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Abstract

There is no cure or beneficial management option for Limb-Girdle muscular dystrophy (MD)

type 2B (LGMD2B). Losartan, a blood pressure (BP) lowering angiotensin II (AngII) receptor

type 1 (ATR1) blocker (ARB) with unique anti-transforming growth factor-β (TGF-β) proper-

ties, can protect muscles in various types of MD such as Duchenne MD, suggesting a poten-

tial benefit for LGMD2B patients. Herein, we show in a mild, dysferlin-null mouse model of

LGMD2B that losartan increased quadriceps muscle fibrosis (142%; P<0.0001). In a severe,

atherogenic diet-fed model of LGMD2B recently described by our group, losartan further

exacerbated dysferlin-null mouse muscle wasting in quadriceps and triceps brachii, two

muscles typically affected by LGMD2B, by 40% and 51%, respectively (P<0.05). Lower

TGF-β signalling was not observed with losartan, therefore plasma levels of atherogenic lip-

ids known to aggravate LGMD2B severity were investigated. We report that losartan

increased both plasma triglycerides and cholesterol concentrations in dysferlin-null mice.

Other protective properties of losartan, such as increased nitric oxide release and BP lower-

ing, were also reduced in the absence of dysferlin expression. Our data suggest that

LGMD2B patients may show some resistance to the primary BP-lowering effects of losartan

along with accelerated muscle wasting and dyslipidemia. Hence, we urge caution on the

use of ARBs in this population as their ATR1 pathway may be dysfunctional.

Introduction

Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Miyoshi myopathy are forms

of MD caused by mutations in the dysferlin gene[1–3], a calcium-dependent sarcolemma

repair and vesicle trafficking protein [[4,5] and reviewed in [6]]. In their late teens, patients
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with dysferlinopathies present with proximal and/or distal muscle weakness, which eventually

results in a complete loss of ambulation. To facilitate the testing of therapeutics, a number of

mouse strains have been identified (i.e. A/J, SJ/LJ [7]) or engineered (dysferlin-null [5]) to

express abnormally low levels of dysferlin. These typically show slightly elevated plasma crea-

tine kinase (CK) levels, a marker of muscle damage, and skeletal muscle biopsies reveal early

muscle regeneration followed by moderate fibrofatty remodelling, accumulation of macro-

phages and T cells as well as muscle wasting, but without the dramatic loss of ambulation typi-

cally observed in patients [5,8]. A recent report from our group has shown that the mild

phenotype of dysferlin-null mice can be exacerbated by increasing atherogenic, or non-HDL

(high-density lipoprotein) levels of plasma cholesterol, which results in accelerated fibrofatty

remodeling and gradual loss of ambulatory function similar to affected patients [9]. Currently,

there is no cure for dysferlinopathies nor any effective management options to delay the inevi-

table loss of ambulation observed in this patient population.

Losartan is an angiotensin II (AngII) receptor type 1 (ATR1) blocker (ARB) routinely used

to safely reduce blood pressure. In addition, others have reported that losartan has the unique

ability to attenuate transforming growth factor beta (TGF-β) signaling, a key regulator of mus-

cle homeostasis and regeneration [10–12]. In Duchenne MD (DMD), the cardiac and skeletal

muscle wasting cascade believed to be partly regulated by TGF-β can be attenuated by losartan

treatment, resulting in reduced serum CK, fibrosis, and calcification in the gastrocnemius, dia-

phragm and myocardium of mdx mouse model of DMD [13,14]. Other studies in the same

model reported reduced diaphragm fibrosis, improved grip strength and improved ex vivo
force frequency in the extensor digitorum longus (EDL) 6 months (mo) post-treatment [10].

Acute losartan treatment also protects against disuse atrophy following 21 days of hind-limb

immobilisation and against cardiotoxin injury, where losartan improved muscle regeneration,

time to heal as well as a number of in vivo functional readouts in the tibialis anterior (TA) of

sarcopenic mice [15]. Furthermore, therapeutic benefits following muscle injury include

improved muscle regeneration (4 and 18 days post-injury) and reduced fibrotic tissue forma-

tion in adult skeletal muscles [10]. In another model of MD, α2 laminin-deficient congenital

MD type 1A (MDC1A) was improved with losartan treatment [16] and this tissue protection

was also observed in patients [17]. Since LGMD2B patients also suffer from chronic muscle

wasting and have no management options, we hypothesized that losartan could protect muscle

tissues in dysferlin-deficient animals. For this purpose, the effect of chronic losartan treatment

(9 mo) on muscle wasting was evaluated in two mouse models of diet-accelerated dysferlinopa-

thy; 1) dysferlin-null mice fed a control diet, and 2) dysferlin-null mice fed a high-fat Western

diet (HFD), previously shown to exacerbate LGMD2B severity [9,18]. We report that losartan

treatment unexpectedly aggravated muscle wasting and fibrofatty infiltration in mild and

severely dysferlinopathic mice, which correlated with a losartan-dependent atherogenic shift

in their plasma lipid profile. In addition, dysferlin-null mice were resistant to the primary

blood pressure (BP)-lowering effects of losartan, which was in stark contrast to WT controls.

