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Abstract: White matter pathology is common across a wide spectrum of neurological diseases.
Characterizing this pathology is important for both a mechanistic understanding of neurological
diseases as well as for the development of neuroimaging biomarkers. Although axonal calibers
can vary by orders of magnitude, they are tightly regulated and related to neuronal function, and
changes in axon calibers have been reported in several diseases and their models. In this study,
we utilize the impact acceleration model of traumatic brain injury (IA-TBI) to assess early and late
changes in the axon diameter distribution (ADD) of the mouse corticospinal tract using Airyscan and
electron microscopy. We find that axon calibers follow a lognormal distribution whose parameters
significantly change after injury. While IA-TBI leads to 30% loss of corticospinal axons by day 7 with
a bias for larger axons, at 21 days after injury we find a significant redistribution of axon frequencies
that is driven by a reduction in large-caliber axons in the absence of detectable degeneration. We
postulate that changes in ADD features may reflect a functional adaptation of injured neural systems.
Moreover, we find that ADD features offer an accurate way to discriminate between injured and non-
injured mice. Exploring injury-related ADD signatures by histology or new emerging neuroimaging
modalities may offer a more nuanced and comprehensive way to characterize white matter pathology
and may also have the potential to generate novel biomarkers of injury.

Keywords: axonopathy; traumatic brain injury; white matter microstructure; lognormal distribution

1. Introduction

The unique geometry and energy requirements of axons that make up white matter
leave them vulnerable to various insults including hypoxia, oxidative stress and metabolic
disturbance, inflammation, and mechanical trauma. As such, white matter pathology is a
common occurrence across a wide spectrum of neurological diseases, from traumatic brain
injury (TBI) and ischemia to neurodegenerative and neurodevelopmental conditions. White
matter pathology has also been the focus for the development of neuroimaging biomarkers
that label specific changes in white matter microstructure.

The diameter of axons in the nervous system can vary up to 100-fold (e.g., ∼100 nm–10 µm)
and directly relates to conduction velocity, frequency and information transmission rate [1].
The distribution of axon calibers within a single white matter tract is a feature of white
matter microstructure intimately related to neuronal function and may be altered in patho-
logical conditions. For example, it has been reported that individuals with autism have a
relative deficit in large-caliber axons [2] while reductions of axon calibers in the absence of
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axonal degeneration has been observed in rat models of chronic alcohol consumption [3].
Moreover, it is recognized that axons are not just the static wire that connects the somatoden-
dritic compartment of neurons to their synaptic terminals but, by actively modulating their
calibers, they compute analog and digital signals and optimize the speed of propagation of
action potential and hence the temporal transfer of information [4–7].

While the axon diameter distribution (ADD) of a given white matter tract may be
related to function, it is not known to what extend adaptive or pathological processes
following injury may also impact on individual axon calibers and ADD. Characterizing
early and late changes in ADD may offer novel insights in responses to axonal injury.
Here we utilize a mouse model of traumatic brain injury (TBI), i.e., the impact acceleration
model (IA-TBI) that is featured by diffuse or traumatic axonal injury (TAI) and leads to
the degeneration of several long CNS tracts, to assess early and late changes in ADD post
injury. We focus on the injured corticospinal tract (CST) [8,9] and use Airyscan and electron
microscopy to determine axon calibers. We find that TAI leads to an early loss of axons
of all calibers followed by redistribution of axon diameters in the absence of detectable
ongoing degeneration.

