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This study presents machine learning (ML)-based controllers for a surface permanent magnet 
synchronous motor (PMSM) drive system. The ML-based regression techniques like linear regression 
(LR), support vector machine regression (SVM), feedforward neural network (NN) and advanced NN 
like Long Short-Term Memory network (LSTM) are explored here in detail. This paper aims to develop 
an improved vector controller based on machine learning, and to investigate ML algorithms which are 
not yet been explored for the current control of a PMSM drive. The proposed machine learning-based 
control approach, which explores the influence of decoupling terms on vector control, is theoretically 
investigated and simulated in the vector control environment of the PMSM drive. The performance 
is also evaluated in real-time using the Opal-RT setup. The proposed control approach demonstrates 
the ability to fulfill the speed tracking requirements in the closed-loop drive system. A comparison of 
the simulation results between the PI controller and the suggested control algorithms validates the 
effectiveness of the proposed control algorithms for speed control applications. The performances of 
the proposed ML-based controllers improved in terms of evaluation metrics, transient peak levels and 
current responses, when compared to the conventional PI controller.

Keywords Controllers, Long short-term memory network, Machine learning (ML), Neural network, 
Permanent magnet synchronous motor (PMSM), Vector control.

Given the growing expense of fuel and environmental problems like global warming and climate change, 
renewable and sustainable energy solutions are becoming essential. Because they make it easier to use green 
energy technology, electrical machines are becoming more and more popular1–3. With their unique benefits - 
such as good torque characteristics, low maintenance costs, fast dynamic response, high energy/mass ratio, better 
permanent magnet cost, better heat dissipation to the environment, high effectiveness, and long service life - 
Permanent Magnet Synchronous machines (PMSM) are among the most promising types of AC machines1–9. 
Therefore, PMSM machines are widely used in many different applications, such as wind power generation, 
servo drives, aviation, electric and hybrid vehicles (EV/HEV), and home appliances1,2,10,11.

Scalar control and vector control are the two most popular approaches for controlling the speed of PMSM 
motors. The simplicity of the control principle makes the scalar control method ideal for systems that do not 
require high accuracy. There are two widely used vector control methods: Field Oriented Control (FOC) and 
Direct Torque Control (DTC). They enhance the effectiveness and quality of PMSM speed control and are widely 
used because of their key advantages - simplicity in the control structure, ease of operation, reliability, and high 
efficiency1,3,7,12.

In DTC drives, accuracy depends on the flux observer, and in real-world applications, observer accuracy may 
significantly decrease at low speeds. The dq-axes currents in FOC drives are calculated from measured currents 
and rotor position, allowing accurate tracking of current commands. Furthermore, the FOC control method can 
regulate the semiconductor switching power loss and switching frequency better than the typical DTC controller 
approach, making it more popular in industrial systems. The FOC control method has become increasingly 
popular in high-performance AC drives during the last two decades, owing to significant advances in power 
electronics, computers, and microelectronics1–3.

The FOC control approach uses PID (proportional-integral-derivative) or PI (proportional-integral) 
controllers. These controllers have the advantages of simplicity, ease of construction, and practical applicability. 
However, because of their sensitivity to system uncertainties, these fixed-gain controllers require an exact model 
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of the system to determine the controller gain values5,13. The automotive industry continues to use PI controllers 
in the FOC control approach, despite numerous efforts to replace or improve upon them7,14–18.

In comparison to PI/PID controllers, Artificial Intelligence (AI) controllers can be trained with sufficient 
data. These controllers are capable of performing satisfactorily well even in ill-defined models. These AI 
controllers include neural network-based controllers, fuzzy-based controllers, and genetic algorithm-based 
controllers12. Major drawbacks are memory space limitations, and the long time required for the training and 
learning procedure. These issues are taken care of using the graphical processing units (GPU)19.

A subset of artificial intelligence (AI), called machine learning (ML) is capable of extracting useful patterns 
from massive volumes of data or transforming experience into expertise. This technique uses domain knowledge 
rather than mathematical modeling to create and train an ML model20,21. The four main categories of machine 
learning techniques include supervised, semi-supervised, unsupervised, and reinforcement learning. The most 
popular approach is supervised learning, which is further classified into two categories: regression, which yields 
continuous output, and classification, which yields discrete output22–24.

The significant advantage of the regression-based approach is its capacity to perform well on minimal 
datasets20. The neural network models also have the capability to learn and adapt to complex correlation 
problems12. The speed control of electric motors can be described and modelled as a regression problem. Some 
of the most popular ML regression methods are linear regression (LR), decision trees, random forests, support 
vector machines (SVM), and neural networks (NN)25,26 and few of them are examined in this proposed work. 
Advanced neural networks or deep learning techniques such as Recurrent Neural Network (RNN), Long Short-
Term Memory network (LSTM), bi-directional LSTM, and Gated Recurrent Units (GRU) are also available for 
regression problems24,27,28, and LSTM is explored in this paper. A review of the existing literature reveals that, to 
date, only NN models have been investigated and tested to improve the current control of a PMSM drive. This 
paper attempts to study other regression techniques which are not already addressed in the existing literature, 
for the current control application in traction drives7,14,29,30.

