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ABSTRACT

G-rich genomic regions can form G4 DNA upon
transcription or replication. We have quantified the
potential for G4 DNA formation (G4P) of the 16 654
genes in the human RefSeq database, and then
correlated gene function with G4P. We have found
that very low and very high G4P correlates with
specific functional classes of genes. Notably, tumor
suppressor genes have very low G4P and proto-
oncogenes have very high G4P. G4P of these genes
is evenly distributed between exons and introns,
and it does not reflect enrichment for CpG islands or
local chromosomal environment. These results
show that genomic structure undergoes selection
based on gene function. Selection based on G4P
could promote genomic stability (or instability) of
specific classes of genes; or reflect mechanisms for
global regulation of gene expression.

INTRODUCTION

Eukaryotic genomes contain characteristically G-rich regions,
including single-copy genes; the rDNA; and repetitive
sequences, such as the telomeres and the immunoglobulin
heavy chain switch (S) regions of higher vertebrates. G-rich
nucleic acids have the potential to form G-quadruplex or
‘G4 DNA’, a structure in which intra- or inter-strand inter-
actions are stabilized by G-quartets, planar arrays of four
guanines, paired by Hoogsteen bonding (1,2). G-quartets
can stabilize a remarkable diversity of structures, in which
the lengths and positions of the G-runs and the ‘loops’ separ-
ating them both contribute to overall topology (3,4). In the
human genome, the number of distinct sites with potential to
form G4 DNA is estimated at more than 300 000, and specific
loop sequences are prominent at some of these sites (5,6).

Key cellular processes are identified with repetitive G-rich
chromosomal regions, where regulated formation of G4 DNA
may contribute to biological function. At the G-rich telomere
tails, the presence of G4 DNA inhibits extension by
telomerase, and proteins that bind specifically to telomeric

sequences regulate the formation and resolution of G4
DNA (7–15). The G-rich immunoglobulin switch regions
are sites of recombination that is critical to B-cell develop-
ment and the immune response, and regulated transcription
of the switch regions induces the formation of DNA struc-
tures targeted by factors essential to class switch recombina-
tion (16,17).

G-rich regions can also be sites of unprogrammed genomic
instability. Many B-cell lymphomas carry a translocation of
the MYC proto-oncogene to the immunoglobulin heavy
chain switch region (18), and the common translocation
breakpoints map to G-rich regions of MYC that form struc-
tures similar to those formed by transcribed G-rich switch
regions (19,20). Some of the most unstable human minisatel-
lites are G-rich sequences predicted to form G4 DNA (21);
and G4 DNA formation in vitro has been directly confirmed
for two G-rich VNTRs, D4S43, and the insulin-linked hyper-
variable repeat (22). Reporter constructs carrying interstitial
telomeric repeats display high levels of instability (23),
which may be analogous to the instability of G-rich VNTRs.

Specialized mechanisms may regulate the expression of
G-rich genes at the levels of transcription, RNA processing
and translation. Cotranscriptional RNA:DNA hybrid forma-
tion occurs readily within G-rich regions (19,24,25). Fac-
tors associated with RNA processing pathways, including
THO/TREX and ASF/SF2, normally prevent cotranscriptional
RNA:DNA hybrid formation, and promote gene expression;
and genomic instability ensues in their absence (26,27). Factors
involved in translational regulation may target RNA transcripts
that contain G-quartets (28,29). Regions with the potential to
form G4 DNA have been identified in the promoters of several
proto-oncogenes, including c-MYC, VEGF, c-KIT and BCL2
(30–33). This has led to suggestions that formation or resolu-
tion of specific quadruplex structures may contribute to the
regulation of gene expression, and prompted the design of
therapeutics targeted to these structures, but the biological
specificity of such compounds is yet to be established
rigorously (34–39).