2. Results
2.1. Impact Acceleration TBI Leads to CST Axon Degeneration in the First Week Post Injury

We have previously shown that IA-TBI results in significant white matter pathol-
ogy in the spinal cord, including the corticospinal tract (CST). In the acute phase, axonal
pathology includes swellings, varicosities, dysmyelination and, in some cases, apparent
transection [8,9]. Pathology is primarily encountered in the most caudal pyramids, pyra-
midal decussation and cervical spinal cord, followed by Wallerian degeneration of the
distal axons [8,9]. By examining the CST on semithin and thin sections through the caudal
cervical segments at 3 and 7 days post injury, we found that there is no significant increase
in pathological burden between 3 and 7 days, indicating that the majority of axon losses
occur early after injury [9]. Based on these findings, we further assessed axonal changes
in the CST at 7 and 21 days in Thy-YFP-H transgenic mice (n = 19) in which CST axons
are selectively labeled and can be assessed at single-axon resolution (Figure 1A). In these
preparations, IA-TBI results in loss of 30% of axons at both time points (Figure 1B).
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Figure 1. (A). Lower cervical spinal cord section showing YFP(+) axons and neurons. The dorsal
corticospinal tract is traced with a green dotted line. Inset shows individual CST axons at higher
magnification. (B). Loss of YFP(+) axons in the CST after single IA-TBI. *, p < 0.05.



Int. J. Mol. Sci. 2022, 23, 7391 3 of 11

2.2. Impact Acceleration TBI Leads to Significant ADD Changes

On injured Thy-YFP-H mice, analysis of YFP+ CST axons revealed that the distribution
of axon diameters does not follow a normal distribution and has a heavy right-tail skew.
Across all cases, the median likelihood ratio for lognormal versus normal distribution was
1012 to 1. Therefore, ADDs were fitted with a lognormal model for all experimental groups
with R2 of 0.94, 0.95 and 0.94 for the sham, day 7, and day 21 groups, respectively.

Comparison of axon diameters between sham and injured subjects revealed significant
changes in ADDs primarily due to a progressive decrease in the relative frequency of axons
larger than 0.7 µm (Figure 2A). To further describe the changes across groups, we estimated
particular shape features of the ADD for each group (Table 1) including the geometric mean
(GM) which is equivalent to the median (50th percentile), the geometric standard deviation
(GSD) which describes the spread of the distribution and directly relates to its skewness
(the degree of asymmetry and tailed-ness of the ADD), as well as the 90th percentile (an
index for the large-caliber axons), and the mode (the most frequent axon caliber). All these
features indicate that IA-TBI is associated with progressive changes in axons, namely a
reduction in overall axon calibers but also in their dispersion and the right-tail of the ADD,
i.e., a greater loss in large-caliber axons. For statistical comparisons between groups, we
estimated the two core ADD features (GM and GSD) for individual animals and assessed
them with one-way ANOVA. There were significant changes across groups for both GM
(F2,17 = 6.25, p = 0.007) and GSD (F2,17 = 5.08, p = 0.013). While there were no significant
differences in the ADD between sham and Day 7 animals (GM: t = 0.98, p = 0.4; GSD:
t = 1.68, p = 0.13), there were significant differences between sham and Day 21 animals (GM:
t = 3.39, p = 0.003; GSD: t = 2.83, p = 0.01), as well as between Day 7 and Day 21 animals for
GM (t = 2.64, p = 0.019) thought not for GSD (t = 1.88, p = 0.087). Assessment of myelinated
axon diameters from a separate EM cohort revealed the same pattern (Supplementary
Figure S1).

Table 1. Changes in relative ADD features following IA-TBI.

ADD Features Sham (n = 7) Day 7 (n = 7) Day 21 (n = 6)

Geometric mean,
GM (CI95%) 0.69 (0.62–0.77) 0.65 (0.58–0.72) 0.51 (0.43–0.59)

Geometric standard
deviation, GSD (CI95%) 2.10 (1.99–2.21) 2.03 (1.97–2.09) 1.97 (1.92–2.02)

Skewness (CI95%) 3.21 (2.79–3.62) 2.94 (2.72–3.16) 2.72 (2.55–2.88)
90th Percentile (CI95%) 1.79 (1.49–2.09) 1.61 (1.4–1.81) 1.22 (1.02–1.41)

Mode (CI95%) 0.40 (0.37–0.43) 0.39 (0.35–0.44) 0.32 (0.2–0.38)