Hence our data suggest that use of losartan, and perhaps ARBs in general, should be avoided

in dysferlinopathic patients and further highlights the unique pathogenesis of dysferlinopa-

thies compared to other types of MD.

Materials & methods

Animal models

Mice were housed in a 12-hour/12-hour light/dark cycle, temperature-regulated facility. All

animal procedures were prospectively approved by the UBC Animal Care Committee (proto-

col A18-0172). Experimental mice were bred using dysferlin-null mice (C57BL/6 background:
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Dysftm1Kcam) provided by the Dr. Kevin Campbell lab [19]. Ear-clip DNA was extracted using

DNeasy extraction kit (Qiagen, #69506) following manufacturer’s instructions. Mice were gen-

otyped using a previously described dysferlin PCR protocol [20]. Euthanasia was performed

under anaesthesia (3.5% v/v isoflurane, 2L O2) and either cervical dislocation or cardiac punc-

ture for perfusion with warm Krebs solution as described [9,18].

Losartan treatment

Mice were fed either a high-fat (HFD) (Harlan, TD88137; 42% kcal from fat and 34% sucrose

by weight + 0.2% total cholesterol) or normal control diet (Chow; LabDiet #5001); 13% kcal

from fat; 3.7% sucrose by weight) from 2 to 11 mo of age. For chronic treatment, Losartan

(0.6g/L) was administered in drinking water ad libitum for the same duration at a dose previ-

ously shown to have biological availability and therapeutic efficacy in mouse models of DMD

and connective tissue disease [10,15,21]. For acute treatment, WT and dysferlin-null mice

were supplemented with the same dose of losartan (0.6g/L) ad libitum from 6 to 12 weeks of

age. Mice provided with standard drinking water served as controls. For dose response experi-

ments, both WT and dysferlin-null mice were treated with 6 increasing dosages of losartan

spanning 6 days (0, 3.6, 7.1, 10.7, 17.8, 21.4 and 100mg/kg/d).

Blood pressure (BP) measurements

Systemic BP was noninvasively measured using the tail cuff system (Kent Scientific CODA2).

Briefly, mice were lightly anesthetised (0.75% v/v isoflurane, 1.5L O2) and placed on a warming

tray with the tail inserted into an inflatable cuff where systolic BP (SBP) and diastolic BP

(DBP) were measured. Mean arterial pressure (MAP) was calculated as follows: 1/3 x SBP + 2/

3 x DBP.

Analysis of plasma cholesterol, triglycerides and creatine kinase

Plasma was collected in heparinized tubes via cardiac puncture of mice at 11mo, centrifuged at

4,000 RPM for 10 min at 4˚C and stored at -80˚C. The Siemans Advia 1800 system was used to

quantify plasma concentrations of creatine kinase (CK), total cholesterol (TC), high density

lipoprotein (HDL-C), low density lipoprotein (LDL-C) and triglyceride (TGs) levels (assays all

from Siemens) were performed according to instructions from the manufacturer and as previ-

ously published [9,18].

Tissue processing

Muscles were fixed in 10% formalin for 24h then transferred to 70% EtOH, paraffin-embed-

ded, sectioned to 8μm and stained with Masson’s trichrome as previously reported [9]), as fro-

zen sectioning causes fat smearing when numerous adipocytes are present. Fat was quantified

by manually tracing adipocyte containing regions (previously confirmed by perilipin staining

[9]) using Aperio ImageScope. Muscle damage, which included areas of bulk inflammation

and necrotic muscle fibres were also quantified as previously described [9]. Area values for

each parameter were divided by total muscle area (μm2) to obtain percentage values. Collagen

content/fibrosis was measured using a positive pixel count algorithm in Aperio ImageScope

software using the following parameters: hue value of 0.66 and hue width of 0.25 and standard-

ized to the total area of outlined sections (μm2). For cross-sectional area (CSA) measures,

quadriceps (rectus femoris) and triceps brachii muscles stained with Masson’s were portioned

into nine equal quadrants and the CSA of 100 myofibers were measured in each quadrant,

totalling 900 myofibers for each muscle section. Myofiber number and the percentage of total
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myofibres with a displaced and/or central nuclei were counted on entire muscle cross sections

using Aperio ImageScope.

Phospho-SMAD2 immunofluorescence

As described in [22], 8μm frozen sections were placed in ice-cold EtOH for 10 min. Sections

were blocked in 10% FBS, 0.03% Triton-X 100 in PBS before being incubated overnight at 4˚C

in 1% FBS, 0.03% Triton-X 100 in PBS (1:200; Phospho-SMAD2(Ser465/467); Invitrogen;

#44–244). Sections were washed 3 x 15min in 0.03% Triton-X 100 in PBS on ice and incubated

for 3h at 4˚C in 1% FBS, 0.03% Triton-X 100 in PBS (AlexaFluor594 goat anti-rabbit #A11037

Invitrogen). Samples were again washed 3 x 15min in 0.03% Triton-X 100 in PBS on ice and

mounted with DABCO mounting media with DAPI. Phospho-SMAD2 (pSMAD2) positive

nuclei were manually quantified and divided by the total number of nuclei present (DAPI)

across four images (each 20x magnification) using Aperio ImageScope taken across whole

quadriceps muscles. No discrimination between myonuclei and nuclei from other cells types

were made.