The main objectives of this paper are:
1) To develop an ML-based current controller with simpler circuitry.
2) To explore the potential of several ML regression methods to effectively manage the speed of a PMSM 

motor drive utilized in electric vehicles (EV).
3) To present an alternative to the conventional controller used in the industry, from the emerging field of 

Artificial Intelligence.
The novelties of this paper are as follows:
1) This paper proposes to use ML algorithms of different complexity levels such as LR, SVM and LSTM, in 

addition to existing NN models. The existing literature has explored only NN models till date in speed control 
application of PMSM drives and we aim to find a better and less complex ML algorithm for the same.

2) The proposed work eliminates the internal circuitry that was necessary for the conventional model to 
rectify the decoupling inaccuracy in the motor modelling. The proposed ML-based controllers are independent 
of this requirement; and outperform or at least match the performance of the conventional model. As a result, 
compared to the conventional model, the proposed models have less circuitry and are cost-effective.

3) To correct decoupling inaccuracy, we propose inclusion of decoupling terms to the ML-based controller 
inputs; while the conventional FOC technique add them at the end of the current loop through a small inner 
loop. This step ensures that any unexpected changes in the motor outputs, and thereby the decoupling terms, will 
be reflected accurately in the ML inputs and thus the control process.

4) With the above step, this paper finds the LR-based controller to be a promising alternative to the PI current 
controller in the motor drive, based on the statistical performance measures and test results. The LR-based 
controller outperforms the PI controller by 1.86% in performance parameters and responds 40% faster in the 
current response. The conventional controller is matched in performance by the SVM and NN-based controllers. 
LSTM-based controller was explored but found to be in need of more fine-tuning to satisfy the requirements.

The organization of this paper is as follows: theoretical information about PMSM drives, the standard vector 
control mechanism, the proposed approach, and the machine learning techniques used are discussed in Section 
II and Section III. Section IV shows the performance analysis of the suggested models under various criteria. 
Section V presents the result discussions and Section VI gives the conclusion.

Conventional methodology
PMSM model
The stator voltage equations of the PMSM in the synchronously rotating coordinate system (dq-axes)11,13,29,31 
are given by
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where vsd, vsq are instantaneous stator voltages in dq-axes; idq are instantaneous stator currents; Rs, Ldq are the 
resistance and inductances of the stator winding; ωe is the motor speed; and ψf is the permanent magnet (rotor) 
flux linkage.

The electrical torque developed in the PMSM drive is represented by

 
T e = Jeq

dwm

dt
+ Bawm + TL (2)
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where Jeq, Ba are the motor inertia and the coefficient of friction, respectively; ωm is the mechanical rotational 
speed of the motor; TL, Te are the load torque and the electromagnetic torque of the motor drive, respectively.

 
Te = 3P

2
[
ψ f iq + (Ld − Lq) idiq

]
 (3)

where P represents the pole pairs. In case of a surface PMSM motor, Ld = Lq. Hence the second term becomes 
zero in (3). The relation between electrical rotor angle θe, and motor speeds ωm and ωe is given by

 we = wm ∗ P  (4)

 
θ e =

∫
we dt (5)

FOC control of PMSM drive
In this method, the current through the stator is split into flux component current and torque component 
current along the dq-axes. Figure 1 depicts the schematic of FOC used in the PMSM drive. The conventional 
FOC method employs two PI controllers in the current loop, one for d-axis current and one for q-axis current.

By rearranging (2) and (3), the transfer function model for designing the controller in speed-loop is obtained 
as

 
T F w =

ψ f .P

( Ba + s.Jeq)  (6)

The governing equations for designing the PI controllers in the current loop are provided by rearranging (1). 
The compensation terms (-weLqiq, weLdid, weΨf) are ignored in this step. During the control process, the stator 
current is decoupled into flux and torque current components using the compensation terms. They are eventually 
combined back to construct the final current-loop control configuration, by being added to the outputs of the 
d-axis and q-axis PI controllers. This prevents inaccurate results brought on by decoupling14,15,29,32,33. In the 
conventional method, the gains of the PI controllers are set with the help of the Ziegler-Nicholas approach13.

 
T F id = 1

( Rs + s.Ld )  (7)

 
T F iq = 1

( Rs + s.Lq)  (8)

Machine learning algorithms
In this work, the following machine learning algorithms have been used for the regression problem of speed 
control of a PMSM drive. Even though there are many algorithms available, only the ones listed below generated 
good-fit models for the problem under discussion.

Linear regression (LR)
The linear regression method is a widely used algorithm that represents the relationship between data by drawing 
a straight line through the data with the least value of Mean Square Error loss25,26,34,35. In (9), y is the output of 
the LR model, xi is the input; θi is the weight of each ith input, θ0 is the bias; and N is the total number of features 
in the dataset20.

 
y = θ 0 +

∑ N

i=1
θ ixi (9)

Fig. 1. Vector control : Conventional approach.
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Support vector machine regression (SVM)
The kernel approach of SVM regression maps the independent variables onto a feature space of higher dimension. 
With this approach, less computing is needed and the dimensionality of the incoming data is irrelevant. The 
SVM regression method aims to reduce generalization error rather than training error minimization20,34–36.

