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Abstract: Molecular modeling frequently constructs classi-
fication models for the prediction of two-class entities, such
as compound bio(in)activity, chemical property (non)exis-
tence, protein (non)interaction, and so forth. The models
are evaluated using well known metrics such as accuracy or
true positive rates. However, these frequently used metrics
applied to retrospective and/or artificially generated pre-
diction datasets can potentially overestimate true perform-
ance in actual prospective experiments. Here, we systemati-

cally consider metric value surface generation as a
consequence of data balance, and propose the computa-
tion of an inverse cumulative distribution function taken
over a metric surface. The proposed distribution analysis
can aid in the selection of metrics when formulating study
design. In addition to theoretical analyses, a practical
example in chemogenomic virtual screening highlights the
care required in metric selection and interpretation.

Keywords: Classifiers · metrics · prediction · modeling · performance assessment

1 Introduction

Computational models for molecular phenomena have
become a mainstream tool in the academic and industrial
research communities.[1,2] Aside from purely experimental
medicinal chemists who often prioritize their experience
and intuition, many teams consider the results of computa-
tional predictions when proceeding to experimental valida-
tion.[3] Perhaps the most common computational model is
the discrete classification model, and within discrete
classification, the two-class discriminant is frequent. In these
models, the objective is to fit a mathematical function to
discriminate between examples with “yes”/”positive”/”ac-
tive”/”true” labels and examples with “no”/”negative”/”in-
active”/”false” labels. In molecular informatics, examples of
the two-class discriminant include predicting if compounds
have a specific property or not (e.g, chemical stability under
a given set of conditions), if proteins interact with each
other or not, or if ligands and receptors have a strong
interaction or not as measured by IC50 , EC50 , Ki , Kd , etc.

In many cases, models are computed from some
descriptor or fingerprint representation of the molecules,
and the model’s ability to discriminate between the two
classes is evaluated by considering the results of prediction
on an additional dataset. For two-class problems, this yields
four types of results, as the predicted examples were pre-
labeled with their known class and additionally have a label
resulting from prediction. The four result types are true
positives (TP), false positives (FP) known as false discoveries
or type-I errors, true negatives (TN), and false negatives (FN)
known as missed discoveries or type-II errors (see Figure 1).
The collection of all four result types is often referred to as
the confusion matrix.

While the raw counts of these four primary outcomes
are informative, researchers often summarize a confusion
matrix by a single, real-valued metric, to decide on the
quality of a model, to facilitate ranking of methods or
datasets, and so forth. Two common, and potentially most
intuitive, metrics are the true positive rate (TPR) and
accuracy (ACC) metrics:

TPR ¼ TP
TPþ FN

ACC ¼ TPþ TN
TPþ FPþ TNþ FN

:

The former gauges how well positive instances were in
fact classified by the model, and the latter gauges how well
both positive and negatives instances are jointly classified.
Hit finding teams may refer to the TPR when they wish to
forecast the virtual screen of a large chemical library, and
hit-to-lead and lead optimization teams might refer to ACC
when considering the selectivity of a molecule, that is, the
molecule’s character to only interact with the targets
intended by the molecule development team.

Studies that have executed prospective experimental
validation of computationally predicted molecular proper-
ties often report low to medium success rates despite
moderate to high model metric performance.[4–6] While it is
true that our understanding of the exact molecular under-
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Figure 1. Confusion matrix.
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pinnings of processes is a continually evolving process and
therefore we cannot build a perfect discriminant (model) of
a phenomenon, a more fundamental problem exists in the
metrics we often use to evaluate our results. In fact, metrics
such as TPR and ACC often overestimate the “true” model
performance. Action based on the misleading metrics incurs
a risk to a project which can lead to misfortune, typically as
a result of overconfidence in the discriminator computed.

In the remainder of this article, we illustrate the concerns
around metrics such as TPR and ACC by shifting analysis
away from single-point numeric estimates to metric value
surfaces (heatmaps) and considering some statistical prop-
erties of the metrics. While some previous attempts to
objectify metrics exist,[7–16] this article is, to the best of our
knowledge, the first to generically assess metric surfaces
and their interplay with data balance. Further, we also
propose a method to quantitatively cross-compare metrics,
and examine a practical case study in chemogenomic virtual
screening.

