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Abstract

Background: Patients with coronavirus disease 2019 (COVID-19) requiring mechanical ventilation have high mortality

and resource utilisation. The ability to predict which patients may require mechanical ventilation allows increased

acuity of care and targeted interventions to potentially mitigate deterioration.

Methods: We included hospitalised patients with COVID-19 in this single-centre retrospective observational study. Our

primary outcome was mechanical ventilation or death within 24 h. As clinical decompensation is more recognisable, but

less modifiable, as the prediction window shrinks, we also assessed 4, 8, and 48 h prediction windows. Model features

included demographic information, laboratory results, comorbidities, medication administration, and vital signs. We

created a Random Forest model, and assessed performance using 10-fold cross-validation. The model was compared

with models derived from generalised estimating equations using discrimination.

Results: Ninety-three (23%) of 398 patients required mechanical ventilation or died within 14 days of admission. The

Random Forest model predicted pending mechanical ventilation with good discrimination (C-statistic¼0.858; 95% con-

fidence interval, 0.841e0.874), which is comparable with the discrimination of the generalised estimating equation

regression. Vitals sign data including SpO2/FiO2 ratio (Random Forest Feature Importance Z-score¼8.56), ventilatory

frequency (5.97), and heart rate (5.87) had the highest predictive utility. In our highest-risk cohort, the number of patients

needed to identify a single new case was 3.2, and for our second quintile it was 5.0.

Conclusion: Machine learning techniques can be leveraged to improve the ability to predict which patients with COVID-

19 are likely to require mechanical ventilation, identifying unrecognised bellwethers and providing insight into the

constellation of accompanying signs of respiratory failure in COVID-19.
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Editor’s key points

� Being able to predict early when patients are likely to

deteriorate with life-threating diseases such as COVID-

19 could guide clinical management and improve pa-

tient outcomes.

� Expert human gestalt and classic static prediction

models can be useful, but do not take sufficient

advantage of the numerous data elements, including

time series data, in modern electronic health records.

� This study evaluated machine learning approaches for

predicting respiratory failure and death in patients

with COVID-19.

� In choosing the optimal machine learning techniques,

it is important to consider bothmodel performance and

interpretability; the Random Forest model used in this

study performed well and ranked features most

strongly associated with the outcomes of interest.
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Coronavirus disease 2019 (COVID-19) is the clinical disease

caused by the novel severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2).1 Although the virus can affect various

organs and physiological functions, including the bowel, kid-

neys, heart, brain, and coagulation, its initial stereotypical

clinical presentation is pulmonary with cough, dyspnoea, and

hypoxaemia among the presenting features.2e6 Although res-

piratory symptoms can be mild, some patients progress to

hypoxaemia, necessitating supplementary oxygen or even

mechanical ventilation. Studies of invasive mechanical

ventilation to treat COVID-19 respiratory failure have shown a

mortality rate greater than 85%.7e9 Limited information is

available about which patients admitted to the hospital not

requiring mechanical ventilation will progress to mechanical

ventilation and what clinical factors are associated with that

progression.

Improved identification of patients likely to require me-

chanical ventilation will enable closer monitoring for signs of

clinical deterioration and optimise allocation of resources

such as ventilators and intensive care beds. Novel analytical

techniques could also reveal previously unrecognised in-

dicators of a worsening respiratory trajectory. This could guide

treatment decisions (e.g. medications such as anticoagulants

or corticosteroids, tighter haemodynamic regulation, or titra-

tion of supplemental oxygen) which may mitigate progression

to respiratory failure.

