulations but also the use of combination therapies, phage 
products, and other phage-related interventions. Krylov and 
colleagues differentiate these modern applications into three 
generations of phage therapy products (Krylov et  al., 2015). 
In our current review, we  enriched the previous definitions 
by referring to the first-generation phage therapy as the traditional 
phage-based therapy, the second-generation as the use of phage-
derived biologics and combination therapy, and the third-
generation as the use of bioengineered phages. We summarized 
these applications in Table  3.
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The first-generation phage therapy is the most studied. 
Traditionally, phage therapy can be  done using a monoculture 
of a single specific phage against uncomplicated infections. 
However, as scientists began to address complex infections, 
they considered the use of phage cocktails. Phage cocktails 
refer to the combination of various phage strains or clones 

in a single preparation (Burrowes et al., 2011). In SEA, cocktails 
have been used for in vitro and in vivo therapeutic applications. 
For instance, Phothaworn et  al. (2020) used a two-component 
phage cocktail (SE-W109 and ST-W77) to increase the efficacy 
and breadth of Salmonella serovars killed by the formulation. 
Similarly, Dela Cruz-Papa et  al. (2017) used a two-component 
phage cocktail (UP87, B614) from the Philippines to increase 
the efficacy of A. hydrophila clearance in Oreochromis niloticus 
compared to monotherapy. These properties could be beneficial 
in treating complex infections caused by different bacterial 
strains. Others indicate that phage cocktails may help prevent 
or combat phage resistance among the targets. In a recent 
study by Nale et  al. (2021), a three-component cocktail (with 
the same two phages as used previously by Phothaworn et  al., 
2020) exhibited effective clearance of phage-resistant Salmonella, 
in vitro, possibly due to complementary activities of the phages 
in the formulation. This property could further be  explored 
in justifying the utility of phages for long-term therapeutic 
applications without worrying about phage resistance. Banking 
on the high specificity of phage cocktails, it can be customized 
based on the pathogen profile of the infection from patient 
sample cultures (Lin et al., 2017; Furfaro et al., 2018). Logistically, 
phage cocktail preparations may be  more costly and time-
consuming since the characteristics (i.e., life cycle) and properties 
(i.e., stability in preparations and in the human body) of the 
phage must be  matched and complementary with each other 
(Cairns and Payne, 2008; Krylov et  al., 2015; Lin et  al., 2017). 
This characterization is vital to ensure the component phages’ 
orchestrated modes of action (Cairns and Payne, 2008).

Second-generation phage therapy involves the use of phage-
derived products, such as lytic enzymes. Phages use lytic 
enzymes to hydrolyze the cell wall of their host bacteria, 
allowing for the release of viral progenies. The enzymes, including 
holins and endolysins, are possible phage-based pharmaceuticals 
in the future (Lin et  al., 2017). In particular, these proteins 
are seen as potential antimicrobials because of their low-dosage 
potency and high target specificity similar to phages. Mass 
production of lytic enzymes is also easier using traditional 
recombinant techniques (Lin et  al., 2017). In recent years, 
engineered lytic enzymes have been explored to induce highly 
specific or broad-spectrum cell wall cleavage. In Singapore, 
chimeric lysins composed of different segments from LysEF-
P10 (targets Enterococcus faecalis) and PlyV12 (targets 
Streptococcus sp., Staphylococcus sp., and Enterococcus sp.) have 
been successfully engineered. The researchers showed that the 
engineered lysin called P10N-V12C (with cell wall-binding 
domain of PlyV12) have both a broader lytic activity against 
enterococci, streptococci, and staphylococci, and a specific 
activity against E. faecalis, in vitro (Binte Muhammad Jai et al., 
2020). In the future, the actual application of lytic enzymes 
to treat infection warrants additional in vitro and in vivo studies.