Conserved and ubiquitous repair factors recognize G4
DNA, including the human RecQ family helicases BLM
and WRN (40,41); the Saccharomyces cerevisiae RecQ
family helicase Sgs1 (42); and the mismatch repair factor
MutSa, a heterodimer of MSH2/MSH6 (16). RecQ family
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helicases maintain G-rich regions during replication. Sgs1 is
required for nucleolar stability and replication of the G-rich
rDNA (43,44); and in the absence of WRN helicase,
telomeric sequence is lost due to impaired replication of the
G-rich strand (45). The mismatch repair factor, MutSa, may
cooperate with BLM helicase to promote the resolution of G4
DNA during replication (46). In immunoglobulin switch
recombination, MutSa recognizes G4 DNA formed during
transcription of the G-rich switch regions to promote their
synapsis and recombination (16).

Genomic regions with potential to form G4 DNA have
been enumerated (4,5), but they have not been correlated
with specific gene functions. The link between potential for
G4 DNA formation and genomic instability suggests that
the identification of human genes with relatively high or
low potential to form G4 DNA might provide insights into
the evolution of genomic structure, or identify mechanisms
that could account for genomic instability in human malig-
nancies. The possibility that G-richness can contribute to
shared regulation suggests that genes with similar or related
functions may share features of genomic structure. We there-
fore set out to determine the prevalence of G-rich sequences
capable of forming G4 DNA among human genes, and to
determine if particular functional classes of genes might be
characterized by the presence or absence of G-rich regions.

METHODS

G4P Calculator software

We developed a software program, ‘G4P Calculator’, which
computes G4 DNA potential based on the density of runs
of guanines in a sequence. The program evaluates runs of
guanines in a sliding window and calculates the percentage
of windows searched that meet the specified criteria. The cri-
teria used are as follows: G-run length, >3; number of G-runs
per window, >4; window length, 100 nt; and sliding interval
length, 20 nt. The requirement for four or more runs of three
or more guanines is based on studies of oligonucleotide fold-
ing [reviewed in (2)]. The 100 nt window size facilitates rapid
analysis and is easily reduced (or enlarged) for rescan of spe-
cific genes of interest. The 20 nt sliding interval length is set
such that sequences with the potential to form more than a
single G4 DNA structure make correspondingly higher con-
tributions to the total G4P. The last four windows analyzed
are processed as windows of progressively smaller size
(80, 60, 40 and 20 nt), and this does not affect the results
as gene length is much larger than window size. Each DNA
strand is evaluated independently. G4P is scored as a percent-
age, making it independent of sequence length. These criteria
are similar to those used by others (4,5), and although not
absolute, provide a means to compare G4P between differ-
ent sequences. The software is written in C# to run on the
Microsoft Windows XP operating system. The program
and instructions are available on our laboratory website
(http://depts.washington.edu/maizels9/). The source code is
available upon request.

Sequence and GO data

Sequence data for the human RefSeq genes (NCBI 35 assem-
bly) and associated GO terms were downloaded from the

Ensembl database v.32 using BioMart (47) on 4/9/05.
Additional Gene Ontology (GO) data were obtained from
the GO website (www.geneontology.org) on 3/5/06. Flanking
sequence data were downloaded from Ensembl v.34 on
14/10/05. The cDNA sequences were downloaded from the
Ensembl v.37 on 19/3/06. For genes with multiple transcript
variants, the first listed variant for each gene was evaluated to
assess G4P of the cDNA. The median G4 DNA potential was
calculated from 16 654 RefSeq genes. Since each gene may
have several GO classifications, a total of 77 968 GO term
assignments were sorted above or below the median corres-
ponding to 50.5% or 49.5% of the total. The 4524 RefSeq
genes that have no GO classification (27% of the total) are
equally distributed below and above the median.

Flanking sequence analysis

Analysis of DG4P included only genes for which both gene
and flanking sequence were complete. Excluded from that
analysis were 101 genes for which sequence determination
was incomplete (more than four unidentified consecutive
bases). The excluded genes are identified in Supplementary
Table 1; none of the excluded genes was a known proto-
oncogene or a tumor suppressor gene.

Statistical analysis

The Wilcoxon rank sum test was applied by using the statis-
tics program R 2.2.1 (Wilcoxon test parameters: alternative ¼
‘two-sided’, paired ¼ FALSE). The linear regression, single-
factor ANOVA, and standard error analyses were performed
using Microsoft Office Excel 2003. Owing to the skewed
distribution of G4P, data were subjected to a natural log
transformation before linear regression analysis. Genes with
G4P ¼ 0 were therefore not included. This resulted in the
exclusion of 1152 genes from the correlation between DNA
strands (Figure 1B); and of 905 genes from the analysis of
G4P versus GC content (Figure 3A).