2 Visual Cues Signaling Caution in Metric
Interpretation

From the confusion matrix, many metrics are possible. In
addition to the TPR and ACC introduced earlier, here we
consider the Balanced Accuracy (BA), Positive Predictive
Value (PPV), F-measure and its derivative F1-score (F1), True
Negative Rate (TNR), and the Matthews Correlation Coef-
ficient (MCC). These are defined mathematically as follows:

PPV ¼ TP
TPþ FP

TNR ¼ TN
TNþ FP

BA ¼ TPRþ TNR
2

F1 ¼ 2* PPV*TPRð Þ
PPV þ TPR

MCC ¼ TP*TN� FP*FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p :

One fact we can immediately note from these defini-
tions is how many types of results from the confusion
matrix are included in each metric. TPR, TNR, and PPV
include two types of results, and BA and F1 include three
types of results. MCC and ACC include all four result types
in their formulations, though only MCC includes both type-I
error and type-II error in its numerator, and in a multi-

plicative manner. The range of values for the metrics are
[�1,1] for the MCC, and [0,1] for all others.

Let us consider a simple example of two prediction
experiments, and the resulting metric values for MCC and
ACC. In the first experiment, we have TP = 1000, TN = 2100,
FP = 150, FN = 650. We might consider this to be a rather
successful prediction. The resulting ACC is 0.80 and
resulting MCC is 0.58. Immediately, we notice that the MCC
penalizes the type-I and type-II errors more than the ACC
metric.

In the second experiment, let us assume that there were
fewer positives in the dataset, and that TP = 500, with TN,
FP, and FN the same as above. We might also consider this
to be successful based on the low false discovery rate (FPR),
and when we evaluate the experiment by ACC the value is
0.76.

This is where we have deceived ourselves. Despite the
high value of ACC, a re-examination of the data would
reveal that we made more type-II errors than we correctly
detected the positives. While the metric difference in the
experiments for ACC was only 0.04, the latter experiment’s
MCC is 0.44, a metric difference of 0.14. We come to
understand that the MCC is a more challenging metric to
score high on, and that over-expectations can be easily
borne when using the ACC without considering the back-
ground data.

The additional issue we must be aware of is the ratio of
data between the two classes. In many machine learning
scenarios, equal numbers of positive and negative instances
are used for model calculation and evaluation. However, in
molecular informatics, this is a skewing of reality. For
example, in experimentally-based drug discovery and
chemical biology, hit molecules are typically found at rates
of 1 %.[17,18] Even in less extreme examples where 10 %–25 %
of the data belongs to the ‘positive’ (hit) class, metrics such
as ACC can yield high values even if the model predicts
everything as a negative (see below).

We can enhance our understanding of each metric’s
implications by considering the entire space of values it can
take as a consequence of all possible type-I and type-II error
rates, or alternatively and perhaps more intuitively, as a
consequence of all possible TPRs and TNRs. As noted above,
these rates are impacted by the ratio of data classes, and so
should also be a factor in our interpretations.

We begin by visualizing the MCC and considering the
impact of data ratio (Figure 2, left). We immediately note
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that having either high TPR or TNR is not a sufficient
condition for high MCC. Extreme optimization on either
positives or negatives can yield MCC values close to 0.
Rather, both error rates must be low in order to achieve a
high MCC. The situation in practical, imbalanced data is
even more extreme (Figure 2, right); the region of the MCC
surface which is at or above 0.6 is considerably reduced
compared to the surface for balanced data.

When we consider the same pair of data ratio conditions
but evaluate using ACC as shown in Figure 3, it becomes
clear to us why ACC can trigger high expectations. Though
extreme optimization on one class yields MCC values of 0, it
yields ACC values of 0.5 in balanced datasets. Even worse, in
hit and lead discovery applications with discovery rates of
10 % or less, a model can achieve a suggestively strong ACC

of 0.8 or higher without even predicting a positive/active
entity.

As an additional way of analyzing the metrics, we might
consider the distribution of values within the metric spaces
shown in Figure 2 and Figure 3. This would yield a
probability distribution function (assuming a small tolerance
or bandwidth parameter), and we could compute the
corresponding cumulative distribution function. Instead, let
us consider the “inverse cumulative distribution function
(iCDF)”, defined as the fraction of values in the metric space
that are greater than or equal to a given metric value
threshold. Our motivation for this is that we might ask,
what is the probability of getting at least the value X for a
particular metric? We can sample the performance matrix
for the fraction of values that are at least a given value, and

Figure 2. Metric landscape for MCC, balanced dataset versus imbalanced dataset.

