Results. During the 5.5 month study period, patients receiving mAb therapy at HMC had a mean age of 56 years (yrs) (± standard deviation) (± 15.4) and a mean Body Mass Index (BMI) of 34 kg/m² (± 8.5) (Tables 1,2). African Americans (AA) comprised 48% (194/407) (Table 3) and females comprised 54% (220/407) of the cohort. 6% (25/407) of the patients required hospitalization within 14 days of mAb infusion, had a mean age of 58 yrs (± 17) (p-value 0.62) and a mean BMI of 32 kg/m² (± 9) (p-value 0.33). Females and AA comprised 56% (14/25) and 48% (12/25) of this subgroup respectively (p-value 1.0). No deaths were reported within 30 days of infusion in this cohort.

Table 1:					
Age groups (years)	N (%) received <u>mAb</u> therapy				
<18	2 (0.5)				
18-29	22 (5.4)				
30-39	44 (10.8))				
40-49	58 (14.3)				
50-59	99 (24.3)				
60-69	104 (25.6)				
70-79	54 (13.3)				
80-89	24 (5.9)				
90 and above	0				
Total	407 (100)				

Table 2:						
BMI	N (%) received mAb therapy					
20 and below	5 (1.2)					
21-25	63 (15.7)					
26-30	91 (22.6)					
31-35	96 (23.9)					
36-40	73 (18.2)					
41-45	37 (9.2)					
45 above	37 (9.2)					
Total	402 (100) *					
* 5 Unknown						

Table 3:						
Race	N (%) received mAb therapy					
African American	194 (47.7)					
White/ Caucasian	192 (47.2)					
Others (American Indian, Asian, Hispanic,	21 (5.2)					
Unknown, Other)						
Total	407 (100)					

Conclusion. Previously published reports cite a hospitalization rate in untreated high-risk COVID-19 infected patients of 9-15%. During the period of study, the county hospitalization rate and county mortality rate for all comers with COVID-19 was 6.6% and 2.7% respectively while our high risk cohort had a hospitalization rate of 6% and with no deaths reported. Our cohort had much lower rates of hospitalization and death than would be expected especially in a group which comprised of 48% AA in an underserved area. mAb therapy seems to have a protective effect with significant reduction in the hospitalization and mortality rate among high-risk patients with COVID-19 infection and should be prioritized for administration.

Disclosures. All Authors: No reported disclosures

550. Bamlanivimab and Casirivimab/Imdevimab Treatment Outcomes: Results from a Large Healthcare System's Structured Implementation Experience Christopher Polk, MD¹; Anna Jacobs, MD²; Mindy Sampson, MD¹;

Michael Leonard, MD¹; Leigh Ann Medaris, MD¹; Christopher Branner, MD¹; Vineet Goel, MD¹; Lisa Davidson, MD¹; ¹Atrium Health, Charlotte, NC; ²Carolinas Medical Center - Atrium Health, Charlotte, NC

Session: P-24. COVID-19 Treatment

Background. Neutralizing antibody therapies targeting SARS-CoV-2 have been released for emergency use authorization by the FDA. Little is published on their real-world experience. In this retrospective study we share the results of our early experience on patient outcomes from use of these neutralizing antibodies within a large healthcare system.

Methods. We retrospectively analyzed results of a healthcare system wide program to pro-actively identify and treat COVID-19 patients with neutralizing antibody therapy.

Results. The 449 patients identified for SARS-CoV-2 neutralizing antibody therapy during the study period were retrospectively classified as falling in one of the three groups: untreated (199), bamlanivimab (87) and casirivimab/indevimab (125) treated patients (Table 1). Reasons identified patients were not treated most commonly were patient declined (n=74), unable to be contacted (n=36), out of treatment window (n=23), asymptomatic and feeling better (n=21) or did not have transportation (n=9). Bamlanivimab infusion did not reduce emergency room (ER) visits or hospitalization compared to untreated patient within 30-days of follow up (Table 2), and among all patients treated with antibody therapy only treatment with bamlanivimab and non-white race were predictors of need for hospitalization (Table 3). Casirivimab/ indevimab did reduce subsequent ER visits or hospitalization within 30 days post-infusion when compared to the untreated group. However, patients treated with either antibody therapy hal lower acuity of COVID-19 disease as reflected in need for intensive care unit (ICU) stay, mechanical ventilation or death (Table 2).