CpG islands

The NewCpGReport software (48) was accessed and run
from the website http://csc-fserve.hh.med.ic.ac.uk/emboss/
newcpgreport.html. The tumor suppressor and proto-onco-
gene sequences were processed using the program’s default
settings: window size ¼ 100; shift increment ¼ 1; minimum
length ¼ 200; minimum observed/expected ¼ 0.6; and
minimum percent ¼ 50.

RESULTS

G4 DNA formation potential of human genes

To score potential for G4 DNA formation, we developed soft-
ware that analyzes overlapping windows of sequence, and
scores each window that contains four or more runs of
three or more guanines as a ‘hit’, then quantifies G4 DNA
formation potential (G4P) as the percentage of hits in the
total number of windows searched. We used this program,
‘G4P Calculator’, to evaluate the G4P of the entire tran-
scribed sequence (exons and introns) of 16 654 human Refer-
ence Sequence (RefSeq) genes. Nontemplate and template
strands were analyzed separately, to distinguish contributions
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of transcription-induced structure formation, which affects
only the nontemplate strand; and replication-induced struc-
ture formation, which affects both strands. G4P of the non-
template strand ranged from 0 to 79%, with a median of
5.0% and an average of 9.1% (Figure 1A and Supplementary
Table 1). Linear regression analysis (Figure 1B) showed
that G4P of the nontemplate and template strands is positively
correlated (R2 ¼ 0.73), with a slope of less than unity (0.83).
Thus, for most genes, there is a slightly lower potential
for the formation of transcription-induced structures than
replication-induced structures; although potential for the
formation of structures on either strand is closely correlated.

Gene function corresponds with G4P

The skewed distribution of G4P over the RefSeq genes
(Figure 1A) suggests that most genes cannot readily form
G4 DNA structures, but that some genes may be highly
susceptible. To identify functional classes of genes with
high and low potential for G4 DNA formation, we evaluated

the distribution of terms defined by the GO Consortium (49)
for each RefSeq gene across the spectrum of G4 DNA poten-
tials. In this classification scheme, 27% of genes currently
have no GO terms assigned; and others have been assigned
multiple GO terms and are represented in several different
categories. The distribution of the 4396 GO terms assigned
to the human RefSeq genes across G4 DNA potential proved
to be nearly identical to the distribution of genes (Figure 1A).

Restricting further analysis to the 218 GO terms associated
with 50 or more genes, 61 GO terms were identified for
which 60% or more of the genes were below or above the
RefSeq median G4P (24 low G4P and 37 high G4P); and
application of the Wilcoxon rank sum test confirmed that
these criteria were robust (Table 1 and Supplementary
Table 2). Functions characterized by low G4P include
G-protein-coupled receptors, sensory perception (especially
olfaction), nucleosome assembly, nucleic acid binding,
ubiquitin cycle, cell adhesion and cell division; whereas
functions characterized by high G4P include transcription
factor activity, development, cell signaling, muscle contrac-
tion, growth factors and cytokines. Figure 2 represents, for
a subset of the GO terms identified with very low and very
high G4P, the median and range of G4P relative to all RefSeq
genes and all GO terms. In each case, the difference in distri-
bution relative to the RefSeq genes was highly significant
(Figure 2). This establishes a relationship between specific
gene functions and potential for G4 DNA formation.