Previous attempts to predict clinical deterioration of pa-

tients with COVID-19 have used traditional regression-based

techniques,1011 failed to capitalise on the diversity of avail-

able data in the modern electronic health record,12 or been

limited to a small, potentially non-generalisable population.13

Furthermore, heterogeneous outcomes such as critical illness

or disease severity10,12 may mask the influence of a singular

class of variables. A predictive algorithm leveraging machine

learning techniques on the diverse data captured in the elec-

tronic health record to predict imminent mechanical ventila-

tion in patients with COVID-19 may facilitate predictive

accuracy. We hypothesise that an assessment metric, devel-

oped from a Random Forest decision algorithm, can predict

which patients with COVID-19 will subsequently require me-

chanical ventilation.
Methods

Study design

For this retrospective observational study performed at our ac-

ademic quaternary care centre, we obtained Institutional Re-

view Board approval (University of Michigan, Ann Arbor, MI,

USA; HUM00052066). As no patient care interventions were

made through conducting the study, patient consent was

waived. This manuscript follows multidisciplinary guidelines

for reportingmachine learning predictivemodels in biomedical

research.14 Study outcomes, data collection, and statistical an-

alyses were established a priori and presented at a multidisci-

plinary peer-review forumonMay20, 2020 before data access.15
Data collection

For all patients with COVID-19 admitted to the hospital, the

electronic health record (Epic Systems, Verona, WI, USA) was

queried for patient characteristics, baseline comorbidities,

vital signs, laboratory values, medication administration re-

cord, and processes of care. The full list of features included in

our model can be found in Supplementary Table S1. Medical

comorbidities were categorised according to International

Classification of Diseases-9/10 diagnoses present upon admis-

sion according to a previously described and validated classi-

fication system.16,17 Patients were excluded if they were

receiving mechanical ventilation on arrival (via hospital

transfer) or were intubated within 4 h of hospital admission.

Data were grouped into 4 h windows and extended to the next

window, if no new data were recorded. If supplementary O2

was expressed in L min�1, instead of FiO2, then L min�1 flow

was converted to FiO2 by adding 0.038 for every L min�1 of

supplemental oxygen.18 Hi-Flow nasal cannula and Venturi

masks are recorded in the medical record as FiO2. Non-

rebreather masks were considered to supply FiO2¼0.70. The

actual FiO2 for face masks and nasal cannula will vary from

person to person depending on factors such as tidal volume

and ventilatory frequency18; we used these conversion factors

to be consistent across all patients. Data at a given time win-

dow, data from the immediately preceding time window, and

the change between them (delta) were incorporated into our

model. If preceding data were not available, data were

imputed to population mean and the delta value was set to

zero. Data for all patients were censored at 14 days after hos-

pital admission.
Target output

Our target output (primary outcome) was mechanical venti-

lation or death within 24 h. As the clinical decompensation is

likely more recognisable and less modifiable as the time win-

dow decreases, we also assessed and characterised the pre-

dictive utility of ourmodel to predictmechanical ventilation or

death within 4 and 8 h, and, for more notice, 48 h as secondary

outcomes. Each outcome extended from whenever the pre-

diction was beingmade to the end of the designated prediction

window. Predictions were made every 4 h through the first 14

days of a patient’s hospitalisation (or until the outcome was

reached). For example at the 8 h prediction point, the primary

outcome was intubation before the 32 h mark and 12, 16, and

56 h for the secondary outcomes. At the 24 h prediction point,

the primary outcomewas intubation before the 48 hmark, and

the secondary outcomes 28, 32, and 72 h. The decision to

intubate was left to the discretion of the clinical care team



Table 1 Characteristics of patients requiring intubation or dying within 24 h. Laboratory studies and vital signs are presenting or initial values. Note that not all patients have full
laboratory results or vital signs within the first 4 h of admission. The medications counts/percentages listed are based upon administration at any point from admission until data
collection was censored at either primary outcome or 14 days after admission. COPD, chronic obstructive pulmonary disease; FiO2, fraction of inspired oxygen; SD, standard deviation;
SpO2, blood oxygen saturation level .

Variable Level All data (n¼398) Control group (n¼305) Ventilation or death (n¼93) P-value

N % Mean SD N % Mean SD N % Mean SD c2 t-test

Age (yr) 398 100.0 60 17 305 100.0 59 17 93 100.00 65 14 0.001
BMI (kg m�2) 398 100.0 31.5 8.5 305 100 31.2 8.6 93 100 32.6 8.3 0.171
Height (cm) 398 100.0 170.0 11.4 305 100.0 169.5 11.5 93 100.0 171.7 10.9 0.105
Weight (kg) 398 100.0 91.1 26.5 305 100.0 89.7 27.1 93 100.0 95.6 24.3 0.063
Sex Female 187 47.0 159 52.1 28 30.1 <0.001

Male 211 53.0 146 47.9 65 69.9
Race African American 139 34.9 99 32.5 40 43.0 0.433

American Indian 1 0.3 1 0.3 0 0.0
Asian 13 3.3 11 3.6 2 2.2
Caucasian 208 52.3 166 54.4 42 45.2
Other 16 4.0 13 4.3 3 3.2
Unknown 21 5.3 15 4.9 6 6.5