Equation (10) is used to apply SVM regression for a dataset that is linearly separable, and (11) is utilized for a 
dataset that is non-linearly separable25. For inputs xi, contraction coefficient αi, and bias b, the output y is given 
by

 
y =

∑ N

i=1
(α i − α ∗

i ) .?xi, x? + b (10)

 
y =

∑ N

i=1
(α i − α ∗

i ) .K (xi, x) + b (11)

where K(x, y) is the kernel function. For linear kernel function,

 K (x, y) = x′ y (12)

Feedforward neural network (NN)
A feedforward neural network (NN) is a type of artificial neural network that only allows information to flow 
from the input to the output. The artificial neurons of neural networks are modeled after biological brains, and 
structured into three levels: input, output, and hidden layers between the two. The number of hidden layers 
decides the depth of the network. Each layer has a bias, while each connection between neurons is represented 
by a weight25,26,35–38.

Figure 2 shows the architecture of a NN model with two inputs and one output, and a single hidden layer with 
three neurons. Here x1, x2 are the inputs and y is the output. As seen in Fig. 3, the output of an artificial neuron 
is a function f of the sum of bias b and all the weights (w1 to wn) from inputs (x1 to xn)19–21. Activation function 
f, given by (13), is used for normalizing the output of a neuron.

 
y = f

(
b +

∑ n

i=1
xiwi

)
 (13)

Fig. 3. Layout of an artificial neuron.

 

Fig. 2. NN architecture.
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Long short-term memory network (LSTM)
LSTM is a variation of Recurrent Neural Network (RNN), a commonly used Deep Learning (DL) / advanced NN 
method for regression or forecasting purposes. One main difference between Feedforward NN and RNN is the 
presence of feedback loops in the latter, which helps in remembering previous information.

Figure 4(a) gives the LSTM network architecture. The standard architecture includes input, hidden (consisting 
of LSTM and fully connected layers) and output layers. The LSTM layer is made up of a number of LSTM units 
connected in sequence. Figure 4(b) shows the layout of a LSTM unit.

The main components of a LSTM unit are the memory cells and the three gates (forget, input, output 
gates). The memory cell stores the cell state from previous time step, Ct−1. The forget gate ft decides how much 
information should be maintained and deleted. The input gate it decides which portion of the new information 
should be updated in the memory cell. The output gate ot controls the information going out of the memory cell. 
Here, Xt is the input to the LSTM unit, ht is the output of LSTM cell; Ct is the current cell state and Čt is the new 
value to be added to the cell. The LSTM unit is mathematically expressed by (14)-(19)25–28,39.

 ft = σ (Wf · [ht−1, Xt] + bf ) (14)

 it = σ (Wi · [ht−1, Xt] + bi) (15)

 
?

Ct= tanh (Wc · [ht−1, Xt] + bc) (16)

 ot = σ (Wo · [ht−1, Xt] + bo) (17)

 Ct = ft ∗ Ct−1 + it∗
?

Ct
 (18)

 ht = ot ∗ tanh (Ct) (19)

Proposed methodology
Control approach using ML
The proposed ML-based vector control for the PMSM drive is shown in Fig. 5. The proposed approach uses an 
ML-based controller instead of a PI-based current controller. The speed controller in the outer loop remains the 
same as in the conventional approach13,29.

The stages of designing the proposed controller are as follows: (i) dynamic modeling (ii) ML model which is a 
modified version of the conventional controller approach (iii) training and testing of the ML-based controller29. 
Figure 6 shows the training and testing environment for ML models.

Training process
The Deep Learning Toolbox™ of MATLAB is used for training and testing the ML models. The PMSM drive is 
operated under rated conditions with the conventional PI controller with speed variations and disturbances in 
load to generate a training dataset of 600,000 samples. The test dataset includes a small subset of the training data 
as well as new independent samples, the sample size ranging from 50,000 to 200,000.

Figure  7 shows the layout of the proposed ML models. The current error values, their integrals, and the 
compensation terms are given as input to the ML block. As LR and SVM are single-output networks, two models 
are required for estimating the reference voltages in the d-axis and q-axis separately. As NN and LSTM are multi-
output networks, a single model takes in all the inputs and generate the two reference voltages.

Fig. 4. (a) LSTM architecture (b) Layout of LSTM unit.
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The LR and SVM blocks were developed in MATLAB/Simulink using the equations discussed in Section 
II – subsection C. The weights and bias values required for the modelling were obtained from the LR and SVM 
models developed in MATLAB Coder during training process. The layout of LR and SVM models in Simulink 
is given by Fig. 8. LSTM model was developed and validated in MATLAB Coder.

Dataset
The dataset consists of 6 input variables and 2 output variables, which are displayed in Fig. 7. The differences 
between the desired values of the dq-axis currents and their actual values obtained from the feedback current 
signals (error values ed, eq) form one set of the inputs. Their integrated values (sd, sq) are the next set of inputs. 
The compensation or decoupling terms (d_decoup, q_decoup) are calculated using the actual dq-axis currents 

Fig. 6. Framework of proposed ML model.