Figure 3. Metric landscape for ACC, balanced dataset versus imbalanced dataset.
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taken over the value domain of the metric, this yields a
continuous plot and subsequent visual interpretation of the
odds of obtaining a particular value or better of a metric.
The resulting mirror image of a classic cumulative distribu-
tion function suggests the prefix “inverse”. Just as with the
metric space visualization, the iCDF inherently depends on
the class ratio.

The iCDF analogs of Figures 2 and 3 are shown in
Figure 4. It confirms that the probabilities of obtaining
metric values of 0.6 or 0.8 are many fold higher for ACC
than for MCC, regardless of data ratio. The iCDF curves
reinforce why misfortune may occur when basing decisions
on model ACC values; the probability of achieving an ACC
of 0.8 actually increases with a trend toward an imbalanced
dataset. In contrast, one can feel more confident in a model
that achieves MCC of 0.8, for the probability of such is
rather low as an effect of its formulation.

Herein we have assumed that the prior probability of
obtaining any particular value in the metric surface space is
uniform. Yet in practical applications, this assumption will

not hold, and priors will be influenced by datasets. There-
fore, we can argue that the iCDFs given in Figure 4, notably
for MCC, are optimistic estimates, and in reality, the gap
between MCC and AUC iCDFs may in fact be even larger in
practice.

The surfaces of the ACC, TNR, BA, F1, PPV, and MCC
metrics are placed together in Figure 5 for a balanced ratio
of data. For balanced data, we see that the F1 score also
penalizes a high type-II error rate and yields a metric value
close to 0. This is a consequence of using the PPV and TPR
in tandem. However, it is possible to over-optimize on
positives and score high with F1, so some caution is
recommended. For balanced datasets, ACC and BA are
synonymous.

Turning to imbalanced datasets dominated by nega-
tives/inactives (Figure 6), we see the rough correlation
between the ACC and TNR surfaces, which reiterates the
caution involved in using ACC. A predictor yielding an ACC
of 0.9 on a strongly imbalanced dataset might potentially
be a predictor of negatives and otherwise little more than

Figure 4. Metric iCDFs. Matthews Correlation Coefficient (left) versus Accuracy (right). Balanced datasets (above) versus imbalanced datasets
(below).
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chance. The BA metric is unchanged with respect to the
data ratios. The clearest effect as a function of data ratio is
on the F1 and PPV metrics. Much like MCC, the probabilities
of obtaining higher F1 and PPV scores are strongly
diminished when data is imbalanced, so models with high
values under these conditions could be construed to be
legitimately predictive in prospective applications.

Here as well, it is helpful to consider the iCDFs of the
metrics. In Figure 7, an overlay of the iCDFs of the six
metrics is shown, with separate views for balanced and
imbalanced data. For balanced data, it is clearly more
challenging to achieve a MCC value of 0.6 compared to
other metrics. When data is imbalanced, ACC, BA, and TNR
have higher odds of achieving 0.6 or 0.8 than F1, MCC, or

Figure 5. Multi-metric surface comparison, Balanced data.

Figure 6. Multi-metric surface comparison, Imbalanced data.
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PPV, and thus the former three statistics must be used with
caution, particularly if the statistics will be a part of selecting
models that will guide prospective applications.

Figures 5 and 6 demonstrate the clear shift in metric
surfaces as a result of data imbalance, and Figure 7
objectifies the metric surfaces by iCDF analysis. An
expanded analysis is still further possible by continuously
varying the positive-negative data ratio and connecting the
per-ratio snapshots. In the supplementary data, the inter-
ested reader can find animations of the shift in metric
surface and iCDF. What do we learn from such animations?
They provide us a better understanding of the dependence
of a metric on the data ratio, and we gain skill in
interpreting the significance of a given two-class modeling
experiment. Also, these animations expand our perspective
for preparing prospective study design, by selecting metrics
appropriate to the study context (vide supra).

We additionally provide pseudocode for the reader to
develop visualizations of new metric approaches based on a
confusion matrix. Code using the python programming
language style, the NumPy matrix library,[19] and the
Matplotlib visualization library[20] is given. First, the under-
lying surface matrices must be computed as follows.

Listing 1 – Code for Surface Matrix

“metric” is a calculable function using the arguments TP, TN,
FP, and FN.
“nPos” and “nNeg” refer to the numbers of positives and
negatives representing the data.

In the scheme in Listing 1, it is recommended to enforce
that the “gridSize” parameter will be a value that evenly
divides 100. The parameter will control the granularity of
visualization and amount of memory required to compute
the metric matrices.