Although the above analysis demonstrates the impact of injury on the shape of the
ADD, it does not take into account the loss of axons. Therefore, in order to better understand
injury-related changes in populations of axons of different diameters, we calculated an
adjusted shape of ADD of each group based on average axon survival (Figure 2B). For
example, for the day 7 group, the adjusted frequency plotted for each bin in Figure 2B is
the one in Figure 2A multiplied by the proportion of surviving axons in that bin at Day
7. In that group, Figure 2C shows that there is loss of axons of all calibers, although for
axons larger than 0.7 µm (representing 44–52% of the initial axon population) axon loss
appears proportional to axon diameter (Spearman’s ρ = −0.98, CI95% = −0.99 to −0.95). By
day 21 and in the absence of further detectable degeneration (Figure 1B), we observed a
significant remodeling of the surviving axonal population. This was indicated by further
reductions in the frequencies of axons larger than 0.7 µm and a reciprocal increase in the
proportion of small diameter axons, to nearly pre-injury levels (Figure 2C). In order to
distinguish the effect of the redistribution in axon frequencies from the overall reduction in
diameters, we further ranked axons based on their diameters as percentiles and plotted
their corresponding frequencies (Figure 3). We found that, in all groups, axons ranking
at the 24–26th percentiles have the highest frequencies, and that early after injury the
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frequencies of axons up to the 70th percentile are substantially reduced. However, by day
21, the frequencies of axons across ranks are virtually restored to their baseline.
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Figure 2. Axonal diameter distribution changes in the corticospinal tract after impact-acceleration
traumatic brain injury. (A) Relative frequency plots of axon calibers (Feret’s diameter) at 7 or 21 days
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sham injury group (area under the curve represents total axon survival). (C) Estimated relative axon
frequency per axon diameter bin, compared to sham-injured animals. Error bars represent standard
error of the mean for each group.
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Figure 3. Frequency distribution of axons based on ranking. For each group, axon caliber ranks (per-
centiles) were calculated and shown against estimates of their corresponding frequencies (adjusted
for axon losses). These estimates were imputed from the lognormal curves of the underlying ADD
(as per Figure 2B). Dotted lines represent standard error of the mean.
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2.3. ADD Injury Signatures in Individual Mice

In the previous section we have demonstrated that IA-TBI is associated with specific
long-term changes in several features of the ADD, including the geometric average axon
diameter (GM) and their dispersion (GSD). To explore whether these ADD features can
be used to discriminate injured from non-injured mice at 21 days, we performed sensitiv-
ity/specificity analyses by plotting receiver operating characteristic (ROC) curves for GM
and GSD (Figure 4A). For both GM and GSD, the area-under-the curve (GM: 0.95, with
CI95% 0.84–1.00, p = 0.007; GSD: 0.91, with CI95% 0.74–1.00, p = 0.015) indicates significant
discriminatory accuracy. We also wanted to explore whether GM and GSD can be used for
clinicopathological correlations, for example with the severity of injury as indicated by the
presence of post-injury apnea. We subdivided injured cases based on the presence or ab-
sence of apnea, and we analyzed differences in GM and GSD values with two-way ANOVA.
Despite a small number of cases, we found that both time after injury and the presence of
post-injury apnea were significantly related to changes in ADD features (Figure 4B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. ADD signatures in individual mice. (A) Receiver operating characteristic curves for geo-
metric standard deviation (GSD) and geometric mean (GM) of ADDs at 21 days post injury. (B) 
Changes in the GSD and GM of ADDs in individual mice after injury. Two-way ANOVA for the 
effects and interactions between post-injury apnea and survival after injury on the GSD of the ADD 
revealed significant contribution of both post-injury apnea, F1,9 = 32.86; p < 0.001; and post-injury 
interval, F1,9 = 13.45, p = 0.004. Mice that experience apnea showed evidence of a lower GSD of the 
ADD at day 7, t = 3.11, p < 0.001; but not at day 21 t = 3.11, p = 0.066. There was significant reduction 
in the GSD from day 7 to day 21 for both the apnea group, t = 2.76, p < 0.001, and the no apnea group, 
t = 3.19, p = 0.028. Similarly, the two-way ANOVA for the effects and interactions between post-
injury apnea and survival after injury on the GM of the ADD revealed significant contribution of 
both post injury apnea, F1,9 = 5.27; p = 0.044; and post-injury interval, F1,9 = 9.10, p = 0.009. Mice that 
experience apnea did not show evidence of a different GM of the ADD at day 7, t = 1.54, p = 0.171 or 
at day 21 t = 1.75, p = 0.139. There was significant reduction in the GM from day 7 to day 21 for the 
no apnea group, t = 3.106, p = 0.029, but not in the apnea group, t = 1.59, p = 0.206. *, p < 0.05; ***, p < 
0.001. 