 

Fig. 5. Proposed ML-based control technique.
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and taken in as the last set of inputs. The output variables are dq-axis reference voltages (vd
*, vq

*), which are used 
in the inverter pulse generation process. The relation between these input and output variables are described in 
detail in Section II.

 
sd =

∫
ed dt (20)

 
sq =

∫
eq dt (21)

As single-output models, linear regression and support vector machine regression require two distinct models 
for each of the two outputs. The d-axis input variables are given to one LR/SVM model and d-axis reference 
voltage is obtained. Similarly, the q-axis input variables are given to a second LR/SVM model and q-axis reference 
voltage is obtained (Fig. 7(a)).

Since NN/LSTM model can have multiple outputs, only one NN/LSTM model is needed to produce the two 
output variables. All the 6 input variables are given into the NN and LSTM-based controllers and the two dq-axis 
reference voltages are obtained (Fig. 7(b)).

By using error values and their integrated values, the aim is to prepare an ML-based model that mimics 
the PI controller, but in a better way. The difference is in how the compensation terms are placed. The PI 
controller ignores these terms and they must be added externally to the controller outputs, to avoid decoupling 
inaccuracy in the motor drive. The proposed ML-based models avoid this external addition process by including 
the decoupling terms in the initial stage itself. The complexity of the control algorithm can be reduced using 
this approach. The trained ML controller can simply replace the PI current controllers and the feedback of the 
decoupling terms, in a PMSM drive.

Training and testing data
The training data as well as the testing data are obtained from the simulated model of a PI-controller-driven 
PMSM drive. The error values and the compensation or decoupling terms (4 of the input variables) are extracted 
directly from the model while the integrated values of the errors (2 of the input variables) are calculated separately 
during the data collection process. In the process of gathering the training and testing dataset, the two output 
variables are taken out of the data point where the compensation terms are applied.

The motor drive is run through rated conditions, variable speeds, and load disturbances, which generates a 
dataset of 600,000 samples for training purposes. Different test datasets are used for each test situation (variable 
speed, variable load, constant load and speed, etc.) and all test sets are extracted in the same way the training data 
is collected. Each test dataset includes a subset of the training data as well as new independent samples, the test 
sample size hence ranging from 50,000 to 200,000.

The same datasets are used for training and testing all the ML-based models. The data normalization is 
done by setting the training command accordingly in the MATLAB Coder. Each ML algorithm is prepared for 
training as mentioned in subsections E to G. Table 1 gives the tuned parameters for each ML model. After offline 
training for “sequence-to-sequence” regression, a test dataset is used to independently evaluate the ML-based 
controllers. Following this validation, the trained ML-based controllers are incorporated into the motor drive 
model, enabling online implementation for real-time system operation.

Development of LR-based model
The function fitrlinear is used for training the LR regression model in MATLAB. The parameters configured in 
the training process are Learner, Solver, Regularization, and Lambda.

The Learner is a linear regression model type that can be set as Linear regression via ordinary least squares 
(leastsquares), or Support vector machine regression (svm). The Solver or objective function minimization 
technique can be Stochastic gradient descent (SGD), Average stochastic gradient descent (ASGD), Dual SGD, 

Fig. 7. Proposed ML model layout.

 

Scientific Reports |        (2025) 15:17826 7| https://doi.org/10.1038/s41598-025-02396-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (BFGS), Limited-memory BFGS (LBFGS), or 
Sparse Reconstruction by Separable Approximation (SpaRSA) method. Regularization or complexity penalty 
type can be set as Lasso or Ridge. Lambda is also known as the Regularization term strength and is calculated as 
the inverse of the training sample size.

After experimenting with different combinations for Learner-Solver-Regularization, the optimum 
combination is found to be a combination of SpaRSA and LBFGS solvers, least squares learner, lasso and ridge 
regularizations.

Development of SVM-based model
SVM regression models are trained using the function fitrsvm in MATLAB. Some of the important parameters 
for SVM model training are Solver, Kernel function, and Kernel scale.

The Kernel function can be a Gaussian, Linear, Radial Basis Function (RBF) or Polynomial. The value of the 
Kernel scale is set to 1, or ‘auto’. In the latter case, the software uses a subsampling procedure to select the value. 
The Solver is the optimization routine. It can be Iterative Single Data Algorithm (ISDA), Sequential Minimal 
Optimization (SMO), or L1 Quadratic Programming (L1QP).

Different combinations for the above parameters are iterated and the SMO is selected as ‘Solver’. The linear 
kernel function of scale 1 is found to be optimal.

Development of NN-based model
To train a simple neural network in MATLAB, the train function is used with the following parameters specified:

• Number of hidden layers and Size of each hidden layer,
• Activation function of each layer,
• Training algorithm.

A trial-and-error method is followed to select the number and size of the hidden layers, starting from the 
minimum values. A satisfactory result was obtained at 1 hidden layer, with 2 neurons.

Hyperbolic tangent sigmoid transfer function and linear function, respectively, work as the hidden layer and 
output layer activation functions.

Levenberg-Marquardt, Bayesian Regulation, Gradient descent, and Resilient back propagation (RPROP) 
algorithms are some of the training algorithms for neural networks in MATLAB, among which the Levenberg-
Marquardt algorithm is the fastest and most popular.

Development of LSTM-based model
The LSTM model developed in MATLAB has the following training parameters specified:

• Number of hidden units,
• Types of layers,
• Gradient threshold.