Tumor suppressor genes are characterized by low G4P
and proto-oncogenes by high G4P

Some of the gene functions characterized by low and high
G4P (Figure 2 and Table 1) are associated with tumor sup-
pressor genes and proto-oncogenes, respectively. This led
us to interrogate the distribution of G4P with respect to
genes in these two categories. A list of 55 tumor suppressor
genes and 95 proto-oncogenes was compiled (Supplementary
Table 3), using the Online Mendelian Inheritance in Man
(OMIM) database as a primary source and confirming gene
classification by search of the published literature. Compari-
son of G4P for tumor suppressor genes and proto-oncogenes
established a clear and highly significant difference in the
range of G4P observed (Wilcoxon rank sum test, P ¼ 10�8;
Figure 3A), and in the distribution of G4P for genes in these
two categories relative to the 16 654 genes in the RefSeq
database (Figure 3B). The distribution of tumor suppressor
genes was shifted from the RefSeq median of 5.0% towards
low G4 DNA potential with a median of 2.4% (Wilcoxon
rank sum test, P ¼ 4 · 10�5); and the distribution of proto-
oncogenes was shifted towards high G4P with a median of
11.0% (Wilcoxon rank sum test, P ¼ 7 · 10�5).

Table 2 shows the top 10 genes in each category, ranked
according to G4P, using a high stringency 40 nt search
window. Analysis of G4P using a 40 nt rather than a 100 nt
search window decreased the numerical value of G4P for
each individual gene, as expected (Table 2 and Supplemen-
tary Table 3), but did not affect the relative differences in
distribution of the potentials, and further supported the signi-
ficance of the difference between tumor suppressor genes and
proto-oncogenes (Wilcoxon rank sum test, P ¼ 2 · 10�7).
Table 2 also shows representative GO terms assigned to

A

B

Figure 1. Potential for G4 DNA formation of human genes. (A) Distribution
of genes across G4 DNA formation potential (G4P). The distribution of
16 654 RefSeq genes is illustrated by vertical bars (gray). Median G4P for the
RefSeq genes at 5.0% is indicated by a dotted line. The distribution of the
4396 GO terms assigned to 73% of the RefSeq genes is outlined (black).
(B) Positive correlation of G4P of template and nontemplate DNA strands.
Linear regression analysis of G4P of the nontemplate (y-axis) and the
template (x-axis) strand. Owing to the skewed distribution of G4P, the data
were subjected to a natural log transformation before linear regression
analysis; therefore, a small number of genes with G4P equal to zero were not
included. The slope determined by linear regression analysis (0.83) is
represented by the solid line; and slope of unity by the dotted line.
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each gene, many of which correspond to GO terms overrep-
resented in low or high G4P (Figure 2).

Simulations were carried out to verify the significance of
the differences between G4P of tumor suppressor genes and
proto-oncogenes. G4P distributions of 95 or 55 genes picked
at random were not significantly different from the RefSeq set
(P > 0.1), in each of 20 iterations. Furthermore, statistical sig-
nificance of observed differences was robust to misclassifi-
cation of up to 10 genes per category, as tested by the
addition of 10 randomly selected RefSeq genes to either

category (P < 0.002), or by elimination of 10 randomly selec-
ted genes from either category (P < 0.0002). These simula-
tions confirmed the significance of the differences between
G4P of tumor suppressor genes and proto-oncogenes.

Tumor suppressor genes and proto-oncogenes have
similar numbers of CpG islands

CpG islands are associated with a majority of promoters of
human genes (50), and CpG dinucleotides are targets for

Table 1. Gene Ontology (GO) terms with low and high G4P

Biological process Molecular function
GO ID GO description No. of genes P GO ID GO description No. of genes P

Low G4P
GO:0007186 G-protein-coupled receptor

protein signaling pathway
674 < 2E�16 GO:0004984 Olfactory receptor

activity
316 < 2E�16

GO:0007600 Sensory perception 436 < 2E�16 GO:0003676 Nucleic acid
binding

615 1E�06

GO:0007608 Perception of smell 244 < 2E�16 GO:0005488 Binding 427 5E�06
GO:0007001 Chromosome organization

and biogenesis
99 8E�11 GO:0016874 Ligase activity 163 0.003

GO:0006334 Nucleosome assembly 95 9E�11 GO:0004197 Cysteine-type
endopeptidase
activity

55 0.006

GO:0006511 Ubiquitin-dependent protein
catabolism

96 5E�05 GO:0004842 Ubiquitin–protein
ligase activity

327 0.02

GO:0006512 Ubiquitin cycle 210 0.0002 GO:0017111 Nucleoside
triphosphatase
activity

54 0.03

GO:0007156 Homophilic cell adhesion 87 0.02 GO:0008026 ATP-dependent
helicase activity