3. Discussion 
White matter makes up to 30% of the human brain [10] and abnormalities of the white 

matter, mostly based on neuroimaging, have been implicated in a wide spectrum of neu-
rological and psychiatric diseases. Therefore, it is important to characterize the baseline 
characteristics of white matter microstructure and how these are affected in different 
pathological conditions. The distribution of axon calibers within individual white matter 
tracts seems to be one such feature and here we present the first focused attempt at char-
acterizing ADD changes in the course of traumatic axonopathy. We found that IA-TBI 
which leads to partial degeneration of the CST, is also associated with significant changes 
in ADD that occur after the resolution of the degenerative cycle early post injury. These 
changes include a reduction in both the average axon caliber and the dispersion of caliber 
values. 

3.1. Axon Calibers and Lognormal Distribution 
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geometric standard deviation (GSD) and geometric mean (GM) of ADDs at 21 days post injury.
(B) Changes in the GSD and GM of ADDs in individual mice after injury. Two-way ANOVA for the
effects and interactions between post-injury apnea and survival after injury on the GSD of the ADD
revealed significant contribution of both post-injury apnea, F1,9 = 32.86; p < 0.001; and post-injury
interval, F1,9 = 13.45, p = 0.004. Mice that experience apnea showed evidence of a lower GSD of the
ADD at day 7, t = 3.11, p < 0.001; but not at day 21 t = 3.11, p = 0.066. There was significant reduction
in the GSD from day 7 to day 21 for both the apnea group, t = 2.76, p < 0.001, and the no apnea group,
t = 3.19, p = 0.028. Similarly, the two-way ANOVA for the effects and interactions between post-injury
apnea and survival after injury on the GM of the ADD revealed significant contribution of both post
injury apnea, F1,9 = 5.27; p = 0.044; and post-injury interval, F1,9 = 9.10, p = 0.009. Mice that experience
apnea did not show evidence of a different GM of the ADD at day 7, t = 1.54, p = 0.171 or at day
21 t = 1.75, p = 0.139. There was significant reduction in the GM from day 7 to day 21 for the no apnea
group, t = 3.106, p = 0.029, but not in the apnea group, t = 1.59, p = 0.206. *, p < 0.05; ***, p < 0.001.
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3. Discussion

White matter makes up to 30% of the human brain [10] and abnormalities of the
white matter, mostly based on neuroimaging, have been implicated in a wide spectrum of
neurological and psychiatric diseases. Therefore, it is important to characterize the baseline
characteristics of white matter microstructure and how these are affected in different
pathological conditions. The distribution of axon calibers within individual white matter
tracts seems to be one such feature and here we present the first focused attempt at
characterizing ADD changes in the course of traumatic axonopathy. We found that IA-
TBI which leads to partial degeneration of the CST, is also associated with significant
changes in ADD that occur after the resolution of the degenerative cycle early post injury.
These changes include a reduction in both the average axon caliber and the dispersion of
caliber values.