Tabl	e 1.	Cl	naracter	ristics	of	inf	used	vs	uninf	used	l patient	ts
------	------	----	----------	---------	----	-----	------	----	-------	------	-----------	----

Variable	Untreated	Bamlanvimab	Casirivimab/	P value
	(n = 199)	(n=87)	Imdevimab	
			(n=125)	
Female gender	112 (56%)	39 (45%)	63 (50%)	NS
Median age [range]	62 [20-92]	65 [23-91]	59 [18-98]	NS
Age >65	85 (44%)	46 (53%)	38 (30%)	<.05
Race / Ethnicity				
White	119 (60%)	60 (69%)	97 (78%)	<05
African-American	56 (28%)	20 (23%)	17 (14%)	<05
Hispanic	12 (6%)	5 (6%)	7 (6%)	NS
Asian	7 (3%)	1 (1%)	2 (1%)	NS
Other / Unknown	5 (2%)	1 (1%)	2 (1%)	NS
COPD	28 (14%)	8 (9%)	19 (15%)	NS
Hypertension	116 (58%)	45 (52%)	56 (45%)	NS
Heart disease	19 (9%)	11 (13%)	12 (10%)	NS
Immunosuppressed	20 (10%)	26 (30%)	19 (15%)	<.001
Chronic kidney disease	19 (9%)	20 (23%)	13 (10%)	<05
Obesity BMI>35	66 (33%)	31 (36%)	42 (34%)	NS
Obesity BMI>40	30 (15%)	12 (14%)	20 (16%)	NS
Diabetes	57 (29%)	27 (31%)	36 (29%)	NS
>1 Comorbidity	105 (53%)	51 (59%)	54 (43%)	NS
Mean days to infusion				
from symptom onset		6 [1-11]	5 [1-10]	<.001
[range]				
Time to infusion from				<.001
symptom onset >5 days		53 (61%)	48 (38%)	

Table 2.	Outcomes	in	treated	vs	untreated	patients

		ER Visit (%)	Hospitalized (%)	ICU Stay (%)	Mechanical Ventilation required (%)	Death (%)
No treatment (n=199)	Total	21 (10%)	25 (12%)	8 (4%)	3 (1%)	4 (2%)
	COVID* related	18 (9%)	24 (12%)	8 (4%)	3 (1%)	4 (2%)
Bamlanivimab (n = 87)	Total	8 (9%)	12 (14%)	1 (1%)	0	0
	COVID.	6 (7%)	10 (11%)	1 (1%)	0	0
Casirivimab/ Imdevimab	Total	3 (2%)*	3 (2%)*	0	0	0
(n=125)	COVID.	1 (1%)*	3 (2%)*	0	0	0

*Reasons for visits non-COVID related: trauma(4), hematuria (1), ischemic colitis (1), diverticulitis (1), congestive heart failure(1), bacterial sinusitis(1), hand pain(1).