63 0.03

GO:0051301 Cell division 119 0.03
GO:0006470 Protein amino acid

dephosphorylation
115 0.08

High G4P
GO:0007275 Development 391 < 2E�16 GO:0003700 Transcription

factor activity
752 < 2E�16

GO:0006955 Immune response 272 3E�09 GO:0004295 Trypsin activity 94 2E�07
GO:0007267 Cell–cell signaling 263 2E�06 GO:0004263 Chymotrypsin

activity
91 9E�07

GO:0006936 Muscle contraction 63 6E�05 GO:0030528 Transcription
regulator activity

74 8E�05

GO:0006817 Phosphate transport 80 7E�05 GO:0030955 Potassium ion
binding

100 0.0005

GO:0007010 Cytoskeleton organization
and biogenesis

53 0.0002 GO:0008083 Growth factor
activity

116 0.003

GO:0009653 Morphogenesis 104 0.002 GO:0005179 Hormone activity 80 0.004
GO:0007517 Muscle development 103 0.002 GO:0008289 Lipid binding 75 0.008
GO:0007218 Neuropeptide signaling

pathway
66 0.01 GO:0003774 Motor activity 58 0.02

GO:0006814 Sodium ion transport 85 0.02 GO:0015293 Symporter activity 71 0.02
GO:0006968 Cellular defense response 61 0.02 GO:0005249 Voltage-gated

potassium channel
activity

65 0.02

GO:0006954 Inflammatory response 163 0.02 GO:0005125 Cytokine activity 79 0.05
GO:0006091 Generation of precursor

metabolites and energy
59 0.02 GO:0020037 Heme binding 78 0.06

GO:0001501 Skeletal development 78 0.03
GO:0007169 Transmembrane receptor

protein tyrosine kinase
signaling pathway

67 0.04

GO:0008544 Epidermis development 62 0.04
GO:0006816 Calcium ion transport 63 0.08
GO:0006869 Lipid transport 53 0.08
GO:0009887 Organogenesis 50 0.09

GO term ID number, description and number of genes to which this term applies, for each GO term associated with Biological Processes and Molecular Functions,
and containing genes with a distribution that is significantly lower or higher in G4P than the RefSeq genes. Terms are sorted by ascending P-value (shown) as
calculated by the Wilcoxon rank sum test. Additional data can be found in Supplementary Table 2.
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Figure 2. G4P correlates with gene function. Ranges of G4P for all RefSeq genes (top line) compared with five GO terms overrepresented in low or high G4P.
Boxes represent the percentage of genes in each GO category characterized by G4P in the range 0–1.25, 1.25–2.5, 2.5–5.0, 5–10, 10–20% and >20% (colors as
indicated). P-values shown on the right represent significance of the difference in distribution between each GO term and the RefSeq genes, as calculated by the
Wilcoxon rank sum test.

A

B

Figure 3. Contrasting G4P of tumor suppressor genes and proto-oncogenes. (A) Ranges of G4P for 55 tumor suppressor genes, 95 proto-oncogenes and all 16 654
RefSeq genes. Boxes represent the percentage of genes in each category characterized by G4P in the range 0–1.25, 1.25–2.5, 2.5–5.0, 5–10, 10–20% and >20%
(colors as indicated). P-value represents significance of the difference in distribution between the tumor suppressor genes and proto-oncogenes, as calculated by
the Wilcoxon rank sum test. (B) Distribution of tumor suppressor genes and proto-oncogenes across G4P. Bars represent the G4P distribution of 55 tumor
suppressor genes (blue) and 95 proto-oncogenes (red). The black outline diagrams distribution of all 16 654 RefSeq genes (as in Figure 1A). P-values represent
significance of the difference in distribution between each group of genes and the RefSeq genes, as calculated by the Wilcoxon rank sum test.
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methylation leading to gene silencing [reviewed in (51)]. G4P
is positively correlated with GC-content (Figure 4A), which
could in principle reflect a local enrichment of CpG methyla-
tion sites. We tested this possibility by analyzing tumor sup-
pressor genes and proto-oncogenes with the EMBOSS
program ‘NewCpGReport’ (48), which identifies CpG-rich
regions. The number of CpG-rich regions do not differ signi-
ficantly between these two categories of genes (Wilcoxon
rank sum test, P ¼ 0.4; Figure 4B). Thus, the density of
potential methylation sites does not distinguish tumor
suppressor genes from proto-oncogenes, or account for the
differences in G4P we have documented.