3.1. Axon Calibers and Lognormal Distribution

One of our primary observations is that axon calibers of the mouse CST have a skewed
distribution with a heavy right tail, best described as lognormal. Whereas the majority
of axons have small- or medium-size calibers (50% of CST axons are <0.7 µm in diameter
at baseline), axons at the top 10% have calibers that are much larger than expected in a
normal distribution (at baseline their calibers are >1.3 µm). This pattern is observed across
white matter tracts and species, and has been associated with the need to balance two
important and competing factors, the requirement for optimal information rates on one
hand and the associated metabolic cost on the other [1,11]: large-caliber axons transmit
greater volumes of information because information rate is linearly proportional to the
axon diameter (∝ d) and, at the same time, they are more costly because metabolic cost is
proportional to the volume of the axon (∝ d2). In other words, for a given white matter tract,
the relative proportion of small- and large-caliber axons can be said to be optimized by
the need to maintain functionally appropriate information rates at a minimal information
cost [1]. For this reason, differences in the distribution of axon diameters, i.e., skewness and
dispersion, among different white matter tracts may reflect heterogeneity of information
rates conveyed by different systems [1].

The lognormal distribution of axon calibers presents an important deviation from
other areas in biology where the values of a variable vary symmetrically around a mean
value and have the shape of a normal (Gaussian) distribution, which is characterized by the
arithmetic mean and standard deviation. Lognormal distributions, on the other hand, arise
when, not the variable itself, but, its logarithm follows a normal distribution, and are best
characterized instead by the GM and GSD. Whereas the variability in a normal distribution
is due to independent additive effects, in the lognormal distribution variability arises
mostly from independent multiplicative effects [12]. In complex biological systems such as
the nervous system, occurrence of lognormal distributions can therefore be explained by
the multiplicative and synergistic nature of the interactions of their elements [13].

The lognormal profile of ADD in CST is consistent with a large body of work showing
that across different white matter tracts and species, axon population calibers conform to
such distributions [1,14]. Similar lognormal distributions are also observed in the sizes
of spines on dendrites, synaptic weights, in the firing rates of disparate neuronal popula-
tions across different environments/contexts and even in connectivity patterns between
brain [13]. The ubiquity of the same type of distribution across multiple neural proper-
ties and scales of observation is not surprising, however, due to the natural interrelation
between structure and function: cell body size is correlated with axon caliber which is in
turn correlated with synaptic weights and firing frequency and is directly proportional to
information transmission rate [1,14–17]. Therefore, the distribution of axon calibers may be
driven by factors acting at multiple levels and scales of organization.
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3.2. ADD Changes after Injury

The main finding of our study is that TBI induces significant changes in ADD early and
late post injury. Although we couldn’t detect significant changes in ADD features in the first
week after IA-TBI, we found that there are reductions in axons of all calibers, while large
axons in the upper half of the population also exhibit some size-dependent vulnerability. It
is not possible to discern whether these changes are purely due to size-dependent axon
degeneration, caliber changes in surviving axons, or a combination of the two. However,
the most dramatic change in ADD in our study happens between the second and third week
after injury, in the absence of detectable ongoing axon degeneration. Given that the number
of axons between day 7 and day 21 did not appear to change, the observed reductions in
GM and GSD are more likely explained by the preferential atrophy of large-caliber axons
resulting in an apparent reciprocal increase in the frequency of smaller axons. A caveat is
that axonal pathology has been occasionally observed months after single injury [18,19],
and conversely limited regenerative sprouting in the CNS has also been observed after
TBI [20], and, therefore, we cannot rule out that at least a minor component of the observed
ADD changes may relate to changes in the axonal population.. Nevertheless, a similar
leftward shift in the ADD has also been reported in myelinated axons after TAI in the
corpus callosum, a finding suggesting predominant loss or atrophy of large axons [21].
Similar vulnerability of larger axons and neurons is reported after ischemia [22] as well
as in models of neurodegeneration [23,24].In these studies, changes in ADDs were not
formally assessed, but reported changes are in keeping with our observations. While this
trend indicates that similar changes in ADDs may occur in response to disparate insults
and across different white matter tracts, future assessment of ADD changes with different
TAI models, and across different tracts and longer survival intervals will be important in
order to further validate our findings in more diverse contexts. Similarly, the ADD measure
would need to be explored as a function of other parameters not assessed in our study, such
as injury severity, age and sex, and it is likely that such work will yield important insights.