Elixhauser comorbidities Alcohol abuse 21 5.3 17 5.6 4 4.3 0.631
Blood loss anaemia 52 13.1 36 11.8 16 17.2 0.176
Cardiac arrhythmias 207 52.0 143 46.9 64 68.8 <0.001
COPD 140 35.2 104 34.1 36 38.7 0.415
Coagulopathy 99 24.9 74 24.3 25 26.9 0.609
Congestive heart failure 97 24.4 67 22.0 30 32.3 0.043
Anaemia (iron deficiency) 77 19.3 60 19.7 17 18.3 0.766
Depression 132 33.2 103 33.8 29 31.2 0.643
Complicated diabetes mellitus 94 23.6 62 20.3 32 34.4 0.005
Uncomplicated diabetes mellitus 166 41.7 112 36.7 54 58.1 <0.001
Drug abuse 28 7.0 25 8.2 3 3.2 0.101
Fluid and electrolyte disorders 224 56.3 151 49.5 73 78.5 <0.001
Complicated hypertension 121 30.4 80 26.2 41 44.1 0.001
Uncomplicated hypertension 266 66.8 191 62.6 75 80.6 0.001
Hypothyroidism 67 16.8 49 16.1 18 19.4 0.458
Liver disease 66 16.6 48 15.7 18 19.4 0.412
Metastatic cancer 66 16.6 50 16.4 16 17.2 0.854
Obesity 158 39.7 114 37.4 44 47.3 0.086
Neurological disorders 103 25.9 74 24.3 29 31.2 0.182
Peripheral vascular disorders 78 19.6 62 20.3 16 17.2 0.507
Pulmonary/circulation disorder 80 20.1 54 17.7 26 28.0 0.031
Renal failure 139 34.9 85 27.9 54 58.1 <0.001
Solid tumour without metastasis 74 18.6 61 20.0 13 14.0 0.191
Valvular diseases of the heart 46 11.6 37 12.1 9 9.7 0.517
Weight loss 97 24.4 73 23.9 24 25.8 0.713

Laboratory studies Alanine transaminase (ALT) 349 87.7 60.0 181.4 268 67.3 51.4 136.9 81 87.1 88.4 282.1 0.258
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Table 1 Continued

Variable Level All data (n¼398) Control group (n¼305) Ventilation or death (n¼93) P-value

N % Mean SD N % Mean SD N % Mean SD c2 t-test

(Initial/Presenting) Aspartate transaminase (AST) 349 87.7 67.8 131.7 268 67.3 57.7 94.9 81 87.1 101.2 209.6 0.073
Brain natriuretic peptide 127 31.9 300.7 808.8 93 23.4 296.1 843.4 34 36.6 313.2 717.2 0.916
Serum creatinine (Cr) 378 95.0 1.6 1.9 292 73.4 1.4 1.4 86 92.5 2.2 2.9 0.019
C-reactive protein 264 66.3 11.8 9.5 194 48.7 11.4 9.2 70 75.3 13.2 10.3 0.174
D-dimer 242 60.8 3.6 7.2 176 44.2 4.0 7.8 66 71.0 2.6 5.1 0.123
Glucose 376 94.5 143.5 76.8 288 72.4 140.0 75.6 88 94.6 154.8 79.7 0.115
High-sensitivity troponin 225 56.5 62.6 205.5 170 42.7 57.5 221.0 55 59.1 78.4 148.2 0.514
Total bilirubin 341 85.7 0.7 1.1 261 65.6 0.7 1.2 80 86.0 0.7 0.5 0.940
White blood cell 374 94.0 8.6 4.8 290 72.9 8.6 4.5 84 90.3 8.7 5.6 0.865
Procalcitonin 256 64.3 2.2 10.3 189 47.5 2.5 11.8 67 72.0 1.4 3.9 0.472

Vital signs Ventilatory frequency (bpm) 367 92.2 21 5 284 71.4 20 4 83 89.2 23 6 <0.001
(Initial/Presenting) Systolic blood pressure (mm Hg) 396 99.5 134 22 303 76.1 135 23 93 100.0 131 21 0.194

Diastolic blood pressure (mm Hg) 396 99.5 73 12 303 76.1 74 12 93 100.0 72 11 0.129
Heart rate (beats min�1) 370 93.0 87 17 287 72.1 87 17 83 89.2 88 18 0.452
Temperature (�C) 355 89.2 37.1 0.6 280 70.4 37.1 0.6 75 80.6 37.2 0.6 0.021
SpO2 (%) 366 92.0 96 3 283 71.1 96 3 83 89.2 94 3 <0.001
SpO2/FiO2 366 92.0 345 116 283 71.1 367 107 83 89.2 271 114 <0.001