Immunoblotting

Briefly, remaining frozen quadriceps were ground in liquid nitrogen, homogenized in ice-cold

PBS, 1% NP40, 1mM EDTA buffer, with complete EDTA-free protease inhibitor and Phos-

STOP phosphatase inhibitor tablets (Roche, Manheim, Germany), and centrifuged at 13,000g

for 20 min at 4˚C [23]. Protein was quantified with the DCA protein Assay (Bio-Rad). Samples

were resolved on 4–15% SDS-PAGE TGX gels (Bio-Rad) and transferred onto nitrocellulose

membranes (Bio-Rad) using the Trans-Blot Turbo Transfer System (Bio-Rad; mixed molecu-

lar weight program; 2.5A-25V-7min). Following transfer, membranes were blocked in 1%

casein in TBS (Li-COR) for 1 hour at RT. Primary antibodies were diluted 1:1000 in 1% casein

in TBST (0.1% Tween 20); p-Akt(Ser473) (#9271), t-Akt (#9272), p-ribosomal protein S6

(Ser235/236) (#4858), p-ribosomal protein S6(Ser240/244) (#5364) t-ribosomal protein S6

(#2217), p-p44/42 MAP Kinase (Thr202/Tyr204) (ERK; #9101), p44/42 MAP Kinase (ERK;

#9102), LC3B (#2775) and incubated overnight at 4 degrees. Membranes were then washed

3x5mins in TBST, incubated with goat anti-rabbit AlexaFluor700 (Invitrogen; #A-21038;

1:5000; 1% casein in TBST) for 45 mins at RT and rewashed 3x5mins in TBST before imaging

with the Li-COR Odyssey scanner. The loading control GAPDH (#2118; Cell Signaling;

1:2000) was probed from all membranes following stripping in 2% SDS, 62.5mM Tris-HCL

(pH 6.7), 100mM ß-mercaptoethanol at 50˚C for 30 min and washed 5 x 5 min in TBST before

re-blotting. Total and phosphorylated protein forms were standardized to individual GAPDH

values before ratios of phosphorylated/total protein intensity was calculated. A common sam-

ple was loaded onto each gel to normalize for detection efficiencies across membranes. The

prefixes “P” and “P” signify “phosphorylated” and “total” forms respectively.

Measurement of isometric force

The descending thoracic aorta (ThA) was dissected from the thoracic cage and cleaned of fat

and connective tissue in ice-cold Krebs solution [118mmol/L NaCl, 22.5mmol/L NaHCO3,

4mmol/L KCl, 1.2mmol/L NaH2PO4, 2mmol/L CaCl2, 2mmol/L MgCl2, 11mmol/L dextrose,

0.01mmol/L Ibuprofen]. Segments of the ThA (2mm) were mounted isometrically in a small

vessel myograph (AS Danish Myotechnology, Aarhus N, Denmark), left to equilibrate for

30min at 37˚C in Krebs solution aerated continuously with 95% O2-5% CO2, followed by opti-

mal tension stretching (6.0mN) for 30min as previously described [24]. KCl (30mmol/L) and

concentration-response with phenylephrine (PE) (3nM to 100μM) were performed.
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Contraction was calculated as the % increase or decrease in force with respect to untreated

WT mice, where the maximum recorded response was set to 100%. Nω-nitro-L-arginine

methyl ester (L-NAME, 200mM) was used to block NO release.

PECAM immunohistochemistry

PECAM (Cell Signaling #77699; 1:100) was stained on paraffin sections cut at 4μm. Sections

were deparaffinized in 2 x 10 min xylenes; 2 x 10 min 100% EtOH; 5 min 95% EtOH; 5 min

70% EtOH and dH2O, then washed for 3 x 5 min minutes in PBS at RT. Antigen retrieval was

performed in 10mM citrate buffer until boiling for 8–15 min in the microwave and cooled at

RT for 20–30 min. Sections were washed 3 x 5 min in PBS, quenched in 3% H2O2 –MeOH for

15 min at RT before being rewashed in PBS 3 x 5 min. Sections were then blocked in 3% BSA

in PBS for 1h at RT. Primary antibody was diluted in 3% BSA in PBS and slides incubated

overnight at 4˚C. Sections were rinsed again 3 x 5 min in PBS at RT, goat anti rabbit secondary

antibody (Vector Laboratories; #BA-1000; 1:350) diluted in 3% BSA in PBS and applied for 30

min at RT before washing again for 3 x 5 min in PBS. VECTASTAIN ABC reagents (Vector

Laboratories; #SK6100) were pre-complexed 30 min prior to application as specified by the

manufacturer and applied to sections for 30 min at RT, before rinsing sections 3 x 5 min in

PBS. ImmPACT DAB reagents (Vector Laboratories; #SK-4105) was added for 1–2 min,

rinsed in dH2O, counterstained with Haematoxylin and cover-slipped. Average vessel density

was quantified on PECAM stained sections by averaging the number of blood vessels across

4–6 randomised images (dependent on muscle size) taken at 20x magnification using Aperio

ImageScope software.