Second, the matrix generated is to be visualized. Using
the matplotlib library, this is relatively trivial. We add code
to handle the case where a metric cannot be computed in
extreme cases such as all examples predicted into the same
class. This was handled in Listing 1 by the try-except clause
for errors caused by division by zero.

Listing 2 – Code for Metric Matrix Visualization

“fig” is a matplotlib Figure object, and “axes” is a matplotlib
Axes object whose parent is “fig”. The “mat” is generated by
Listing 1. A matplotlib Colormap object “cmap” is provided
to standardize the same color scheme across the metrics.
Additional arguments stored in the “args” key-value map-
ping control the final visualization rendered.

Figure 7. iCDFs of metrics, for balanced (left) and imbalanced (right) datasets.
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3 Metrics and the Receiver Operating
Characteristic Curve

Another highly common method for assessing the perform-
ance of a modeling method is the generation of a receiver
operating characteristic (ROC) curve, and the area under
such a generated curve. ROC curves are most commonly
built by using cross-validation techniques that perform
multiple rounds of dataset splitting, such that each round
of prediction values can be included in a more comprehen-
sive list of thresholds which will yield a per-threshold pair of
values for TPR and Type-I error rate (the TPR and Type-I
error will be computed using the entire collection of
predictions spanning all rounds of dataset splitting). Thresh-
old values could be, to name only a few, distances from
hyperplanes when using the SVM algorithm[21] or the
percentage of tree votes when using a random forest
algorithm.[22] A plot of all TPR and Type-I error rates using all
thresholds then results in a curve indicating the tradeoff
between optimizing on the two metrics. If a threshold can
be found such that it can discriminate all or most of the
positives from the negatives, then it will result in an area
under the ROC curve close to 1. For further explanation, see
the literature on ROC and extensions to ROC.[15]

To analyze the AUC in the same metric surface frame-
work, one modification is needed. In the case of ACC, MCC,
and similar metrics, fixed counts of positives and negatives
(and hence their ratio) completely determine the resulting
surface (because we can iterate the grid of TPR and TNR
independent of an actual model). However, in the case of
AUC, a range of thresholds obtained from cross-validated
modeling and prediction is required for metric calculation.
Therefore, instead of generating a grid of TPR/TNR, we must
generate a grid of positive and negative dataset sizes, and
execute cross-validation with accompanying AUC calcula-
tion at each point. Repeated executions and computation
of average AUC minimize outlier values that may occur.

We execute two AUC calculation and surface analysis
experiments. In the first, we use artificial stochastic classifier
functions (random selectors based on underlying distribu-
tions) as surrogates of models computed from real data. In
the second, we apply the SVM algorithm to large-scale
public GPCR GLASS[23] and Kinase SARfari[24] ligand-target
bioactivity datasets, where the active/inactive thresholds
are set to 100nM/1-10uM, and intermediate strength
interactions are discarded (for further data processing
details, see Reker et al.[25]); the human-based, filtered data-

sets contains 49815 actives (71 %) versus 20145 inactives for
GLASS, and 19231 actives (48 %) versus 20475 inactives for
SARfari, with compounds and proteins respectively repre-
sented by their MACCS key and dipeptide frequency
representations. Experiments for the artificial classifiers use
200 iterations for AUC averaging, and experiments for
GPCR/kinase bioactivity classifications compute average
AUC over 20 iterations of 3-fold cross-validation. In addition
to AUC calculation, a subset of data is held out for external
prediction when using the real datasets. A diagram of
execution flow is provided as supplementary data.

For the artificial classifiers, we find that average AUCs
are not influenced by the sizes of positives and negatives
(see supplementary data). Rather, the surfaces are domi-
nated by the parameters of the stochastic selection process
(e. g., mean and standard deviation of a random Gaussian
variable).

In contrast, however, we find that AUC values in the real
dataset are influenced by positive/negative size, and they
are simultaneously influenced by model parameters (e. g.,
tolerance factor “C” and radius parameter g for SVMs using
radial basis function kernels). Importantly, we find that the
AUC grows in proportion to the size of data available for
cross-validation, and that it is possible to obtain similar AUC
values for datasets with opposite positive/negative ratios. In
extreme cases with many data in one class, we return to an
argument similar to ACC on a dominantly negative dataset
(Figures 3 and 6); it may be relatively trivial to build even a
linear classifier that separate the dominant class from the
infrequent class. Such results again suggest that careful
interpretation of modeling performance is required, and
that comparison of AUC values on datasets of differing
source or size requires caution.