Some researchers believe that antibiotic and phage activities 
do not interfere with each other because of their different modes 
of action. Antibiotic resistance may not affect phage therapy 
efficacy (Zhang et  al., 2018). One hypothesis is that a more 
substantial antimicrobial effect can be  achieved if clinicians 
combine antibiotics and phages into one therapeutic regimen 

TABLE 3 | Phage therapy products and its applicability in SEA.

Phage therapy 
products

Characteristics Limitations Applicability in 
SEA

First generation Phages isolated 
from environmental 
enrichment

Clinical relevance: 
most basic of phage 
therapy 
applications. 
Monotherapy or 
phage cocktail 
regimes in simple 
infections or as 
compliment to 
existing 
antimicrobials

In-depth 
characterization of 
phages before 
using in actual 
therapies

High-throughput 
screening 
requirement

Most applicable in 
SEA and other 
regions initially 
starting to utilize 
phage therapy

Second 
generation1

Phage products 
(i.e., enzymes) with 
potential antibiotic 
properties OR 
combination of 
first-generation 
phages with other 
antimicrobials

Clinical relevance: 
more advanced 
form of phage 
therapy application. 
Involves protein 
purification and 
additional activity 
optimization. Phage 
therapy for simple or 
complex infections

Purification of 
phage proteins and 
additional testing 
requirements

Testing of phage 
and antimicrobial 
combinations for 
compatibility and 
synergistic 
activities

Applicable to SEA 
once advanced 
manufacturing and 
quality testing has 
been established

Third generation Bioengineered 
phages (partially or 
entirely)

Clinical relevance: 
most advanced 
form of phage 
therapy 
applications. Relies 
on bioengineering 
and more rigorous 
testing. 
Personalized phage 
therapy or therapy 
for specific 
infections with no 
known therapy

Requirement for 
genomic 
characterization of 
the phages and 
identification of 
genes that may 
affect antimicrobial 
activity

Lack of expertise in 
genetic 
modification of 
phages

High turnaround 
testing requirement 
of designed 
phages

Applicable in SEA 
once advanced 
knowledge and 
expertise on phage 
genetics and 
recombineering 
has been 
established

1The original paper of Krylov et al. (2015) described second-generation phage therapy 
products as mixtures of previously characterized lytic phages or combination of lytic 
and pseudo-temperate phages. As it may have no clear distinction with the first 
generation in terms of the actual product to be used in therapies, we proposed a new 
definition for this generation to refer to the current characteristics described in the table.
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(Viertel et al., 2014; Torres-Barceló, 2018). First observed in 2007, 
researchers reported that a minimal dose of an antibiotic could 
stimulate the therapeutic activity of phage in E. coli, a phenomenon 
described as the Phage-Antibiotic Synergy (PAS; Comeau et  al., 
2007). Scientists in Indonesia investigated PAS in reducing the 
load of E. coli and Salmonella spp., in vitro. Their results showed 
that phage фPT1b combined with amoxicillin and tetracycline 
at specific ratios successfully increased the lysis of different E. coli 
strains. These findings indicate a reduced level of resistance to 
the antibiotics (Narulita et  al., 2020). Similar observations have 
been reported with the combination of phages ϕSZIP1, ϕSZIP2, 
and ϕSZUT plus cefadroxil against Salmonella sp. Escherichia 
sp. and S. aureus (Iqbal et  al., 2020) and with phage P22 plus 
ciprofloxacin against S. typhimurium (Petsong et  al., 2018). 
Scientists hypothesized that the initial antibiotic dose elongates 
the bacteria, making it easier for phages to bind to them due 
to the increased surface area of the pathogen (Torres-Barceló, 
2018). Using this “combination therapy,” the lifespan of exhausted, 
early generation antibiotics can be prolonged since only its initial 
effects on the pathogens (not necessarily the bactericidal activity) 
are needed to achieve the therapeutic effect desired (Iqbal et  al., 
2020; Narulita et  al., 2020). In addition, it could help increase 
the activity of the antibiotics against polymicrobial interactions 
like biofilms, although no investigations in SEA have been 
made  to  confirm this activity. The actual clinical performance 
of combined therapy using antibiotics and phages has yet to be 
investigated in SEA.