Sudan IV and Van Geisson staining

Whole ThA aortas fixed in 10% formalin were cleaned and stained with Sudan IV. Briefly,

cleaned aortas were rinsed in 70% EtOH and placed into Sudan IV (5g Sudan IV in 500mL

70% EtOH and 500mL acetone) for 20 min. Aortas were rinsed briefly in 80% EtOH, soaked in

another exchange of 80% EtOH for 20 min washed under running tap water for 60 min and

then stored in 10% formalin until imaging. An apolipoprotein E deficient mouse aorta (a com-

mon model of atherosclerosis) served as a positive control. Images were taken with a through a

Zeiss KL2500-LCD dissecting microscope (Diagnostic Instruments) with a Samsung A8 cam-

era. Remnant ascending aortas were embedded cross-sectionally, stained with Van Geisson

using standard method, and representative images taken at 20x magnification using Aperio

ImageScope software.

Statistical analyses and data availability

Statistical analyses were performed using GraphPad Prism 6. One-way analysis of variance

(ANOVA) was used to compare the means of each group and Fisher’s post-hoc tests of least

significant difference used to analyse direct mean comparisons unless stated otherwise. A p-

value of less than 0.05 was considered statistically significant. Figures show data as mean plus

standard error of the mean (SEM).

Results

Losartan treatment exacerbates muscle wasting in dysferlin-null mice

To test the therapeutic potential of losartan in LGMD2B, dysferlin-null mice were treated with

0.6g/L of losartan in drinking water for 9 mo. Staining of both quadriceps (rectus femoris) and

triceps brachii muscle groups with Masson’s trichrome revealed that losartan exacerbated
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muscle pathology in a diet and drug-specific manner (Figs 1 and S1). Losartan exerted minor

detrimental effects in chow-fed mice, whereby heightened fibrosis was observed in rectus

femoris (142%; P<0.001; Fig 1A and 1D), but not triceps brachii muscle groups (S1A and

S1D Fig). Conversely, in HFD-fed mice losartan treatment resulted in a profound 32%

decrease in rectus femoris and triceps brachii size (Figs 1A and 1B and S1A and S1B;

P<0.05), as well as increased fat infiltration (129% and 202%; P<0.05) and collagen deposition

(81% and 54%; P<0.05) in each muscle, respectively, compared to chow-treated mice (Figs

1A, 1C and 1D and S1A, S1C and S1D). Consistent with profound muscle atrophy, losartan

caused a 40% decrease (P<0.05) in total rectus femoris myofibre number in HFD-fed mice,

irrespective of changes to myofibre cross-sectional area (Fig 1E and 1F) and the percentage of

centrally nucleated myofibers (S2A Fig). In triceps brachii however, muscle atrophy was asso-

ciated with reduced myofibre number, an increased frequency of smaller myofibres (500–

1000μm2) (S1E and S1F Fig), and in HFD-fed muscles increased rates of central nucleation

(S2A Fig). Active sites of muscle necrosis and bulk inflammation in both muscle groups was

minor (<10%; S2B Fig), yet reduced in rectus femoris muscles of HFD-fed mice. Despite obvi-

ous histological changes, plasma CK levels (a bi-phasic marker of muscle damage) were unaf-

fected (S2C Fig), as published by others in dysferlin-null animals [25]. Together, these data

show an exacerbation of muscle wasting by losartan in both the triceps brachii and quadriceps

(rectus femoris), two muscle groups severely affected by LGMD2B [8,9].

Losartan does not attenuate TGF-β-related signalling and shows limited

effects on muscle protein synthesis (AKT/rpS6) or autophagy (LC3B)

pathways

Since losartan is often linked to attenuated TGF-β signalling [10,16], downstream SMAD2 and

ERK1/2 activation were investigated by immunohistochemistry and Western blotting (Fig

2A–2D). While robustly expressed, the percentage of pSMAD2 positive nuclei in whole quad-

riceps muscles were similar across all experimental groups (Fig 2A and 2B), as was the average

number of DAPI positive nuclei counted across all images: Chow, 280 ± 36; Chow + Losartan;

393 ± 50; HFD, 390 ± 74; and HFD + Losartan, 410 ± 64). Protein lysates from whole quadri-

ceps were separated by SDS-PAGE and immunoblotting revealed that p-ERK(Thr202/Tyr204)

standardised to t-ERK (which reflects activation of this protein) was also unaffected by diet or

losartan treatment (Fig 2C and 2D). Finally, a major regulator of muscle protein homeostasis,

the IGF-1/insulin signalling pathway, was also studied. The activation of mTORC1 by protein

kinase B (PKB)/AKT or directly by nutrients can promote protein synthesis by phosphorylat-

ing two major targets, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation

initiation factor 4E-binding protein 1 (4E-BP1), which can be assessed by rpS6(Ser235/236)

[26]. Immunoblotting of phosphorylated AKT (Ser473; p-AKT) standardized to total AKT (t-

AKT) (S3A and S3B Fig), although unaffected in control diet-fed muscle, was significantly

reduced in HFD-fed conditions, an effect abolished by losartan treatment (S3A and S3B Fig).