Medications Hydrocortisone 9 2.3 8 2.6 1 1.1 0.379
Heparin (s.c.) 87 21.9 58 19.0 29 31.2 0.013
Heparin (i.v.) 53 13.3 41 13.4 12 12.9 0.893
Enoxaparin 16 4.0 11 3.6 5 5.4 0.447
Tocilizumab 36 9.0 22 7.2 14 15.1 0.021
Remdesivir 22 5.5 19 6.2 3 3.2 0.267
Norepinephrine 16 4.0 7 2.3 9 9.7 0.002
Hydroxychloroquine 92 23.1 68 22.3 24 25.8 0.482
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Fig 1. Receiver operator characteristic curves and precision recall curves for each prediction window. (a) Four hour prediction window. (b)

Eight hour prediction window. (c) Twenty-four hour prediction window. (d) Forty-eight hour prediction window.
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(typically fellowship-trained intensivists). There were no

institutional criteria for intubation. Bi-level positive airway

pressure was used as an escalation of respiratory manage-

ment, but was not included as a primary outcome (i.e. invasive

mechanical ventilation). The initial predictionwindow (i.e. 0 h)

began with the first documented vital signs (which may have

occurred upon presentation to the emergency department,

before hospital admission).
Statistical analyses

Clinical data were summarised using means and standard

deviations (SD) for normally distributed continuous covariates,

medians and inter-quartile range for non-normally distributed

continuous variables, and counts and percentages for cate-

gorical covariates. Statistical analysis was performed in SAS

for Windows 9.4 (SAS Institute Inc., Cary, NC, USA).
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Machine learning: model design

A Random Forest is a classification algorithm characterised by

a set of many decision ‘trees’ uncorrelated to each other.19 A

Random Forest was trained to predict when a patient would

require mechanical ventilation (using randomForest V4.6-14

in R version 3.5.1; R Foundation for Statistical Computing,

Vienna, Austria) using 500 trees and default parameters.20 For

classifier training, 398 patients were monitored across 4-h

time intervals resulting in 27 282 observations. The Random

Forest used 73 predictive features grouped into demographic

features, comorbidities, laboratory values, vital signs, and

medications (Supplementary Table S1). The Comorbidities

included in our static variables were derived from International

Classification of Diseases (ICD)-9/10 diagnostic codes present

upon admission (from previous hospitalisations, rather than

the patient’s current hospitalisation), the goal being to only

include data that would be available to the clinical provider in

real time at the point when the prediction is being made.

Groupings for each class (such as renal failure and cardiac

arrhythmias) are composite variables based upon these ICD-9/
Sc
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Fig 2. Maximum predicted score for each patient, along with

ventilation requirement or death. Quintile 1, 8.5% died or

required mechanical ventilation within 24 h. Quintile 2, 6.5%

died or required mechanical ventilation within 24 h. Quintile 3,

8.8% died or required mechanical ventilation within 24 h.

Quintile 4, 20.0% died or required mechanical ventilation within

24 h. Quintile 5, 31.6% died or required mechanical ventilation

within 24 h.
10 codes using previously validated Elixhauser Comorbidity

Index.16 Missing laboratory values and vital signs were giving

the average across all non-missing features. Missing medica-

tion values were given a value of zero. Delta values based on

missing values were imputed to zero. The classifier was

assessed for sensitivity, specificity, and balanced accuracy

using 10-fold cross-validation. To ensure that performance

was not overestimated, all time points from the same patient

were restricted to the same fold.

The Random Forest Feature Importance Z-score19 was used

to rank all candidate features. As data from the immediately

preceding time window, and the change between them (delta)

were also included, this is larger than the feature list pre-

sented in Supplementary Table S2. Briefly, the Random Forest

Feature Importance Z-score calculates the number of correct

votes on the out-of-bag cases for a particular model feature

compared with a randomly permuted set of values from that

same feature. [In Breiman’s original implementation of the

random forest algorithm, each tree is trained on about two-

thirds of the total training data.19 As the forest is built, each

tree can thus be tested (similar to leave one out cross-

validation) on the samples not used in building that tree.

This is the out of bag error estimate e an internal error esti-

mate of a random forest as it is being constructed.]

During the initial development, we considered several

machine learning approaches but ultimately selected a

Random Forest. Although a deep neural network would in

theory provide the highest performance for real-time classifi-

cation, fewer than 400 patients would not be a sufficient

number of training examples to properly train the model. In

addition, Random Forests are more capable of handling cate-

gorical features compared with support vector machines

(SVMs). Random Forests are more interpretable and trans-

parent than deep learning or SVMs. To facilitate interpret-

ability of ourmodel, predictive featureswere ranked according

to Z-score. In addition, the highest predictive score for each

patient was graphed with visualisation of the primary

outcome after the time that score occurred.