The genetic characteristics of phages make them ideal for 
bioengineering, eventually giving rise to third-generation phage 
therapies. The phage display technique involves fusing antibody 
variants or peptides to proteins of the phage coat proteins; 
iterative rounds of screening then enhance the phage coat’s 
affinity for target (Criscuolo et  al., 2017). DotBio, a start-up 
biotechnology company in Singapore, utilizes the phage display 
technique to produce DotBody technology proposed to be used 
in multi-functional therapies (https://www.dotbio.com/en/
technology, accessed 20 December 2021). Meanwhile, scientists 
from SEA reported bioengineered phages with applications as 
vectors for selective delivery of transgenes in mammalian cells 
via phage surface modification (Namdee et al., 2018; Chongchai 
et  al., 2021) and dual tumor targeting by hybridization of an 
adeno-associated virus with the phage capsid (Przystal et  al., 
2019). However, no specific modifications have been done to 
create phages specifically targeting clinically relevant bacteria. 
Hence, although scientists in SEA engineer phages for clinical 
applications, they still have to explore engineered phages in 
combating MDR organisms. Among the avenues that can 
be explored in the region is the genetic programming of phages 
to deliver CRISPR/Cas system to the target multidrug-resistant 
bacteria. This technique can be useful in disrupting the expression 
of antibiotic resistance genes of the host, making them more 
susceptible to antibiotics, and preventing the spread of antibiotic 
resistance genes (Lin et  al., 2017). Aside from CRISPR/Cas, 
phages can also be  engineered to kill the host by delivering 
other lethal genes encoding for lytic enzymes, such as 
endonucleases, lytic enzymes, and toxins (Viertel et  al., 2014). 
Finally, a whole phage particle can also be constructed, eliminating 

the need to isolate and purify bacteriophages. These “designer 
phages” can be  used to incorporate all positive traits of 
bacteriophage for therapeutic use. Constructing designer phages 
is still an uncharted niche in SEA.

To address the need for rigorous testing of phages before 
clinical use, extensive laboratory testing for safety and efficacy 
is necessary (Nale and Clokie, 2021). Laboratory testing of 
phages should be  conducted at three levels – in vitro, ex vivo, 
and in vivo (Supplementary Figure  4). For in vitro testing, 
the characterization of phages and optimization of phage 
formulations should be  given priority as described in the 
previous section of this review. This level of testing should 
also include the production of phage formulations that will 
be  used in the succeeding testing stages. We  believe that the 
first level of testing phages will not be  a problem in SEA 
since the academic institutions and existing phage laboratories 
regularly conduct phage testing and characterization. However, 
we  propose to develop standard laboratory protocols for the 
use of different phage laboratories to ensure that the 
manufacturing process can be  standardized, monitored, and 
regulated in the future. These protocols should also follow the 
current GMP principles (Moelling et  al., 2018). The second 
and third levels of testing will be  more challenging since it 
involves using live cell cultures, tissue models, and live animals. 
Researchers recently used human cell lines in studying the 
dynamics and interaction of phages and mammalian cells 
infected with the target bacteria (Møller-Olsen et  al., 2018; 
Shan et  al., 2018). However, a more sophisticated method of 
testing the efficacy of phages is to mimic the human organ 
environment (ex vivo) affected by the bacteria by using infection 
models. A recent study reported this approach to infer that 
an enterococci phage cocktail is effective in a collagen wound 
infection model (Melo et  al., 2019). Another ex vivo approach 
used controlled and maintained batch fermentation setups to 
simulate the complex internal environment of the animals (or 
humans) when studying phages to be  administered internally 
(Rivas et  al., 2010; Nale and Clokie, 2021). Ex vivo approaches 
in studying phage efficacy and safety have yet to be  done in 
SEA. The use of animal models (in vivo) in testing phage 
efficacy remains an accepted method in the scientific community. 
Animal models ensure that proper phage delivery methods in 
living systems and immune response dynamics will be considered 
when phage therapy is administered (Nale and Clokie, 2021). 
The choice of animal is critical in ensuring that the human 
infection pathogenesis and environment can be  mimicked 
accurately. As discussed earlier, in vivo phage therapy studies 
have been conducted in SEA, but the transition from doing 
pre-clinical to clinical research in phages has yet to be  done.