P-rpS6 standardized to t-rpS6 was less robust, and overall, unaffected by diet or losartan (S3A

and S3C Fig). Given that mTORC1 activation is also shown to negatively regulate autophagy

in skeletal muscle [27], the ratio of LC3BII/I (a marker of autophagy) was also evaluated. Con-

sistent with a lack of rpS6 phosphorylation, ratios of LC3BII/I were also similar across all

experimental groups (S3A and S3D Fig). Combined, these data provide evidence that losartan

does not modulate TGF-β activation in mild or severe models of dysferlinopathy and that clas-

sical pathways responsible for muscle homeostasis (protein synthesis and degradation) were

not impacted by losartan despite significant muscle atrophy.
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Fig 1. Losartan treatment aggravates quadriceps muscle damage in chow- and HFD-fed dysferlin-null mice. Representative images of

quadriceps from mice after Masson’s trichrome staining (A) and quantification of total rectus femoris area (B), percentage area of fat (C),

percentage area of fibrosis/collagen infiltration (D), total myofibre number (E) and cross-sectional area (CSA) frequencies (F). Mean±SEM;
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Losartan induces an atherogenic shift in plasma cholesterol and TG levels

In other types of MD, losartan can protect against muscle damage while reducing plasma TGs

and improving the “good” (HDL) to “bad" (LDL) cholesterol ratio [28,29]. Hence, plasma lipo-

protein levels were examined. We observed that under normal chow conditions, losartan

increased plasma TG levels by 62.5%, leaving TC, HDL-C and LDL-C unaffected (P<0.01; Fig

3A–3D). Conversely, in HFD-fed animals, losartan elevated TC, HDL-C and LDL-C (P<0.05;

P<0.05 (�), P<0.01 (��), P<0.001 (���), P<0.0001 (����), One-way ANOVA with Fisher’s post-hoc tests of least significant differences. Hash (#)

indicates significantly different from all other groups, P<0.001 (###), P<0.0001 (####); Scale bars for 2x and 20x images are 1mm and 100μm,

respectively. Muscle tissue (pink); fibrosis (blue); fat/adipocytes (white). Chow (N = 10); Chow losartan (N = 7); HFD (N = 18); HFD losartan

(N = 6).

https://doi.org/10.1371/journal.pone.0220903.g001

Fig 2. Canonical (pSMAD2) and non-canonical (p44/42 MAP Kinase; ERK-1/2) TGF-β signalling in quadriceps muscle lysates are unaffected by diet or

losartan treatment. Percentage of total nuclei positive for p-SMAD2(Ser465/467) quantified on whole quadriceps muscle sections (A) with representative

pSMAD positive images (B), and quantitation of p-ERK(Thr202/Tyr204) standardised to t-ERK (C,D). DAPI (Red); pSMAD2 (Green); Merge (yellow). Mean

±SEM; One-way ANOVA with Fisher’s post-hoc tests of least significant differences. Y-axes represent arbitrary units (A.U.) unless stated. Scale bar for 20x

images is 100μm. p-ERK and t-ERK were blotted on separate gels, and GAPDH blotted on each to control for loading. Immunoblots share the same loading

order, sample concentration and loading control. Full blots were imaged separately and thus have differing exposures. Chow (N = 5–6); Chow losartan (N = 5);

HFD (N = 5–6); HFD losartan (N = 5).

https://doi.org/10.1371/journal.pone.0220903.g002
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Fig 3A–3C), independent of changes to circulating TG (Fig 3D). These data suggest that the

losartan-mediated exacerbation of muscle damage may be related to a shift in atherogenic,

LDL-C or TG lipoprotein components.

Dysferlinopathic mice are non-responsive to the endothelial function-

activating and BP-lowering effects of losartan

The effect of losartan on dysferlin-null muscle prompted us to test its primary effect on BP in

two additional cohorts of dysferlin-null mice (Fig 4). Six weeks of losartan treatment failed to

lower systolic, diastolic and mean arterial blood pressure (MABP) in dysferlin-null mice, com-

pared to untreated controls (Fig 4A). Dose-response analyses revealed a right shift in MAP

sensitivity in response to losartan as quantified by EC50 in dysferlin-null compared to WT

mice (Fig 4B; P<0.05). Having recently shown that losartan can improve endothelial function

via release of the vasodilatory mediator, nitric oxide (NO) [21], ex vivo myography was used to

test the effect of acute losartan treatment on vascular NO release. While aortic rings from WT

mice displayed reduced contractility in response to losartan (an effect fully reversed using the