The layers are defined in the following order: input sequence layer, lstm layer, fully connected layers and output 
regression layer. The solver is set to ‘adam’ (Adam optimizer), with an initial learning rate of 0.01, a gradient 
threshold of infinity with the clipping method ‘global-l2norm’. A trial-and-error method is followed to select the 
number hidden units in the lstm layer, and the number of fully-connected layers. Based on the capacity of the 
work station used, they were finalized to 90 and 2, respectively.

ML model Hyperparameter Selection

LR

Learner Leastsquares

Solver SparSA + LBFGS

Regularization lasso + ridge

Lambda 1 / (Training sample size)

SVM

Kernel function Linear

Kernel scale 1

Solver SMO

NN

No. of hidden layers 1

Size of hidden layers 2

Activation function Sigmoid function (hidden layer),
linear function (output layer)

Training algorithm Levenberg-Marquardt algorithm

LSTM

No. of hidden units 90

No. of fully connected layers 2

Solver adam

Gradient Threshold method global-l2norm

Table 1. Hyperparameter settings for ML models.
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Evaluation metrics
Mean absolute error (MAE), root mean square error (RMSE), and symmetric mean absolute percentage error 
(SMAPE) are the metrics used to assess the performance of the trained ML algorithms. These are typical 
statistical measures for evaluating the effectiveness of time-series based models27,28,39–46.

 
MAE = 1

N

∑ N

i=1

∣∣∣
(−

yi − yi

)∣∣∣ (22)

 
RMSE =

√
1
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∑ N
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)2
 (23)

 

SMAP E = 100%
N
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∣∣∣
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−
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(∣∣∣−

yi

∣∣∣ + |yi|
)

/2
 (24)

where N is the test sample size; ȳi is the estimated value and yi is the actual value.

Performance evaluation of controllers
The conventional model of the speed control system is developed using a MATLAB/Simulink environment to 
generate the training data. The sampling time is fixed at 1 µsec. The performance comparison of the conventional 
and proposed methods is conducted using MATLAB Coder. Table 2 gives the PMSM drive parameters9,13. The 
testing of the trained ML models is detailed in subsections A to E9,13,29.

Current control evaluation
The d- and q-axis currents are studied for the evaluation of current-loop controllers while keeping a constant 
speed (300 rad/s) and a constant load torque (5 N.m) for the motor9,13. The reference voltage outputs of the 
proposed ML models are compared to the conventional PI controller outputs in Fig. 9. The proposed ML-based 
controllers exhibit reduced transient peaks in the outputs of the controller. The LR-based controller has the least 
maximum transient peak value for d-axis reference voltage and settles faster than the other controllers. The 
q-axis reference voltage waveforms of all controllers, except the LR-based controller, settle similarly to those of 
the PI controller.

The performance of the conventional and ML-based controllers under rated conditions are given in Figs. 10, 
11, 12 and 13. The speed response of the PI controller, as depicted in Fig. 10, achieves the desired speed with a 
settling time of 0.018s and a peak overshoot of 1.15%. In contrast, the LR-based controller exhibits a 1.138% peak 
overshoot, the SVM-based controller has a 1.147% peak overshoot, and the NN-based controller has a 1.149% 
peak overshoot for the same settling time. The LSTM-based controller has a 1.189% peak overshoot with 0.0325s 
as settling time (Table 3).

For PI controller and LR, SVM, NN-based controllers, a maximum torque of 97 Nm is attained during the 
transient state and then settles to the rated value (5 N.m) at 0.018s. The LSTM-based controller reaches 75 Nm 
during transient state and settles to 5 Nm at 0.0325s. The torque response is shown in Fig. 11.

Fig. 8. LR/SVM model layout in Simulink.

 

Parameter Value

Resistance (R) 2.85 Ω

Stator inductances (Ld, Lq) 0.005 H

Coefficient of friction (Ba) 1.0 e-4 Nm-s

Motor inertia (Jeq) 8.0 e-4 kg-m2

Pole pairs (P) 4

Rotor flux linkage (Ψf) 0.1548 Wb-turms

Rated speed (ωm) 300 rad/s

Table 2. Motor parameters for simulation.
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The current responses for the conventional controller and ML-based controller are shown in Fig. 12. The 
rated current is achieved at 0.011s with the LR-based controller, at 0.035s with LSTM-based controller, and 
at 0.018s with the other controllers. The transient state peak value of the LR-based controller is 86 A, 70 A for 
LSTM-based controller and 90 A for the other controllers.

Fig. 11. ML-based vs. conventional controllers: Torque response of the drive.

 

Fig. 10. ML-based vs. conventional controllers: speed response of the drive.

 

Fig. 9. ML-based vs. conventional controller outputs : dq-axis reference voltages (a)vsd-ref(b)vsq-ref.
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Description PI LR SVM NN LSTM

Peak overshoot (%) 1.15 1.138 1.147 1.149 1.189

Settling time (s) 0.018 0.018 0.018 0.018 0.0325

Table 3. Comparison of speed response under rated conditions (Fig. 10).

 

Fig. 13. ML-based vs. conventional controllers: THD analysis of the current responses.