The past five years saw the advent of three-dimensional cellular 
constructs mirroring the functions of human tissues and organs 
(a general term called tissue engineering and regenerative medicine 
or TERM) in SEA, primarily by groups in Singapore (Han et al., 
2020). With TERM, the option of using bioprinted infection 
models for phage therapy arises. Bioprinting refers to fabricating 
three-dimensional tissue constructs using biomaterials and living 
cells (Gungor-Ozkerim et  al., 2018). We  believe that exploring 
this option would be  beneficial in a personalized therapeutic 
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approach by providing an avenue for laboratories to test the 
dynamics and efficacy of the phage formulations in patient-
derived cells bioprinted to form tissues or organoids and infected 
with a clinical isolate from the same patient. Using this approach, 
researchers may reduce the amount of animal testing required, 
while the ex vivo environment may reflect the actual infection 
environment in humans more accurately than in animal models. 
In addition, patient cells and patient-derived bacterial pathogens 
will be  used for testing. We  believe that this approach is also 
complementary to the refined in vivo approach (i.e., use of 
invertebrate models), as suggested in other studies (Nale et  al., 
2015, 2021; Brix et  al., 2020).

Phase Three: Adaptive Regulatory 
Mechanisms
The third phase of the phage revolution involves creating 
standards and guidelines for the therapeutic use of phages. 
Currently, regulatory agencies in most parts of the world, 
including SEA, have not officially approved any phage-based 
products for use in humans. Experts attributed this situation 
to the fact that no standardized definitions, regulations, and 
guidelines are available for phage formulations (Wittebole et al., 
2014; Krylov et  al., 2015; Morozova et  al., 2018). In addition, 
other regulatory standards in the SEA and gaps for 
implementation have been observed, potentially affecting the 
progress of phage-based therapeutics as an accepted therapeutic 
option (Table  4). Although combating antimicrobial resistance 
is among the top priorities of the ASEAN health cluster for 
2016–2020, phage therapy is not among the strategies listed 
(Association of Southeast Asian Nation, 2021). Given that there 
are no formal regulatory discussions on phage therapy 
applications, we  hope that this paper could start a dialogue 
between the different stakeholders in the region. The initial 
movement towards this goal has been started by the 
implementation of the inaugural symposium on phage and 
phage-derived technologies in Singapore last December 2021, 
organized by Cellexus. Other activities, such as the first Virtual 
SEA Phage Workshop to be administered by Phages for Global 
Health in 2022 and the Protein Engineering and Phage Display 
Conference to be  launched in Malaysia in 2023, are also on 
the way. We  are optimistic that additional regional activities 
towards phage use and appreciation can be  done in the next 
few years once discussions continue to progress.

Despite the current situation in SEA, global regulatory 
agencies like the US-Food and Drug Administration (US-FDA) 
and the European Medicines Agency (EMA) provide avenues 
for the compassionate use of phages as expanded access 
investigational (i.e., unregulated) new medicines. In these cases, 
phage formulations can be  administered to patients on a per 
case basis, but the actual scheme of facilitating compassionate 
phage therapy remains highly variable (McCallin et  al., 2019). 
For patients with financial resources and capacity to travel, 
phage therapy can also be  accessed by traveling to countries 
where phage therapy is an approved therapeutic option (i.e., 
Georgia). It is important to note that the regulatory agencies 
in these regions consider phages as industrially manufactured 

medicines. Therefore, phages can be  treated like traditional 
drugs, which should follow GMP standards for manufacturing, 
undergo efficacy testing in clinical trials, and obtain marketing 
clearance (Brives and Pourraz, 2020). In ASEAN countries, 
expanded access or compassionate use of unregistered treatment 
options, including phage therapy, has also been a viable option 
(Teo et  al., 2016). ASEAN countries reported high rates of 
compassionate use of unregistered medicines, but the use of 
phage therapy even in critical cases has not been reported. 
Although compassionate use exists as a safety net, we  believe 