Generalised linear modelling

The Random Forest model was then compared with general-

ised estimating equations (GEE) models at each of the four

prediction windows. GEE was selected to account for the lon-

gitudinal structure of the data. To create this model, we first

used least absolute shrinkage and selection operator (LASSO)

using the proc hpgenselect procedure in SAS to select variables

for inclusion at each prediction window as previously

described.17 LASSO regression also provided the reported c-

statistics, as GEE does not provide these. In brief, this method

estimates the parameters of a generalised linear regression

model by using maximum likelihood techniques with

exchangeable correlation structure and logit link. The hpgen-

select procedure is a high-performance procedure that pro-

vides model fitting and model building for generalised linear

models. It fits models for standard distributions in the expo-

nential family, such as the binomial distributions.
Results

Patient characteristics

A total of 398 patients met our inclusion criteria, with 90 pa-

tients requiring mechanical ventilation (23%) and three pa-

tients dying without mechanical ventilation (0.8%). The
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dataset included patients admitted from March 1, 2020 to May

5, 2020. After compiling dynamic model features into 4 h in-

crements, we assessed our primary outcome at 27 282 obser-

vations, with 431 positive observations. For our secondary

outcomes, we had 93, 171, and 715 positive observations at 4, 8,

and 48 h, respectively. Patients meeting our composite

outcome tended to be older (mean [SD]: 65 [14] vs 59 [17],

P¼0.001), male (70% vs 48%, P<0.001), and had higher incidence

of: renal failure (58% vs 28%, P<0.001), diabetes (58% vs 37%,

P<0.001), and cardiac arrhythmias (69% vs 47%, P<0.001).
Furthermore, patients meeting the composite outcome had

higher serum creatinine (mean, 2.2 vs 1.4; P¼0.019) and

ventilatory frequency (23 [6] vs 20 [4], P<0.001) and lower SpO2

(94% [3%] vs 96% [3%], P<0.001) and SpO2/FiO2 ratio (271 [114] vs

367 [107], P<0.001) upon presentation than those not meeting

the outcome. Patients requiring subsequent ventilation were

administered tocilizumab (15% vs 7%, P¼0.021) and norepi-

nephrine (10% vs 2%, P¼0.002) more frequently than those not

progressing to ventilation or death. Additional details on our

patient population can be found in Table 1.
Machine learning

The Random Forest algorithm found several variables associ-

ated with receipt of mechanical ventilation or death. The

variables with the best predictive ability were: (1) current

SpO2/FiO2 (Z-score¼8.55), (2) previous SpO2/FiO2 (Z¼6.25), (3)

current ventilatory frequency (Z¼5.97), (4) current heart rate

(Z¼5.87), (5) previous heart rate (Z¼5.83), (6) current diastolic

blood pressure (Z¼5.76), and (7) current blood glucose (Z¼5.76)

(Supplementary Table S2). Our algorithm is able to predict

subsequent ventilation or deathwith very good discrimination

(c-statistic for the 4 h time window¼0.885, 95% confidence

interval [CI], 0.858e0.924; 8 h window¼0.881, 95% CI

0.856e0.906; 24 h window¼0.858, 95% CI 0.841e0.874; and 48 h

window¼0.839, 95% CI 0.825e0.854). The areas under the pre-

cision recall curve were 0.038, 0.060, 0.106, and 0.147 at 4, 8, 24,

and 48 h prediction windows, respectively. Receiver operator

characteristic curves and precisionerecall curves for each of

our prediction windows are shown in Figure 1. Notably at

Youden’s point, the sensitivity for the 24 h prediction window

was 0.77 and the specificity was 0.80 (compared with sensi-

tivity of 0.84 and specificity of 0.80 for the 4 h prediction

window).

Next we graphed the maximum predicted score for each

patient, along with their receipt of mechanical ventilation or

death (Fig 2). By quintiles of machine learning scores, 8.5%,

6.5%, 8.8%, 20.0%, and 31.6% of patients (Fig 2) required me-

chanical ventilation or died within the subsequent 24 h.
Generalised linear modelling

Using GEE, nine features were found to be significantly asso-

ciated with ventilation or death within 24 h (c-statistic¼0.866;

95% CI, 0.863e0.869). The demographic features: age (adjusted

odds ratio [aOR]¼1.025; 95% CI, 1.008e1.043; P¼0.005), male sex

(aOR¼2.817; 95% CI, 1.582e5.025; P<0.001), and BMI

(aOR¼1.035; 95% CI, 1.004e1.067; P¼0.026) were all associated

with mechanical ventilation or death. The laboratory findings

of high sensitivity troponin (aOR¼1.005; 95% CI, 1.001e1.010;