In addition to cross-validated AUC, it is possible to
consider cross-validated MCC or F1 score. In the cases of
the latter metrics, they require the pre-specification of a
threshold value which is compared against the raw output
of the classifier, at which raw prediction results are
discretized, and the metric is calculated from the resulting
confusion matrix. We performed this additional analyses by
setting the thresholds for MCC and F1 to the obvious value
of 0, which means to simply use the sign of the raw output
corresponding to which side of the SVM hyperplane an
example was classified on.

For both the GLASS and SARfari datasets, we computed
a single model using a fixed ratio of subsampled data at a
given grid point, and evaluated external prediction on the
remaining portion. Experiments were done using ratios of
0.33, 0.5, and 0.7, respectively reflecting scenarios where a
majority of data was used for CV, where data was evenly
split for CV and external prediction, and where data was
reduced such that predictive performance on a much larger
external set could be evaluated. As an example, at an
external data ratio of 50 %, where the imbalanced grid point
contained 234 active and 1234 inactive ligand-target pairs
subsampled from the larger database, 117 actives and 617
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inactives formed the external prediction set, and the
remaining data (of equal size) was used for 3-fold cross-
validation. Hence each round of 3-fold CV could build
models using 117*(2/3) = 78 actives and 411 inactives, and
predict on the remaining 206 as well as obtain their raw
values to use as thresholds in ROC curve generation. Models
used to evaluate the external set would be built on the full
117 actives and 617 inactives. Where the external ratio was
0.7, for example, the model building was on 70 actives and
370 actives, with external prediction on 164 actives and 864
inactives.

In the upper half of Figure 8, the cross-validated AUC
and cross-validated MCC/F1 are evaluated over the grid of
data sizes for the SVM with an RBF kernel, where the
external split ratio was 0.5. The trend of AUC to grow with
imbalance is clear, as well as a further increase in average
AUC as the numbers of positives and negatives exponen-
tially grow. The MCC also grows as the data available for
cross-validation grows, but unlike AUC, MCC performance
at extremes is 0, and it is not until a moderate number of
samples from both classes are available that the MCC climbs

to a positive number. Interestingly, we see a dichotomy in
F1-CV metric surface behavior, where F1 is potentially over-
estimated for models with disproportionate numbers of
actives, and like MCC, at or close to 0 for dominantly
inactive datasets. Like MCC and AUC, F1 performance is
appropriately high when both larger numbers of actives
and inactives are included.

Next, we considered how well each metric performed in
cross-validation settings versus external prediction settings.
The results, shown in the bottom-left panel of Figure 8,
suggest that cross-validated training performance accu-
rately estimates external prediction performance, though
admittedly, experience suggests that external performances
are often lower than training performances, which was
observed for other parameter sets tested. It may be the
case that repeated trials nullified the effect of any one poor
external prediction, and that the random sampling selected
ligand-target pairs from similar distributions.

In practical situations of prospective prediction, a single
threshold must be applied to generate the list of prospec-
tive validations to execute, and so while AUC is computable

Figure 8. Cross-validation, external prediction, metrics, and their cross-correlations.
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in a retrospective setting, it is not transferrable to prospec-
tive settings. To address this, we checked the correlation
between cross-validated AUC and MCC at the baseline
threshold of 0. No correlation was observed, as shown in
the bottom-middle panel of Figure 8. This was concordant
with another recent study examining correlation on
artificially generated data.[16]

We further considered, however, that it is possible to
select a single point on the ROC curve which contains a
permissible false discovery rate, and use that threshold as
the criteria for MCC or F1 evaluation. In other words, if we
determine by cross-validation the threshold that maximized
the true positive rate up to the extent we tolerate error,
then that could serve as the threshold in our prospective
application. Solving the threshold value for a tolerable false
discovery rate of 10 %, we then applied the F1 and MCC
metrics with such threshold, and again examined the
relationship between cross-validated AUC and external
prediction. As shown in Figure 8 (bottom-middle), this
correlation was also weak, though the thresholded MCC
slightly better correlated to AUC than default-thresholded
MCC. Hence, generating expectations of success based on
multi-threshold AUC may fail to correlate with single-
threshold ACC/MCC/etc in post-experiment, prospective
performance analyses.