TABLE 4 | Existing regulatory standards with potential implications in phage 
therapy implementation in SEA.

ASEAN regulatory 
standard1

Gaps in implementation1 Implications in phage 
therapy regulation

Medicines registration is 
required to obtain 
pharmaceutical product 
marketing license

Lack of technical expertise, 
institutional capacities, and 
long timelines for approval

Non-consensus on the 
definition of phages 
either as industrially 
manufactured medicine 
or as an active product 
ingredient makes the 
current regulatory 
guidelines non-
applicable or not very 
clear when applied to 
phage therapy

Regional or local 
registration is required for 
innovative medicines 
newly introduced to the 
global community

Drug lag of more than 
3 years due to additional 
regulatory burden to 
manufacturers and lack of 
technical expertise in the 
ASEAN for innovative 
medicines

Lack of technical 
expertise in phage 
therapy as an innovative 
medicine potentially 
resulting in longer lag in 
regulatory approval

Expanded access or 
compassionate use 
cases allowing the 
administration of 
unregistered products to 
select and special 
patients with no other 
treatment option or 
ineligible to clinical trials

Expanded access or 
compassionate use of 
drugs as a circumventing 
mechanism to the regular 
medicine registration 
pathway

Non-sustainable option 
for using phage therapy 
potentially delaying the 
appreciation of the 
public to the therapy. 
Decrease interest of 
industries in high-
throughput 
manufacturing and 
production of phage 
formulations

Product development 
needs to follow 
harmonized and 
streamlined standards 
and guidelines (i.e., 
process validation, 
stability testing, and 
bioavailability/
bioequivalence)

Shortage in resources and 
expertise for 
implementation, and 
differences in existing local 
pharmaceutical laws and 
regulations

Lack of technical 
expertise and resources 
in phage therapy 
potentially hindering 
early efforts in 
streamlining of 
standards and 
guidelines for phage 
formulation 
development

Establish medicines 
regulatory harmonization 
agenda

Fragmented approach in 
implementation of the 
harmonization initiatives 
and lack of political 
engagement hindering the 
progress of the agenda

Lack of standardized 
basic definitions and 
protocols for phage 
therapy hindering the 
establishment of a 
regulatory agenda for 
phage therapy

1Based on the report of Teo et al. (2016) on medicines regulatory systems and scope 
for regulatory harmonization in Southeast Asia.
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that this workaround is not a sustainable regulatory solution 
in the long run because: (1) it limits the use of phage therapy 
for special or emergency cases only, and (2) it creates an 
impression that phage therapy is only a last-line treatment 
option, preventing progression in terms of acceptability to the 
pharmaceutical industries and the general public.