Both exon and intron sequences contribute to G4P

In human genes, the ratio of exon length to intron length is
typically well below unity (52), so the measurement of G4P
for an entire gene will largely reflect the contribution of
intronic sequences. To distinguish contributions of exons
and introns to G4P, we analyzed the G4P of one representa-
tive cDNA for each tumor suppressor gene and proto-
oncogene (Figure 5 and Supplementary Table 3). The median
G4P of cDNA sequences is 1.9% for tumor suppressor
genes, and 7.6% for proto-oncogenes (Figure 5), in each
case slightly lower than G4P for the entire gene (2.4 and
11%, respectively; Figure 3B). The difference between G4P
for cDNAs in the two functional categories is highly signifi-
cant (Wilcoxon rank sum test, P ¼ 6 · 10�6). Thus, both
exon and intron sequences contribute to the significant differ-
ences in G4P characteristic of tumor suppressor and proto-
oncogenes.

The G4P of genes contrasts with their genomic
environment

The human genome consists of large segments of fairly
homogeneous GC-content, defined as isochores (53). With
the availability of the human genome sequence, this defini-
tion has been honed further, and 100 kb segments of DNA
sequence can be sorted into five isochore families with
an average SD of �1% GC (54). Since G4P is positively cor-
related with GC-content (Figure 4A), we asked if G4P for
each gene reflects its local genomic environment. To do
this, we computed the difference in G4P for each of the Ref-
Seq genes and its flanking sequences, DG4P ¼ G4P �
G4PFLANK, calculating G4PFLANK as the average G4P for
20 kb upstream and downstream of each gene (Supplement-
ary Table 1 and Figure 6). The average DG4P for all RefSeq
genes is 1.6%; thus on average, genes have greater G4P than
their flanking sequences. Comparison of DG4P of the RefSeq
genes, the proto-oncogenes and the tumor suppressor genes
by a single-factor ANOVA showed that the three groups
are distinct (ANOVA, P ¼ 10�5; Figure 6). The average
DG4P for the set of tumor suppressor genes is �2.2%,
much lower than that of the RefSeq genes (ANOVA, P ¼
5 · 10�5). In contrast, the average DG4P for the set of
proto-oncogenes is 3.4%, higher than that of the RefSeq
genes (ANOVA, P ¼ 0.01), and considerably higher than
that of the tumor suppressor genes (ANOVA, P ¼ 5 ·
10�7). Thus, on average, tumor suppressor genes have
lower G4P than their flanking sequences, and proto-
oncogenes have higher G4P than their flanking sequences.
Potential for G4 DNA formation therefore correlates with

Table 2. Tumor suppressor genes with low G4P and proto-oncogenes with high G4P

Tumor suppressor genes Proto-oncogenes
HGNC
symbol

G4P, 100 nt
window (%)

G4P, 40 nt
window (%)

Representative GO terms HGNC
symbol

G4P, 100 nt
window (%)

G4P, 40 nt
window (%)

Representative GO terms

FBXW7 0.5 0.00 Protein ubiquitination FGF4 46.6 6.8 Cell–cell signaling,
growth factor activity

MAD2L1 0.8 0.00 Cell cycle, cell division AKT1 45.9 5.3 Anti-apoptosis, signal
transduction

SMARCA3 0.8 0.00 Ubiquitin–protein ligase
activity, DNA binding

HRAS 37.6 4.3 Organogenesis, GTPase
activity

APC 1.1 0.00 Cell adhesion, negative
regulation of cell cycle

IGF2 31.6 4.1 Development, growth
factor activity, hormone
activity

BLM 1.4 0.00 DNA binding, DNA repair BCL3 25.4 4.1 Transcription, regulation
of cell cycle

THBS1 1.5 0.00 Cell adhesion, cell motility NOTCH1 39.2 3.9 Transcription factor
activity, epidermis
development