 

Fig. 12. ML-based vs. conventional controllers: 3-phase motor current response.
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Total Harmonic Distortion (THD) of one phase of the motor currents, for the PI controller and proposed 
controllers (LR, SVM, NN), were obtained by Fast Fourier Transform (FFT) analysis and are shown in Fig. 1347. 
The proposed controllers give the same THD of 9.6% as the conventional controller at the steady-state conditions.

Fig. 14 gives a comparison of the dq-axis currents of the conventional and proposed models. At 0.0085s, the 
d-axis current of a PI controller settles to 0 A, while the q-axis current settles to 5 A, at 0.018s. The SVM-based 
and NN-based controllers reach the same current values at the same time as the PI controller. The LR-based 
controller takes 0.02s for the d-axis current to settle at -3 A and 0.018s for the settling of the q-axis current at 5 A. 
For LSTM-based controller, the dq-axis currents settle at 0.034s and 0.033s respectively (Table 4).

Speed control evaluation
To evaluate the effectiveness of the controllers, speed tracking of the PMSM is carried out. The desired speed 
values are set as 30–150–300–375 rad/s, applied at the time intervals of 0–0.05–0.1–0.15 s, respectively. Figure 15 
gives a comparison of speed responses of all the controllers.

Fig. 15. ML-based vs. conventional controllers: Speed response for speed variations.

 

Settling time (s) PI LR SVM NN LSTM

For Id 0.0085 0.02 0. 0085 0.0085 0.034

For Iq 0.018 0. 018 0. 018 0. 018 0.033

Table 4. Comparison of current control performance (Fig. 14).

 

Fig. 14. Conventional vs ML-based controllers : dq-axis currents (id, iq) of PMSM drive.
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Up to 150 rad/s (50% of rated speed), the PI controller and the LR, SVM and NN-based controllers respond 
similarly, though the LR-based controller has a slightly higher transient speed peak. LSTM-based controller has 
speed overshoot compared to other controllers.

Above 150  rad/s (above 50% and up to 125% of rated speed), the responses of the PI controller and the 
LR, SVM and NN-based controllers are similar. The LR-based controller has the least transient peak at higher 
speeds. Above rated speed, LSTM-based controller has the highest transient peak and needs more settling time.

As seen from Fig. 16 to 17, the motor 3-phase currents and torque change at the same instant as the speed 
changes. The LSTM model has the least transient peak for torque response at speeds above 10% of the rated 
speed (< 30 rad/s). The LR model has the least transient peak for torque response at low speeds (30 rad/s), and 
the maximum transient peak in torque response at speeds above half the rated speed (> 150 rad/s). The current 
responses of all the controllers are similar to those of the conventional model.

Impact of load disturbance
The motor is started at no load and at time step of 0.05s, load of 2.5 Nm is applied. The load is increased by 
another 2.5 Nm at a time step of 0.07s. Figures 18 and 19 provides a comparative performance of the torque and 
speed responses using both PI and ML-based controllers. The machine parameters are same as in Table 2, except 
for the load. Figure 18 demonstrates how the torque responses of drives with ML-based and PI controllers reflect 
the added load. Figure 19 illustrates how speed decreases when a load is applied, yet speed is rapidly recovered 
by the controllers.

Fig. 17. Conventional vs ML-based controllers : Current response for change in speed.

 

Fig. 16. ML-based vs. conventional controllers: Torque response for speed variations.
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Robustness of speed loop controller
In real-world situations, the motor inertia and friction factor can alter depending on the load on the EV and 
the state of the road. The output of the speed loop controller will be affected by this situation. As a case study, 
twice the friction factor and triple the inertia are considered, while the other conditions are the same as in 
Table 2. Figure 20 gives a comparison of the speed responses of the conventional and the ML-based vector-
control approaches.

In comparison to Fig. 10, the speed responses of all the controllers, except LSTM-based controller, reach the 
rated speed at 0.05s. This is because of the higher inertia and friction factors. The LR-based controller has more 
transient peak in speed response compared to the other controllers, while the SVM-based controller has the 
least transient peak. The LSTM-based controller failed to settle within the same range as the other controllers.

Evaluation metrics
The performance metrics for different test conditions such as rated speed condition, step speed change and 
step load change are shown in Table 5 and Fig. 21. In each of the three test situations, the LR-based controller 
provides the lowest values of all the errors. The least error in each set is highlighted in bold. Lesser error values 
of MAE, RMSE and SMAPE imply better performance of the evaluated model.

Real-time results
The conventional and proposed ML-based controllers are tested using Software-in-loop (SIL) mode on the 
OpalRT device OP4500. Figure 22 gives the Opal-RT setup on SIL mode with OP4500 device. Figure 23 gives 
the simulation model used to test all the controllers. The ML models have been designed manually using data 
from the trained models of MATLAB Code. Figures 24, 25, 26 and 27 show the speed and torque responses from 
the OP4500 device, for the conventional PI controller and the proposed ML-based (LR, SVM, NN) controllers 
at varying speeds and load conditions. The starting speed is set at 150 rad/s and increased to 300 rad/s at 0.5s 

Fig. 19. ML-based vs. conventional controllers: Speed response for load variations.