Pirnay et  al. (2018) described a magistral approach as a 
model of regulating phage therapy, where phages are considered 
active product ingredients instead of industrially manufactured 
medicines. This approach, currently applied in Belgium, involves 
the collaboration of phage formulation manufacturers (can 
be  individual hospital pharmacies) and Belgian-Approved 
Laboratories in ensuring the production of high-quality phages 
for human use. In this approach, individual hospitals can access 
phages from biobanks that underwent quality control measures 
by the Belgian-Approved Laboratories (Moelling et  al., 2018). 
The manufacturers have leeway on the actual production of 
the phage formulation, as long as it follows the standards of 
current GMP or the like. This attribute opens the possibility 
of personalized phage formulations for individual patient 
management. The Belgian-Approved Laboratories serve as the 
quality control body that assesses and certifies the constitution 
of phages before they can be  given to the manufacturers for 
magistral preparations. In SEA, the magistral approach can 
be considered as soon as the following requirements are satisfied: 
(1) establishment of well-maintained and monitored phage banks 
(which will be  the source of phages or active pharmaceutical 
ingredient), (2) appointment of “ASEAN-Approved Laboratories,” 
and (3) training of pharmacies and independent manufacturers 
in producing magistral preparations of phages following GMP. 
For the first requirement, existing phage banks in academic 
institutions could be  tapped, or a central phage biobank could 
be  established, accessible to SEA countries. For the second 
requirement, each ASEAN member could delegate existing public 
agencies or private institutions with capabilities to conduct 
quality control testing for phages. Virology institutes with access 
to advanced phage characterization equipment like electron 
microscopes and sequencing platforms would be  ideal for this 
purpose. For the last requirement, hospitals and interested 
manufacturers should be trained and certified for GMP standards 
and phage formulation protocols. A consortium of experts in 
the SEA could act as a preliminary certifying body for this purpose.

Given the current regulatory hurdles, one thing is clear: for 
the phage revolution to proceed, a more adaptable regulatory 
pipeline must be  pursued in SEA (Jennes et  al., 2017; Lin et  al., 
2017). Independent international organizations, such as Phages 
for Human Applications Group Europe (P.H.A.G.E), aim to do 
this by getting support from phage biologists, physicians, and 
policymakers in recognizing that phage therapy is a valid and 
promising option for treating bacterial infections in humans 
(http://www.p-h-a-g-e.org/, accessed on 20 December 2021). A 
similar organization or consortium can be  made in the SEA to 
educate stakeholders, organize scientific fora, and exchange technical 
and regulatory experience on phage therapy applications in the 
region. Lastly, a research and biotechnology business model can 
be  adapted to promote the sustainability of a phage revolution 
in SEA. Although phage therapy has weak support in terms of 

patent and market distribution, biotechnology companies and 
healthcare facilities could benefit from the phage industry by 
serving as niche or specialty providers (Fauconnier et  al., 2020). 
These companies could use the phage specialization as leverage 
in creating spinoffs for phage therapy in SEA. To form these 
initiatives, the ASEAN could tap the WHO for resource capacity-
building, and resource mobilization, especially for member states 
considered as low- to middle-income countries (LMICs; Fauconnier 
et  al., 2020). The current business environment is not ideal for 
pharmaceutical companies to support phage formulations’ 
widespread production and marketing (Verbeken et  al., 2014). 
Despite this drawbacks, we  are optimistic that the utilization 
and ultimately market utilization of phage formulations and phage 
therapy will increase over the following years, with an estimated 
compound annual growth rate of 8.1% from 2021 to 2028 (Accurize 
Market Research, https://www.accurizemarketresearch.com/report/
global-phage-therapy-market/, accessed on 15 July 2021). As of 
this writing, the Phage Directory (https://phage.directory/orgs, 
accessed 20 December 2021) and The Bacteriophage Ecology 
Group (http://companies.phage.org/, accessed on 20 December 
2021) listed up to 60 biotechnology companies specializing in 
phages, none of which are SEA-based. This situation creates an 
opportunity for the SEA countries to establish their own regional 
spinoff company specializing in phages and phage therapy.

FINAL THOUGHTS ON PHAGE 
REVOLUTION

Aside from being a global biodiversity hotspot, SEA can also 
be  considered a global hotspot for antimicrobial resistance 
(Zellweger et  al., 2017). Hence, the region must have effective 
therapeutic strategies to combat the growing resistance against 
antibiotics in the clinical setting. We  view phage therapy as 
one of the most viable options in achieving this goal, given 
the opportunities present in the region. The historical data 
and the strategies we  presented in this review point to the 
consideration of three things that would potentially spark the 
upcoming phage revolution in SEA: (1) increase the interest 
and knowledge of scientists in SEA about phages, (2) invest 
in virology facilities and systems, and (3) follow adaptable 
regulatory pipeline that will allow the use of phage therapy 
in clinics without hampering the quality of phage formulations.