NO synthase inhibitor L-NAME) (Fig 5A and 5B), PE-induced contractility was unaffected in

Fig 3. Plasma cholesterol and triglyceride levels in chow and HFD fed dysferlin-null mice with or without losartan

treatment. Total cholesterol (A), high-density lipoprotein (HDL-C) (B), low-density lipoprotein (LDL-C) (C) and

triglycerides (TG) (D). Mean±SEM; P<0.05 (�), P<0.01 (��), P<0.001 (���), P<0.0001 (����), One-way ANOVA with

Fisher’s post-hoc tests of least significant differences. Chow (N = 12); Chow losartan (N = 12); HFD (N = 9); HFD

losartan (N = 5).

https://doi.org/10.1371/journal.pone.0220903.g003

Fig 4. Dysferlin-null mice exhibit reduced sensitivity to the blood pressure (BP)-lowering effects of losartan.

Systolic, diastolic and mean arterial blood pressure measurements (MABP) in dysferlin-null mice treated acutely (6

weeks) with a 0.6g/L dose of losartan (A), and EC50 of losartan dose response curves in both WT and dysferlin-null

cohorts (B). Mean+SEM; P<0.05 (�), unpaired student t-test (two-tailed). N = 5–7 mice per group.

https://doi.org/10.1371/journal.pone.0220903.g004
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dysferlin-null vessels. These results confirm severe abnormalities in vascular function in

response to losartan in dysferlin-null vessels.

Losartan increases vascular density but has no effect on atherosclerotic

burden nor aortic morphology in dysferlin-null tissues

To visualize the chronic effects of losartan on vascular pathology and angiogenic capacity, ves-

sel density was quantified using PECAM1/CD31 stained muscle cross-sections (S4A–S4C

Fig 5. Dysferlinopathic mice are non-responsive to the NO-potentiating effects of losartan. Concentration-

response curves of PE contraction pre (A) and post (B) LNAME (100uM) in thoracic aorta sections following losartan

treatment. EC50 values are presented in bar graph (C). Contraction is expressed as a percentage of untreated WT

values. Data are +SEM; P<0.05 (�). Hash (###) indicates significantly different from non LNAME treated vessels,

P<0.001; One-way ANOVA with Tukey’s Post Hoc tests. N = 5–8 mice per group.

https://doi.org/10.1371/journal.pone.0220903.g005
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Fig). In settings of increased muscle damage and fibrosis we observed increased vascular den-

sity in triceps brachii (S4A and S4B Fig) and rectus femoris (S4C Fig; quantification only) fol-

lowing HFD and/or Losartan treatment. Despite the presence of elevated lipids,

HFD-Losartan treated aortas displayed no sign of atherosclerosis as measured by Sudan IV

staining (S4D Fig) and no overt structural changes to vessel morphology were observed on

representative Van Geisson stained ascending aortic segments (S4E Fig).

Discussion

The current study provides evidence in a preclinical model of dysferlinopathy that losartan

does not prevent, but rather exacerbates muscle wasting and damage, which is in stark contrast

to its protective effects in other types of MD and muscle disease. Previous work by us and

other groups have shown that losartan can ameliorate the manifestation of muscle disease in

mouse models of DMD, MDC1A, Marfan syndrome and sarcopenia, likely by attenuating the

pro-fibrotic action of TGF-β signalling [10,13,16,30,31]. This is in addition to studies that have

documented prophylactic effects when targeting the same pathways using angiotensin convert-

ing enzyme inhibitors [17,32]. Rationalization of these unexpected observations may be found

in a report that glucocorticosteroids used to treat other forms of MD are not effective in dysfer-

linopathic patients [33], indicating that loss of dysferlin causes unique and distinctive changes

in muscle signalling and homeostasis, compared to other MDs.

Losartan and TGF-β signalling in MD

The unexpected results observed in the current study argue against a therapeutic, TGF-β-

attenuating role for losartan in dysferlinopathies. Elevated TGF-β signalling has been docu-

mented in DMD patients, congenital MDC1A, as well as both mdx mouse and golden retriever

dog models of DMD [10,16,34,35]. Since TGF-β overexpression can inhibit satellite cell activa-

tion, and in injured muscle promote the differentiation of myogenic progenitors into fibrotic

cells [12,16,36], TGF-β elevation in DMD likely plays an active part in the promotion of profi-

brotic remodelling [16]. In a recent study, L-158809 (an analogue of losartan) reduced muscle

fibrosis and inflammation in MDC1A dyw/dyw mice and improved ambulation via reduced