P¼0.014) and D-Dimer (aOR¼0.983; 95% CI, 0.972e0.994;

P¼0.002) were also associated with our primary outcome. The

vital signs e (1) previous ventilatory frequency (aOR¼1.010;

95% CI, 1.003e1.017; P¼0.004), (2) current ventilatory frequency
(aOR¼1.014; 95% CI, 1.007e1.021; P<0.001), (3) previous SpO2/

FiO2 (aOR¼0.999; 95% CI, 0.998e1.000; P¼0.005), and (4) current

SpO2/FiO2 (aOR¼0.998; 95% CI, 0.998e0.999; P<0.001) e were

also associated with our primary outcome. As the prediction

window increased from 4 to 48 h, the discrimination remained

similar (c-statistic: 4 h time window¼0.865, 95% CI

0.862e0.868; 8 h window¼0.854, 95% CI 0.850e0.856; 24 h

window¼0.866, 95% CI 0.863e0.869; 48 h window¼0.840, 95%

CI 0.837e0.843); and an increasing number of variables were

selected (4 h: four significant variables, 8 h: five variables, 24 h:

nine variables, 48 h: 11 variables). Sex, high-sensitivity

troponin, previous ventilatory frequency, current ventilatory

frequency, and previous SpO2/FiO2 and SpO2/FiO2 occurred

consistently across multiple prediction windows. The full re-

sults of the GEE for each of the predictionwindows can be seen

in Supplementary Table S3.
Discussion

In the setting of COVID-19, the Random Forest algorithm is

able to predict ventilation or death with high sensitivity (0.77)

and specificity (0.80). Furthermore, we have very good

discrimination (c-statistic¼0.858; 95% CI, 0.841e0.874) for

predicting our primary target (24 h prediction window), which

improves as our prediction window narrows (4 h window, c-

statistic¼0.885; 95% CI, 0.858e0.924). [Interpretation of the c-

statistic: 0.5e0.6 for a poor model, 0.6e0.7 for a good model,

0.8e0.9 for a very good model, and 0.9e1.0 for an excellent

model.] Of the 10 features with the highest predictive value,

nine are vital signs. By capturing the clinical trajectory, these

dynamic features enable greater predictive utility to detect

changes through the course of a hospitalisation. We have

selected a list which can be easily and automatically extracted

for potential integration into a clinical support system.21 In

addition, we demonstrate consistent significance of key fea-

tures (age, sex, BMI, high sensitivity troponin, blood glucose,

SpO2/FiO2, and ventilatory frequency) across two independent

modelling methodologies (Random Forest and GEE) and mul-

tiple prediction windows (4, 8, 24, and 48 h). This suggests a

robust signal that can be leveraged for prediction of mechan-

ical ventilation.
Concordance with previous results

Our highest utility predictor, SpO2/FiO2, has been used as a

proxy for PaO2/FiO2 e which occurs in the diagnosis and

grading of acute respiratory distress syndrome.22,23 As SpO2/

FiO2 can be easily calculated, without the need for arterial

blood draw and can be used to monitor continuously, this

may represent a promising metric to assess for respiratory

deterioration in general care patients, not just patients with

COVID-19. Similar to other studies, we found that older,7

heavier,24 or male25 patients are more likely to require me-

chanical ventilation. Although other studies have found as-

sociations between renal failure, congestive heart failure,

hypertension, diabetes, and cardiac arrhythmias critical

illness or death,7,10,26 we found these to have only small

utility in the machine learning algorithm and not associated

with outcome in the GEE. Our lack of finding these previ-

ously reported associations may be attributable to different

patient populations, different clinical practices, or to our

more comprehensive list of potential factors. Both C-reactive

protein24 and aspartate aminotransferase (AST)27 e which

we have identified in our Random Forest model e have also
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been included in previous severity models. Tachypnoea is a