VHL 2.7 0.00 Protein ubiquitination,
negative regulation of cell
cycle

NFKB2 27.6 3.5 Transcription factor
activity, signal
transduction

CDKN2B 6.6 0.00 Negative regulation of cell
cycle

FURIN 27.8 3.4 Cell–cell signaling

MLL3 0.9 0.02 Ubiquitin–protein ligase
activity, DNA binding

JUNB 25.6 3.4 Transcription factor
activity

BRCA2 1.5 0.05 Nucleic acid binding, DNA
repair, regulation of cell
cycle

GLI1 20.3 2.8 Development,
transcription, signal
transduction

The table lists the top 10 genes in each group, sorted by G4P (40 nt search window). The HGNC symbol and values for G4P (both 40 and 100 nt search windows) are
shown, along with representative GO terms for each of the genes. The complete list of 55 tumor suppressor genes and 95 proto-oncogenes is available as
Supplementary Table 3.

3892 Nucleic Acids Research, 2006, Vol. 34, No. 14



gene function, rather than local genomic environment, for
both tumor suppressor genes and proto-oncogenes.

The prototypical tumor suppressor and proto-oncogenes,
TP53 and MYC [reviewed in (55)], illustrate the relationship
between G4P of genes and their flanking sequences. For
TP53, G4P is 7.6%, slightly higher than the RefSeq median
of 5%; and G4PFLANK is 12.1% (10.0% upstream and
14.1% downstream). Thus, DG4P of TP53 is �4.4%, low
even among tumor suppressor genes. In contrast, for MYC,
G4P is 18.6%, well above the RefSeq median; and G4PFLANK

is 2.8% (3.3% upstream and 2.2% downstream). Thus, DG4P
of MYC is 15.9%, considerably above the average RefSeq
DG4P of 1.6%.

DISCUSSION

We have investigated the relationship between potential to
form G4 DNA and gene function for the 16 654 human
RefSeq genes. We find that there is a highly skewed distri-
bution of G4P among human genes, and that there are robust
correlations between G4P and gene function. Interrogation of
the subset of 218 GO terms assigned to 50 or more genes
showed that low G4P corresponds with functions including

G-protein-coupled receptors, olfaction, nucleosome assem-
bly, nucleic acid binding, ubiquitin cycle, cell adhesion and
cell division; and high G4P with functions including tran-
scription factor activity, development, cell signaling, growth
factors and cytokines. These findings motivated interrogation
of two contrasting gene categories defined by the OMIM
database, tumor suppressor genes and proto-oncogenes,
which showed that genes in these categories are distinguished
by low and high G4P, respectively (Figure 3).

In contrast to the robust relationship between G4P and
gene function, G4P did not correspond to any of several
well-established parameters used to characterize genomic
structure. G4P does correlate with GC-content, but not
with the number of CpG islands (Figure 4). Both exons and
introns contribute to the difference in G4P between tumor
suppressor genes and proto-oncogenes (Figure 5). Further-
more, G4P does not reflect the local genomic environment
(Figure 6). In fact, tumor suppressor genes have much
lower G4P than would be predicted by their genomic environ-
ment as compared to the RefSeq genes, whereas proto-
oncogenes have higher G4P than would be predicted. The
most straightforward interpretation of these results is that
genes with specific functions have undergone selection
based on G4P.