 

Fig. 18. ML-based vs. conventional controllers: Torque response for load variations.
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timestep. The motor is started on full load and reduced to half load at 0.55s timestep. Compared to the PI 
controller, the LR-based controller has lesser speed and torque transients when the speed changes. The SVM and 
NN-based controllers give similar responses as the PI controller.

Figures 28, 29, 30 and 31 show the results from a digital oscilloscope, for speed variations of 30-150-300–
375 rad/s at the time steps 0-1-2-5 ms, and load variations of 5-0-2.5 Nm at the time steps 0-3-4 ms.

Fig. 21. Evaluation metrics for speed response – Table 5.

 

Fig. 20. Conventional vs. ML-based controllers : Speed response for larger Jeq and Ba.

 

Metrics PI LR SVM NN LSTM

Rated conditions

MAE 10.9072 10.8093 10.9081 10.9096 19.9737

RMSE 40.6125 40.4614 40.5824 40.6145 51.0321

SMAPE 5.0976 5.0724 5.0998 5.0987 8.4641

Speed variations

MAE 7.5233 7.3834 7.5518 7.5232 10.6317

RMSE 18.2025 18.0162 18.2203 18.2052 21.8243

SMAPE 7.9562 7.8796 7.9181 7.9581 11.1613

Load disturbances

MAE 13.7196 13.6210 13.7124 13.7269 21.6626

RMSE 40.3968 40.2008 40.3591 40.4021 50.9743

SMAPE 5.9003 5.8770 5.8998 5.9030 8.7705

Table 5. Evaluation metrics for speed response.
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Fig. 24. PI controller : current, speed, rotor angle and torque responses.

 

Fig. 23. Opal-RT model.

 

Fig. 22. Opal-RT physical setup.
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Results & discussion
The conventional and proposed ML-based controllers are validated using MATLAB simulation and Real-Time 
environment, under different test conditions. The speed and torque response, current response, and dq-axis 
reference voltages of the drive are considered for evaluation.

Simulation results
The evaluation of the overall drive response under rated conditions, load disturbances, and speed variations, 
shows that the responses of the ML-based controllers (LR, SVM, and NN) resemble those of the PI controller, 
even in the absence of additional circuitry. The graphs make it evident  that for all the speeds (below and 
above the rated speed), the LR-based controller is a good alternative to the PI controller. This is supported by 
the performance metrics in Table 5, where the LR-based controller gives the least error values, in all the test 
scenarios. SVM and NN-based controllers give the same metric values as the PI controller.

Fig. 26. SVM controller : current, speed, rotor angle and torque responses.

 

Fig. 25. LR controller : current, speed, rotor angle and torque responses.
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In the case of speed transients (from Fig. 10), the peak overshoot of the LR-based controller is only 1.138% 
compared to 1.15% of the PI controller. The SVM and NN-based controllers also give lesser overshoot compared 
to the PI controller (1.147% and 1.149% respectively). From the speed response of Fig. 15, the LR-based controller 
has lesser overshoot and hence better performance above half-speed. As seen in Fig. 19, any of the proposed LR, 
SVM, NN-based controllers can easily reproduce the speed performance of the conventional controller in the 
case of a load disturbance. From the current response in Fig. 13, motor currents of the LR-based controller can 
be seen as settling faster (0.012s) compared to the other controllers (0.02s), i.e. 40% faster response. In the case 
of the NN-based controller, it replicates the performance of the PI controller at all speed levels.

When it comes to testing the robustness of the proposed controllers, Fig. 20 shows that the ML-based (LR, 
SVM, NN) controllers are capable of giving the same performance as the PI controller, even with increased 
mechanical parameters.

One main limitation is the low-speed performance of the LR and SVM-based controllers. As seen in Fig. 15, 
below half-speed, they have slightly higher overshoots compared to the PI controller. For the LR-based controller, 
the overshoot is less, above half-speed. For the SVM-based controller, the overshoot is lesser only around half-
speed. The LR-based controller gives better performance than the PI controller above half-speed conditions, 
while the NN-based controller gives the same performance as the PI controller.

The performance of the LSTM-based controller was not found satisfactory under different running 
conditions, when compared to the other controllers.

Fig. 28. PI controller : speed and torque responses.

 

Fig. 27. NN controller : current, speed, rotor angle and torque responses.
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Real-time results
Evaluating the controllers in a SIL environment with a physical real-time device, the LR-based controller has 
lesser speed transients during speed change but is slower in settling back to the desired speed after a load change 
is applied, as compared to the PI controller response. SVM and NN-based controllers do not perform any better 
or worse, when compared to the PI controller. LR-based controller needed 0.04s while the PI controller required 
0.015s to regain the desired speed after a change in load from no-load to full-load. During speed change from 
10 to 100% of the rated speed, the PI controller gives an overshoot of 1.26% while the LR-based controller has 
only 1.06% overshoot.