well characterised clinical sign of respiratory decompensa-

tion.7 The discrimination of our ventilation model was also

similar that reported in a critical illness model (c-

statistic¼0.88).10
Clinical decision making

Our algorithm can be integrated into a clinical support soft-

ware with the ultimate goal of identifying patients before

clinical decompensation.21 Our primary target (24 h prediction

window) was selected to allow appropriate time for in-

terventions, while still providing evidence of deterioration in

dynamic features. The advantages of identifying potential

respiratory failure 24 or 48 h in advance, include: (1) enrolment

in clinical trials, (2) aggressive therapeutic interventions such

as prone positioning or noninvasive mechanical ventilation,

and (3) planning for appropriate ventilator allocation and uti-

lisation. To identify the prediction window that optimises the

trade-off between detection and potential intervention, we

also quantified discrimination at 4, 8, and 48 h prediction

windows. In our Random Forest model, we have the greatest

discrimination to predict within 4 h (c-statistic¼0.885; 95% CI,

0.858e0.924) and the lowest, but still very good, discrimination

when predicting within 48 h (c-statistic¼0.839; 95% CI,

0.825e0.854). This is expected because evidence of the immi-

nent respiratory failure has likely started to manifest,

improving the ability to predict, but a 4 h prediction window

unfortunately allows the least opportunity for meaningful

intervention. We have shown high discrimination (for the

Random Forest Model) at 24 h. This can inform when the

model is most useful. However, the utility of the model must

account for both discrimination of the model and clinical

actionability. In addition to the high discrimination, 24 h

notice also allows the clinician an opportunity to make mod-

ifications in clinical care and preparation in resources for po-

tential decompensation.

The Random Forest model has a sensitivity of 0.77 and a

specificity of 0.80. Determination of the optimal identification

threshold should weigh the risk of falsely identifying a patient

as at risk for mechanical ventilation (increased monitoring

and resource utilisation, aggressive intervention) vs failing to

identify a patient who is susceptible to future deterioration

(missed opportunity to alter clinical trajectory and a delay in

recognising the need for increased acuity of care). The number

of patients needed to identify (NNI) is 3.2 for the highest

quintile and 5.0 for the second highest quintile, which are

reasonable numbers that limit false positives while identifying

patients in need of life-saving, but invasive, therapy.
Clinical correlates

For additional insight into patient characteristics our algo-

rithm is likely to misclassify, we reviewed the patients with

the lowest predictive score, who ultimately required me-

chanical ventilation within 24 h (‘false negatives’), and pa-

tients with high predictive scores who never required

ventilation (‘false positives’). Patients the algorithm failed to

identify were disproportionately missing data for highly

predictive features, such as PaO2/FiO2, ventilatory frequency,

heart rate, and SpO2. Specifically, seven of the 10 patients

with the lowest predicted scores, who received mechanical
ventilation within 24 h (i.e. the false negatives), were found

to be missing data for key features. Our algorithm was pro-

grammed to overcome this pitfall, by propagating values

from the previous time window, when no new values are

recorded. Therefore, these false negative cases skew early in

their hospital course, where no prior values are recorded and

missing values are imputed to population mean. As with any

predictive metric, our algorithm is inherently limited by the

quality of data recorded. Furthermore, the absence of regu-

larly recorded vital signs may be associated with unrecog-

nised decompensation, because of lower prioritisation of

medical documentation in an emergency situation or as a

reflection of the medical care team’s attentiveness. Because

of inherent limitations secondary to incomplete data, we

have characterised missing data in Supplementary Table S4.

Static variables (e.g. age, height, weight, and comorbidities

such as chronic pulmonary disease) have no missing values

across our dataset. This contrasts with dynamic variables

which have some missing values. For laboratory values and

vital signs, this likely reflects how often they were clinically

indicated. For example, SpO2, which is missing in 47% of our

4 h prediction windows, may be typically checked less

frequently than every 4 h in a stable, general care patient;

however, we do not have the reasons why SpO2 was not

recorded. Future studies may benefit from including absence

or presence of a value as part of the algorithm.

We also reviewed the patients with the highest predictive

scores who did not require ventilation within 24 h (‘false

positive’). Five of the 10 patients with the highest predictive

scores ultimately requiredmechanical ventilation during their

hospital course, suggesting our algorithm was successful in

detecting future respiratory decline, but not within the pre-

specified prediction window.

To assess the utility of our predictions on a patient level, we

quantified the percentage of patients in each risk quintile

requiring ventilation or dying within 24 h of their maximum

risk score (Fig 2). Patients in risk quintiles 1, 2, and 3 had an

8.5%, 6.5%, and 8.8% risk, respectively. This compares with

20.0% risk in the fourth quintile and 31.6% risk for a patient in

the fifth quintile. Even though a patient in the highest risk

quintile still has less than a 1 in 3 chance of requiring me-

chanical ventilation within the next 24 h, the clinical provider

may decide that because of the high mortality in patients

requiring mechanical ventilation, the increased patient risk

(31.6% compared with <10% in the three lowest risk quintiles

or 15.1% in our overall cohort) merits closer attention or more

aggressive care.