The involvement of dedicated scientists is vital because they 
will become the pioneers of phage therapy in the region. They 
will also serve as the foundation in applying phage therapy 
knowledge in the clinics. Without these experts, the call for 
phage therapy in the region will be  futile. To increase the 
interest in the field, the promotion of phage research by regional 
experts is critical. Creating a phage consortium or organization 
in SEA can help achieve this goal. As discussed in this review, 
the consortium could act as a technical expert for ASEAN-
Approved Laboratories, a source of continuing education for 
the region, and provide an avenue where exchanges of ideas 
and practices about phage therapy could be discussed. As more 
experts in phages develop, we expect an increase in the number 
of scientific publications covering the understanding of phage 
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biology, systematics, and anti-MDR organism potential, and 
eventually the rise of clinical trials focusing on the clinical 
applications of phages against MDR organisms. We also expect 
increased capacity-building activities to hone complementary 
skills for phage therapy implementation, such as electron 
microscopy, WGS, phage formulation techniques, phage 
administration, and bioprinting. The inaugural symposium on 
phage and phage-derived technologies in Singapore (2021), and 
the first virtual SEA phage workshop by Phages for Global 
Health in Malaysia (2022) are good starting points in increasing 
scientific interest on phage in the region. Meanwhile, to promote 
phage therapy appreciation among the public, citizen science 
programs that focus on accessible and appreciable activities 
involving phages can be  done in schools following the model 
of the Science Education Alliance-Phage Hunters Advancing 
Genomics and Evolutionary Science (SEA-PHAGE, https://
seaphages.org/, accessed last 20 December 2021). With 
educational activities, the concept of phage and phage therapy 
can be integrated within the public knowledge, hopefully making 
the phage revolution easier to implement and encourage.

As with all research-based endeavors, facilities and protocols 
are also essential to spark the phage revolution in SEA. But 
this aspect may not be  an added economic burden to the 
region. As we  have mentioned in this review, the creation of 
critical phage facilities like phage banks and phage testing 
centers could stem from existing facilities like the university-
based phage collections or existing virological institutes, 
respectively. However, we  believe that establishing a dedicated 
facility accessible to the SEA region would be  more beneficial 
in creating a specific niche that could address concerns about 
phage therapy. The facility would be  critical later on when 
regulations and standards on phage therapy have been created.

Lastly, following an adaptable model for the regulation and 
standardization of phage therapy would be a critical undertaking 
for all the countries within the ASEAN. We  believe that the 
existing collaborations in the region regarding pharmaceutical 
and biological products regulations are vital starting points 
for creating adaptable guidelines applicable to SEA. These 
existing collaborations can be  revisited and modified using 
the regulatory models from other countries; after these changes, 
regulatory agencies can accommodate more investigational and 
personalized therapeutic options like phage therapy. We  accept 
that the regulatory aspect will take time. Still, the sooner the 
region starts its discussion on the matter, the sooner 

decision-makers can implement phage therapy for MDR 
organism-infected patients, who may have no other hope of 
survival other than exploring phage therapy.

In summary, a phage revolution that targets MDR organisms 
in SEA is an ambitious yet beneficial concept that should 
be opened to the scientists, clinical decision-makers, regulators, 
administrators, and other stakeholders of the region. In this 
review, we presented the details of preparing for this promising 
endeavor, starting from the basic understanding of the phages, 
the knowledge of phage therapy requirements, its historical 
use in the world and region, and the strategies to move 
forward. We  hope that this review will open avenues for 
scientific and policy-based discussions on phage therapy and 
eventually lead the way to its fullest potential in combating 
MDR organisms in SEA.
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