p<.01 for Regeneron vs Untreated

Table 3. Risk factors for ED visits or hospitalization in infused patients

Variable	Infu	P value	
	ED or Hospital Visit (n=26)	No Visits (n=186)	
Female gender	12 (46%)	90 (48%)	NS
Median age [range]	62 [32 - 84]	61 [18 - 98]	NS
Age >65	11 (42%)	73 (39%)	NS
Race / Ethnicity			
White	14 (54%)	143 (77%	<05
African American	8 (31%)	29 (15%)	NS
Hispanic	3 (11%)	9 (5%)	NS
Asian	0	3 (2%)	NS
Other/ Unknown	1 (1%)	2 (1%)	NS
COPD	5 (19%)	22 (12%)	NS
Hypertension	17 (65%)	84 (45%)	NS
Heart disease	4 (15%)	19 (10%)	NS
Immunosuppressed	7 (26%)	38 (20%)	ŇS
Chronic Kidney disease	5 (31%)	28(35%)	NS
Obesity BMI>35	8 (31%)	65 (35%)	NŞ
Obesity BMI>40	5 (19%)	27 (14%)	NS
Diabetes	7 (27%)	56 (30%)	NS
>1 Comorbidity	16 (61%)	89 (47%)	NS
Mean days to infusion			
from symptom onset [range]	6 [3-11]	5 [1-11]	NS
Days to infusion from symptom onset >5	15 (57%)	86 (46%)	NS
Bamlanivimab therapy	19 (73%)	68 (36%)	<.001

Conclusion. Either neutralizing antibody therapy appears to markedly reduce acuity of COVID-19 disease even if patients do progress to requiring hospitalization. However, casirivimab/indevimab therapy also decreased ER visits and hospitalization suggesting better efficacy in our experience.

Disclosures. Christopher Polk, MD, Atea (Research Grant or Support)Gilead (Advisor or Review Panel member, Research Grant or Support)Humanigen (Research Grant or Support)Regeneron (Research Grant or Support) Mindy Sampson, MD, Regeneron (Grant/Research Support)

551. Remdesivir and Tocilizumab for the Treatment of Severe COVID-19 in a Community Hospital: A Retrospective Cohort Study

Guillermo Rodriguez-Nava, MD¹; Goar Egoryan, MD¹

Daniela Patricia Trelles-Garcia, MD¹; Maria Ádriana Yanez-Bello, MD¹; Qishuo Zhang, MD¹; Chul Won Chung, MD¹; Emre E. Ozcekirdek, MD¹; Ece Ozen, MD²; Bidhya Poudel, MD¹; Heather Cohen, PharmD, BCPS¹; Harvey Friedman, MD, FACP¹; ¹AMITA Health Saint Francis Hospital, Evanston, IL; ²AMITA Health Saint Joseph Hospital, Evanston, IL

Session: P-24. COVID-19 Treatment

Background. Growing evidence supports the use of remdesivir and tocilizumab for the treatment of hospitalized patients with severe COVID-19. The purpose of this study was to evaluate the use of remdesivir and tocilizumab for the treatment of severe COVID-19 in a community hospital setting.

Methods. We used a de-identified dataset of hospitalized adults with severe COVID-19 according to the National Institutes of Health definition (SpO2 < 94% on room air, a PaO2/FiO2 < 300 mm Hg, respiratory frequency > 30/min, or lung infiltrates > 50%) admitted to our community hospital located in Evanston Illinois, between March 1, 2020, and March 1, 2021. We performed a Cox proportional hazards regression model to examine the relationship between the use of remdesivir and tocilizumab and inpatient mortality. To minimize confounders, we adjusted for age, qSOFA score, noninvasive positive-pressure ventilation, invasive mechanical ventilation, and steroids, forcing these variables into the model. We implemented a sensitivity analysis calculating the E-value (with the lower confidence limit) for the obtained point estimates to assess the potential effect of unmeasured confounding.

Figure 1. Kaplan–Meier survival curves for in-hospital death among patients treated with and without steroids

The hazard ratio was derived from a bivariable Cox regression model. The survival curves were compared with a log-rank test, where a two-sided P value of less than 0.05 was considered statistically significant.

Figure 2. Kaplan–Meier survival curves for in-hospital death among patients treated with and without remdesivir

The hazard ratio was derived from a bivariable Cox regression model. The survival curves were compared with a log-rank test, where a two-sided P value of less than 0.05 was considered statistically significant.

Results. A total of 549 patients were included. The median age was 69 years (interquartile range, 59 – 80 years), 333 (59.6%) were male, 231 were White (41.3%), and 235 (42%) were admitted from long-term care facilities. 394 (70.5%) received steroids, 192