In our highest risk cohort, the NNI a single new case of

mechanical ventilation was 3.2, and for our second risk quin-

tile the NNI was 5.0. This means that for every three patients

our algorithm identifies as being in the highest risk group (or

five in the second quintile), we will correctly detect one new

case requiring mechanical ventilation in the next 24 h. Given

the high mortality associated with mechanical ventilation,7e9

an NNI <11 may be considered reasonable, particularly if the

intervention is low-risk or low-cost. The intervention may be

as low-risk and low-cost as using continuous monitoring with

SpO2 rather than intermittent monitoring, thus detecting a

decrease in the SpO2/FiO2 ratio, our strongest indicator of risk

for mechanical ventilation or death. If desired, the desired

threshold can be adjusted up or down based on type of inter-

vention and availability of resources.
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The Random Forest identified initiation of intravenous

heparin (Z-score¼1.60) and hydroxychloroquine (1.37) in the

algorithm. Other pharmacologic agents, such as tocilizumab

(0.85), remdesivir (0.15), and hydrocortisone (0), had very low

association. No pharmacologic agents were selected in the GEE

models. Potential reasons include inadequate statistical po-

wer, differences in patient population, or a reflection of

pharmacologic utility.

High-sensitivity troponin was included in the Random

Forest Model (4.59) and was selected in multiple GEE models.

Although the mechanism of respiratory deterioration remains

unresolved, the association between myocardial injury,

myocarditis, myocardial infarction, and thromboembolic

events has been previously described andmerits further study

and incorporation into predictive models.28
Strengths and limitations

Our study used two very dissimilar techniques (Random Forest

and GEE) for analysing the data and found similar discrimi-

nation and similar factors being associated with mechanical

ventilation and death. Our study possessed several limita-

tions. First, we were unable to account for all predictive fea-

tures thatmay contribute to pending respiratory failure. In our

study, we included some features, such as SpO2/FiO2, which

had not been previously characterised in the progression of

COVID-19, and included basic relationships between features

(change in values); however, other features andmore complex

relationships were potentially missed by our methodology.

The lack of institutional criteria for intubation also introduces

heterogeneity in our primary outcome, although the vari-

ability in provider practice likely also increases the general-

isability of our model.

Additional limitations to our study include those inherent

to our single-centre, observational study design: our conclu-

sions require prospective multicentre validation. We also

failed to explore the causal relationship between our predic-

tive features and the outcome. In addition, the model’s posi-

tive predictive value is a function of outcome incidence. As the

pandemic has progressed, the fraction of infected individuals

who require mechanical ventilation or die has decreased.29

This means the positive predictive value will be lower and

the NNI will be higher if themodel were applied to the current,

less critically ill patient population as compared with the pa-

tients in our dataset.

Overfitting was another potential concern. This was

addressed through our selection of generalised linear model-

ling, which adjusts standard error estimates by an estimated

overfitting parameter. To mitigate this potential issue within

our Random Forest model, cross-validation was independent,

with all time points corresponding to a single patient

restricted to the same fold.

Although we demonstrated that tachypnoea, hypotension,

and hypoxia are associated with impending respiratory

decline, we do not address whether addressing these ho-

meostatic imbalances through vasopressors or supplemental

oxygen mitigate progression of respiratory decline. A final

limitation is lack of external validation of our models. To

mitigate this intrinsic issue, independent cross-validation was

performed. Randomly dividing all the time points to different
folds would result in time points from the same patient in

many different folds. We would like to estimate how well the

model generalises to completely independent samples. To

ensure a conservative estimate of how well the model gener-

alises during cross-validation, we have ensured that all time

points from the same patient are restricted to the same fold.

Another limitation of this study is that the rapidly evolving

understanding of COVID-19 and advances in clinical man-

agement, necessitate re-calibration of the machine learning

model at regular time intervals. This is an important consid-

eration when applying this model to new data and an addi-

tional limitation of this study. For example, even though

hydroxychloroquine was associated with the outcome in the

Random Forest Model, that association probably does not hold

today because of evolving practice patterns.30
Conclusions

A Random Forest Machine learning approach and a GEE

approach, using demographic data, vital signs, medication

records, laboratory studies, and medical comorbidities can be

leveraged to predict which patients with COVID-19 are likely to

requiremechanical ventilation. Of the 10 featureswith highest

predictive value, nine are vital signs. SpO2/FiO2 can be easily

estimated andmonitored continuously, providing a promising

metric to assess for respiratory collapse in patients with

COVID-19. Future studies will (1) validate the algorithm on a

larger number of patients across additional healthcare sys-

tems, (2) integrate the complexity of the model within clini-

cian workflow, and (3) assess if clinical features identified by

the algorithm may provide targets for medical intervention to

alter the clinical course.
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