A

B

Figure 4. G4P correlates with GC-content but not CpG islands. (A) Correlation of G4P with GC-content. Linear regression analysis of G4P relative to total
GC-content (left); the portion of GC-content contributed from G-runs or C-runs (center); the remaining GC-content contributed from Gs and Cs outside of G-runs
or C-runs (right). The data were subjected to a natural log transformation before linear regression analysis; therefore, a small number of genes with G4P equal to
zero were not included. The slopes determined by linear regression analysis are represented by solid lines. G4P correlates most closely with Gs and Cs within
runs (middle). (B) Distribution of tumor suppressor genes and proto-oncogenes relative to number of CpG islands. Closed bars, tumor suppressor genes; open
bars, proto-oncogenes. P-value was determined by the Wilcoxon rank sum test comparing tumor suppressor genes to proto-oncogenes, and shows that there is not
a significant relationship between gene function and number of CpG islands.
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One source of selective pressure that could contribute to
determining G4P is suggested by the association between
G-rich regions and genomic instability. Transcription-
induced or replication-induced DNA structures can form
within regions of high G4P, and if these structures are not
faithfully resolved, the result may be genomic instability
and impaired gene function. In this view, the low G4P of
tumor suppressor genes could reflect evolution that mini-
mized potential instability of genes which function to main-
tain genomic stability. There is considerable evidence for
haploinsufficiency of tumor suppressor genes [reviewed in
(56)], and this would contribute to pressure to minimize
genomic instability. Conversely, the high G4P that charac-
terizes the proto-oncogenes would be predicted to contribute
to their destabilization. Could instability provide a selective
advantage? Under some circumstances, it may. Proto-
oncogenes are transcribed in rapidly dividing cells and tis-
sues. Transcription-induced structures have considerable
potential to contribute to genomic instability (25,26), but
they can form only within genes, which represent a relatively
small fraction of genomic DNA. The high G4P of the proto-
oncogenes would make them targets for transcription-induced

destabilization. Proto-oncogenes encode key factors that
promote cell proliferation and development, and impaired
expression of a proto-oncogene could in turn diminish or
prevent cell proliferation, either by decreasing expression of
an essential factor, or signaling cell death via apoptosis.
Proto-oncogenes may therefore carry out a passive survei-
llance function, monitoring instability that specifically affec-
ted the transcribed fraction of the genome. This surveillance
function would necessarily be vested in genes, rather than in
the vast landscape of nontranscribed sequences, consistent
with the clear differences between G4P of genes and their
flanking sequences.

Another mechanism that may contribute to selection based
on G4P is shared regulation. Sequences within promoter
regions of several proto-oncogenes have been shown to
form G4 DNA in vitro (29–32), and factors that bind G4
DNA have been implicated in both transcriptional and trans-
lational regulation (28,57). However, regulatory factors typic-
ally exert their effects within limited genomic regions, so
commonality of short cis-regulatory elements is unlikely to
provide a complete explanation for a feature of sequence
composition that distinguishes both exons and introns, and
extends throughout a gene (Figure 5). Similarly, G4P is
unlikely to reflect selection for coding capacity, as this sort
of selection would affect exons alone. Nonetheless, there
does appear to be some selection against regions of high
G4P within exons, as in both gene categories, the median
G4P of exons was lower than for introns: 1.9% versus 2.4%
for tumor suppressor genes; and 7.6% versus 11% for proto-
oncogenes (Figures 3B and 5). Thus high G4P may be dis-
favored in mature RNAs, as has been proposed previously
(4); or incompatible with efficient translation or effective
coding.

Several lines of evidence suggest that GC-content may
broadly correlate with gene expression levels (58–60); in
particular, GC-richness correlates with open chromatin struc-
ture, which may in turn facilitate transcription (61). Proto-
oncogenes are rapidly transcribed during early development
and in response to cell activation, and the high G4P of the
proto-oncogenes might reflect GC-richness that contributes
to high transcription levels of genes in this group. The finding
that potential for G4 DNA formation correlates robustly with
specific gene functions suggests that G4P may be a useful

Figure 5. Differences in G4P of tumor suppressor and proto-oncogene cDNAs. Distribution of tumor suppressor gene and proto-oncogene cDNA sequences
across G4P. Bars represent tumor suppressor genes (closed bars) and proto-oncogenes (open bars). P-value was determined from the Wilcoxon rank sum test
comparing tumor suppressor genes to proto-oncogenes.

Figure 6. G4P of genes differs from G4P of genomic environment. Average
G4P for genes; 20 kb flanking sequences (G4PFLANK); and DG4P, the
difference between G4P for each gene and its flank. Gray bars, RefSeq genes;
closed bars, tumor suppressor genes; and open bars, proto-oncogenes.
Standard errors were determined by ANOVA for each analysis of the three
groups of genes.
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parameter to include in global analyses of gene expression,
regulation and interactions. Systems-based analyses of this
sort should establish whether regulation could contribute to
selection based on G4P.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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