Comparison with existing work
In the conventional vector control scheme, the compensation terms (-weLqiq, weLdid, weΨf) are added to the PI 
controller outputs externally to avoid decoupling inaccuracy. The constant presence of compensation terms 
which are time-dependent functions of the dq-axis motor currents and motor speed, has a large impact on the 
dq- reference voltage signals. In this work, their constant presence is acknowledged. The training data set for the 
ML models is inclusive of the compensation terms (Fig. 7). The ML models are designed such that the controller 
outputs given to the next stage in the drive are independent of the external addition of the compensation terms. 
In other words, the ML models have the compensation terms in-built, in comparison to the conventional PI 
controller setup. This allows for reduced circuitry in the proposed technique. The proposed ML-based controllers 
merely need a dataset (inclusive of various scenarios) from an existing technique to prepare the controller for 
any situation, whereas the conventional controller requires precise PI tuning and occasionally re-tuning in case 
of sudden system uncertainties. Table 6 gives a comparison of the proposed work with some of the existing 
literature.

Fig. 30. SVM controller : speed and torque responses.

 

Fig. 29. LR controller : speed and torque responses.
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Ref.29 uses a strategy similar to the proposed work of this paper, with a NN-based current controller. The 
input dataset, however, does not account for the constant feedback of the compensation terms, which are time-
varying parameters. As demonstrated in Ref.48 where the technique was investigated for LR, SVM, and NN-
based controllers, this has an impact on the final output of the motor drive, in the case of ML-based controllers. 
Figure 32 shows the speed response of Ref.48 at rated conditions. Table 7 gives a comparison between the speed 
responses of Ref.48 and the proposed work, in the same environment. It highlights a reduction in the evaluation 
metrics, peak overshoot and settling times of the speed responses of the ML-based controllers, when the 
decoupling terms are included in the dataset and during actual operation. This is also highlighted by Fig. 33. The 
lowest MAE, SMAPE and RMSE values are given by LR model with 6 inputs, in comparison to PI controller and 
other ML-based models with 4 inputs or 6 inputs.

A network with two hidden layers, each including six neurons, is used in the NN model of Ref29. In contrast, 
when the decoupling terms are added as inputs to the NN model, the proposed NN model in this work only 
needs one hidden layer and two neurons. Because of this, the NN model that this paper proposes is more 
compact than the one that already exists. Table 8 gives comparison of proposed NN model with the existing 
models of Ref.s29] and [48.

In addition to challenging the conventional controller and the work in Ref.29 in terms of the input dataset, 
this paper also examines other ML-based models which are not yet been explored for current control.

Ref.s Paper highlights Control system current controller type
External addition of 
Decoupling terms

Runtime 
variations in 
decoupling terms 
accounted for

1 Unified FOC controller for PMSM FOC PI Yes Yes

5 Adaptive PID speed control FOC Adaptive PID Yes Yes

6 Modified reference currents IFOC PI Yes Yes

8 PMSM drive VC Hysteresis & PWM current 
controllers Yes Yes

9 Brain emotional controller (BEC) for speed 
control IFOC PI No No

11 Vector control and hall-effect sensors IFOC PI No No

13 BEC for current control IFOC BEC No No

15 PMSM Vector control eTPU function VC PI Yes Yes

29 NN-based current controller IFOC NN No No

32 Integrated Electric Drive System for Electric 
Vehicle IFOC PI Yes Yes

48 ML-based current controller IFOC LR/SVM/NN No No

Proposed ML-based current controller IFOC LR/SVM/NN/LSTM No Yes

Table 6. Comparison with existing work.

 

Fig. 31. NN controller : speed and torque responses.
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Conclusion
This paper presents different ML-based speed control algorithms for a vector-controlled PMSM drive. The 
main objective is to explore the feasibility of applying machine learning in the speed control of motor drives. 
Under various test scenarios, the performances of the conventional PI controller and the proposed ML-based 
controllers are studied. In comparison to the conventional controller that requires compensation term feedback, 
the proposed ML-based controllers can achieve better performance without the additional feedback circuitry.

The performance metrics of the LR-based controllers were found to be better than those of the conventional 
PI controller. In every test situation, the errors of the LR-based controller are lesser by a margin of up to 1.86%. 
While maintaining the same settling time for the speed and torque waveforms, the transient peaks are lesser 
for the LR-based controller in most cases by 0.012% and a 40% reduction in current response time. The SVM-
based and NN-based controllers give a 0.003% reduction in the transient peaks of the responses and a 0.48% 
improvement in the metrics, compared to the conventional controller. Their performance metrics and responses 
are on par with those provided by the PI controller. The LSTM-based controller was found to be in need of more 
training for better performance.

By fine-tuning the training parameters and using a larger data set, the performance of all the proposed ML-
based controllers can be further enhanced.

Fig. 32. ML-based vs. conventional controllers: Speed response of the drive48.

 

Features PI LR SVM NN

48

MAE 10.9072 11.2512 11.1903 11.9194

RMSE 40.6125 40.8831 40.8455 40.9932

SMAPE 5.0976 5.2276 5.2072 5.4389

Peak overshoot (%) 1.15 1.14 1.139 1.157

Settling time (s) 0.018 0.02 0.02 0.022

Proposed

MAE 10.9072 10.8093 10.9081 10.9096

RMSE 40.6125 40.4614 40.5824 40.6145

SMAPE 5.0976 5.0724 5.0998 5.0987

Peak overshoot (%) 1.15 1.138 1.147 1.149

Settling time (s) 0.018 0.018 0.018 0.018

Table 7. Comparison of speed response at rated conditions [Fig.s 10 & 32].
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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