TGF-β and pSMAD2/3 signalling [16]. In sarcopenic muscle, losartan was also able to rescue

necessary Pax7 and myogenic (MyoD and MyoG) signalling interactions essential for muscle

regeneration, in a TGF-β-driven, Smad2/3 and MAPK-dependent manner [15,37]. Similar

therapeutic properties also restored regenerative capacity in both DMD and MDC1A mouse

models following toxin-induced muscle damage [10,16]. In the current study, despite docu-

mented TGF-β upregulation in dysferlin-deficient tissues [38,39], we did not detect inhibition

of SMAD2 or ERK phosphorylation following chronic losartan treatment, which suggests that

loss of dysferlin may impair losartan signalling (see below). If this assessment is correct, the

contrasting effects of losartan in relatively similar genetic models of muscle disease (DMD and

LGMD2B) suggests that caution must be taken when testing experimental therapies in animal

models harbouring mutations of the dystrophin-associated glycoprotein complex. For

instance, the common use of mdx/utrophin double mutant mice as a more severe alternative

to the mild mdx model of DMD may result in misleading outcomes if used to test therapies, as

the probability of patients exhibiting double DGC mutations is extremely low. Instead, our

team has shown that modulating atherogenic plasma lipoprotein levels, particularly LDL-C

and TG, exacerbates muscle wasting to levels closer to what is generally seen in patients [9]

which could be beneficial for testing of advanced therapies.
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Losartan aggravates plasma lipid abnormalities but not CK in

dysferlinopathies

We have recently demonstrated that both dysferlin-null and mdx mice exhibit drastically wors-

ened muscle pathology and intramuscular fat accretion when plasma lipoprotein levels are ele-

vated to an atherogenic, LDL and TG-rich state [9,18], thus emphasising a strong relationship

between lipids and muscle homeostasis in multiple forms of MD. In particular, abnormal

plasma TG, phospholipids, free cholesterol, cholesterol esters and total cholesterol concentra-

tions in DMD patients [40], as well as significant lipid accumulation in dysferlin-deficient myo-

fibers, can be observed prior to the replacement of muscle area with adipocytes [8]. This

suggests either an inherent lipid handling defect or inefficient membrane repair in response to

lipotoxicity. Indeed, changes influencing phospholipid composition and oxidation can signifi-

cantly alter sarcolemmal stability and calcium signalling, as observed in a number of other mus-

cle wasting [41–44]. In general, ARBs (including losartan) as well as other anti-hypertensives

are shown to improve plasma lipid profiles and/or lipoprotein composition in a number of clin-

ical and pre-clinical disease models [13,28,45–49]. Moreover, losartan is known to reduce mus-

cle fibrosis concurrent with increased HDL-C concentration, and reduced TG and TC in mdx
mice [13]. Very few studies have explored the mechanisms behind losartan’s lipid-lowering

effects, however other ARBs including Telmisartan and Irbesartan can modulate peroxisome

proliferator-activated receptor gamma (PPAR-γ) agonist activity, a key regulator of lipid metab-

olism, while others have suggested high lipophilicity as a possible mediator [50]. Whether these

effects and those reported herein are due to losartan’s anti-ATR1 properties or its significant

off-target effects [21] is unknown. The extent to which these pathways are modified in dysfer-

lin-null tissue warrants further investigation, although studies have reported aberrant expres-

sion of very-low-density lipoprotein receptor, reduced LDL receptor-associated protein and

reduced uptake of cholesterol containing particles in dysferlin-null muscle [38]. Elevated

expression of the lipogenic marker CCAAT/enhancer binding protein- δ, has also been reported

in dysferlin-null A/J and BLAJ skeletal muscles prior to disease onset (3 mo), suggesting an

early induction of signalling pathways that promote an adipogenic lineage [8].

Based on the dramatic changes in muscle size in losartan-treated animals, one can antici-

pate changes in muscle weights; however plasma CK (a commonly used marker of muscle

damage in both clinical and preclinical muscle disease) was not affected in the present study,

as shown by others [25]. In mdx mice, reduced plasma CK and improved lipid profiles

(reduced TG, increased HDL-C) were correlated with reduced muscle damage and pathology

following chronic losartan treatment [13]. Interestingly, in our study plasma CK concentra-

tions did not correlate with muscle damage in dysferlin-null mice; a phenomenon that has

been noted in late stage disease in both mdx [51] and DMD patients [reviewed in [52]], where

CK levels can vary dramatically over time, and with the loss of viable myofiber area [51–53].

Anti-hypertensive treatments in LGMD2B

How blood pressure lowering medications impact both vascular and muscle tissue homeostasis

in the LGMD2B patient population is poorly understood. Although, previous work has shown

that Diltiazem, a Ca2+ channel blocker with blood pressure lowering capabilities, can elicit par-

tial protection in dysferlin-null tissues using acute damage models [54]. Our group has recently

shown that losartan mediates its off-target, NO-protective effects on vascular tissues in a

VEGFR-dependent manner [21]; a function shown to be ablated in dysferlin-deficient cells

[55]. Moreover, losartan has been shown to block AngII induced, Ca2+-regulated lysosome

fusion and lipid raft formation [56], which may have implications in dysferlin-deficient cells,

given their already inherent loss of Ca2+-regulated membrane repair [5]. While a growing

Losartan exacerbates dysferlinopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0220903 August 12, 2019 13 / 18

https://doi.org/10.1371/journal.pone.0220903


number of studies report profound vascular abnormalities in MD [9,18,55,57–59], why dysfer-

lin-null tissues also display aberrant signalling in response to the blood pressure-lowering effects

of ATR-1 blockade is unknown. Significant downregulation of ATR-1 and ATR-1 associated

proteins has however been documented in dysferlin-null heart tissues [60], which supports the

notion that the loss of dysferlin may have an impact on losartan’s biological function. Whether

other blood pressure-lowering drugs which do not target the AngII type 1 receptor, such as

angiotensin 1 converting enzyme inhibitors or β-blockers, would be a preferable pharmacologi-

cal approach to treat hypertension in this patient population should be explored.