Finally, at a larger scale, we asked what the correlation
of cross-validated AUC would be with external AUC, of CV–
MCC with external MCC, of CV-AUC with external MCC, and
of CV-AUC with thresholded MCC, by iterating tests over a
small parameter grid and across both datasets (4 SVM
parameter sets * 3 external ratios * 2 datasets), and asking
what the correlation of these pairs are at each grid point.
That is, correlation metrics were used to assess the fit
between a pair of metrics using all points of the positive/
negative subsampling grid and resulting metrics. Correla-
tions were computed not only by Pearson correlation but
also by alternatively forcing the regression line to pass
through the origin, as proposed previously by Golbraikh
and Tropsha.[26]

As can be expected, the distribution of Pearson
correlations were higher than the origin-fitting correlations,
as shown in the bottom-right panel of Figure 8. Importantly,
we see that when basing decisions on the correlations
obtained in the more stringent correlation fit, the AUC-AUC
and MCC–MCC metric pairs emerge with the strongest
correlation. Yet, as argued above, using the entire range of
raw prediction values for the external set to generate an
AUC is only applicable in retrospective scenarios. Therefore
by elimination, it would appear that cross-validated MCC is
the most reliable method to estimate prospective perform-
ance on a similar-sized external prediction.

4 Conclusion and Future Outlook

Using the tandem of metric surfaces and iCDFs, we can
improve our understanding of the consequences of select-
ing a particular metric in order to evaluate predictive
performance of two-class discriminants. We find that TPR,
TNR, or ACC alone run the risk of deception; the physicist
Richard Feynman once remarked that “… you must not fool
yourself, and you are the easiest person to fool.”

Metrics such as MCC or F1 score provide more realistic
estimates of real-world model performance, and in imbal-
anced datasets skewed toward negative data, PPV might be
indicative of expected discovery rates. The practical chemo-
genomic virtual screening experiments showed a lack of
correlation between MCC and F1, and between AUC and
MCC. Taken together, the best advice we can suggest is to
take a multi-metric view of molecular modeling, and place
the model task context at the center of metric interpreta-
tion.

Though the MCC might appear to be the “best” metric
available by including all four types of results from the
confusion matrix, several prediction problems do not lend
themselves to use of the metric. For example, evaluating
prediction of DNA sequence variants from next-generation
sequencing frequently leads to focus on TP, FP, and FN
results; though it is technically possible to count the total
number of nucleotides that were correctly not called
variants, this number would be cosmological compared to
the other three raw counts in the confusion matrix, and it
therefore stands to reason to use TPR, PPV, or their
combination in the form of the F1 score or more general F-
measure.

What can the scientific community do in order to close
the gap between computed prediction expectation and
experimental validation success rates? The thorough consid-
eration of metrics prior to the execution of a study is
certainly a crucial element. If a new classification evaluation
metric is suggested, then its surface should be visualized
and its iCDF should be compared to others such as the
ones given in this report. A high probability of obtaining a
particular metric value as assessed by iCDF should be cross-
referenced with its surface visualization to determine if
there is a risk or element of deception resulting from many
possible ways to arrive at the metric value in question (i. e.,
there are many ways to achieve ACC of at least 0.6 in
inbalanced data). Computational experiments may consider
the philosophy discussed herein to perform repeated
executions of a model-predict experiment such that less
than half of the data per class is subsampled for model
selection with the majority remainder used for prediction.
Recent modeling methods have shown that often only a
fraction of a dataset is sufficient to build a predictive
model.[25,27,28] As in the prior studies, if distribution of
prediction performances can be shown to be normally
distributed by the Kolmogorov-Smirnov test, we can
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consider using such a fact to forecast the chances of success
in a true prospective experiment.

Finally, we remark that the discussion here is contained
to two-class prediction, while some molecular informatics
modeling tasks may need to classify an instance amongst
three or more classes (i. e., protein sequence secondary
structure prediction, or prediction of ligands as strong/
weak/intermediate). In these cases, the visualization might
be expanded to a 3D voxel representation, but for four or
more classes, views of subspaces of the metric space are
required. A well-known metric for the multi-class discrim-
inant is Cohen’s Kappa Coefficient.[29] The iCDF concept
introduced herein could be applied by shifting from a
matrix (2-tensor) to a generalized tensor yielded by the
computation of all per-class prediction rates. The iCDF
would be continue to be influenced by the data ratio,
where in the generalized case a partitioning of data class
ratios must be provided.

Supplementary Data

Animations of the relationship between data ratio and
metric surface, and between data ratio and iCDF are
available online. A fully executable standalone tool for
surface generation is also provided. Stochastic selection and
practical chemogenomic model AUC results can also be
retrieved. Results analogous to Figure 8 for the Kinase
SARfari dataset are provided, and observations of correla-
tions between CV-AUC and MCC/MCC(t)/F1 for many
parameter sets are made available.
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