In summary, despite the efficacy of losartan in ameliorating muscle pathology in other forms

of MD, the current study demonstrates that in the dysferlin-null mouse model of LGMD2B,

losartan exacerbates muscle wasting concurrent with an atherogenic shift in plasma lipid pro-

files. When combined with earlier studies detailing lipid abnormalities in many forms of MD,

this report provides an early indication of plasma lipid handling defects in dysferlinopathies,

which may be a primary contributor to muscle disease pathogenesis. More importantly, our

data are the first to document the reduced efficacy of losartan to lower blood pressure and pro-

mote endothelial function in dysferlin null tissues. Together, these data highlight important het-

erogeneities between dysferlinopathies and other types of MD, and stresses the need to assess

the safety and efficacy of AngII-dependent therapies in the LGMD2B patient population.

Supporting information

S1 Fig. Losartan treatment aggravates triceps brachii muscle damage in chow- and HFD-

fed dysferlin-null mice. Representative images of triceps brachii from mice after Masson’s tri-

chrome staining (A) and quantification of total triceps brachii area (B), percentage area of fat

(C), percentage area of fibrosis/collagen infiltration (D), total myofibre number (E) and cross-

sectional area (CSA) frequencies (F). Mean±SEM; P<0.05 (�), P<0.01 (��), P<0.001 (���),

P<0.0001 (����), One-way ANOVA with Fisher’s post-hoc tests of least significant differences.

Scale bars for 2x and 8x images are 1mm and 300μm, respectively. Muscle tissue (pink); fibro-

sis (blue); fat/adipocytes (white). Chow (N = 8); Chow losartan (N = 7); HFD (N = 8); HFD

losartan (N = 6).

(TIF)

S2 Fig. Muscle regeneration and plasma CK levels in chow- and HFD-fed dysferlin-null

mice with or without losartan treatment. Percentage of centrally nucleated myofibres (A)

and the percentage of muscle damage (B) in rectus femoris and triceps brachii muscle groups,

and levels of plasma CK (C). Mean±SEM; P<0.05 (�), P<0.01 (��), P<0.001 (���), P<0.0001

(����), One-way ANOVA with Fisher’s post-hoc tests of least significant differences. Chow

(N = 12); Chow losartan (N = 12); HFD (N = 9); HFD losartan (N = 5).

(TIF)

S3 Fig. Anabolic (AKT/rpS6) and autophagy (LC3B) signaling in quadriceps muscles of

chow- and HFD-fed dysferlin-null mice with or without losartan treatment. Quantitation

of p-AKT(Ser473) standardised to t-AKT (A,B), p-rpS6(Ser235/236) to t-rpS6 (A,C) and ratio

of LC3BII/I (A,D). Mean+SEM; P<0.05 (�), P<0.01 (��), P<0.001 (���). One-way ANOVA

with Fisher’s post-hoc tests of least significant differences. Y-axes represent arbitrary units (A.

U). p-AKT, p-rpS6 and LC3B were cut from the same gel and blotted with respective antibod-

ies, as were t-AKT and t-rpS6. Both total and phosphorylated strips for rpS6 were stripped and

blotted for GAPDH to check for loading efficiencies. Full blots were imaged separately and

thus have differing exposures. Chow (N = 6); Chow losartan (N = 5); HFD (N = 6); HFD

Losartan exacerbates dysferlinopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0220903 August 12, 2019 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220903.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220903.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220903.s003
https://doi.org/10.1371/journal.pone.0220903


losartan (N = 5).

(TIF)

S4 Fig. Vessel density, atherosclerotic burden and aortic morphology in chow- and HFD-

fed dysferlin-null mice with or without losartan treatment. Representative images (triceps

brachii only; A) and quantitation of vessel density for triceps brachii rectus femoris (B) and

rectus femoris (C); Scale bar is 100μm. Representative images of Sudan IV stained thoracic

aorta segments in ApoE (Control) and HFD Losartan treated dysferlin-null mice (D); Scale

bar is 0.5cm. Representative images of Van Geisson stained ascending aortic segments (E);

Scale bar is 100μm. N = 3–6 mice per group. Mean+SEM; P<0.05 (�), P<0.01 (��), P<0.001

(���), P<0.0001 (����), One-way ANOVA with Fisher’s post-hoc tests of least significant differ-

ences.

(TIF)
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