3.3. Potential Mechanisms Underlying ADD Changes

Mechanisms of ADD changes may include factors intrinsic to individual axons and
extrinsic factors operating at the axon population level. The former may include bottom-up
changes in protein expression, and transport or phosphorylation and turnover of neurofil-
aments, i.e., the main molecular determinants of axon caliber, or changes in microtubule
dynamics [25,26]. On the other hand, changes in ADD may also reflect the influence of
top-down factors that operate at the axon population level, such as alterations in the func-
tional organization and connectivity in response to injury. For example, based on neural
network modeling, different types of adaptive learning may be associated with distinct
patterns of distributions of synaptic weights [27]. Hebbian plasticity promotes lognormal
distributions, whereas homeostatic plasticity acts in the opposite direction by promoting
normalization of the distribution [27].

Whether the observed ADD changes are a passive outcome of the initial injury or are
associated with an adaptive mechanism related to restoration of function is beyond the
remit of this study. It is of interest that the most significant ADD changes after TBI occur
at later time points in the absence of ongoing degeneration, and this is also the period
during which motor recovery is observed in a single-pellet reaching task (unpublished
observations [28]). In contrast to diameter-based analysis of axon frequencies, rank-based
analysis of axon frequencies that plots axon calibers based on order of size indicates a
restoration of the original frequencies at 21 days. This pattern suggests that, if late ADD
changes reflect an adaptive operation to recover an optimal state, this operation is aimed at
maintaining the proportion of different ranks of axons within the population and not their
absolute diameters. The biological mechanisms underlying such operations, for example
changes in afferent or efferent connectivity, collateral regeneration or pruning etc. would
warrant further investigation.
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3.4. Clinical Relevance of ADD

Irrespective of mechanisms underlying the ADD changes reported here, ADD changes
may also represent a signature of previous injury and serve as a measure to assess white
matter pathology. Based on our sensitivity/specificity analysis, we found that ADD fea-
tures are indeed able to discriminate injured from non-injured cases, and we were also able
to relate ADD features with clinical parameters such as post-injury apnea. Emerging neu-
roimaging methods that provide estimates of axon calibers [29] such as AxCaliber3D [30,31],
ActiveAx [32], oscillating gradient spin echo [33], magnetic resonance axon radius map-
ping [34] and others, may eventually allow the in vivo assessment of ADD changes and
assess their potential as clinical biomarkers.

While these neuroimaging modalities are not capable of detecting and measuring
individual axon calibers in a fashion similar to high-resolution histological methods, they
offer estimates such as the “effective axon radius” [34], a compound measure of axon
calibers that is heavily influenced by the long tail of the underlying ADD. Although this bias
towards large-caliber axons has been considered a methodological weakness, our analysis
indicates that one of the main effects of injury is the disproportional loss/atrophy of large-
caliber axons, which would be preferentially detected with these MRI methods. Indeed,
while we have not quantified changes in the effective radius with MR techniques, we
estimate that the observed changes in the ADD after TBI would correspond to a reduction
in the effective radius of by aprox. 40–50% at 21 days. Therefore, neuroimaging measures
of ADD and the identification of injury-related signatures may have clinical applications in
TBI and perhaps other neurological diseases in the future.

4. Materials and Methods
4.1. Experimental Subjects and Impact Acceleration TBI (IA-TBI) Model

Animals were housed in a vivarium with a 12 h light/12 h dark cycle and ad libitum
access to food and water. All animal handling as well as surgical and postoperative
procedures were carried out according to protocols approved by the Animal Care and Use
Committee of the Johns Hopkins Medical Institutions (Protocol Number: MO19M458).

In this case, 10 to 14 week-old male C57BL/6 J wild-type mice (n = 9; with mean weight of
24.0 g, SD = 1.3 g) and transgenic YFP-H (B6.Cg-Tg(Thy1-YFP)HJrs/J; RRID:IMSR_JAX:003782)
mice (n = 19; with mean weight of 24.9 g, SD = 2.8 g) were subjected to IA-TBI or sham
injury as described [8,9]. Briefly, mice were anaesthetized with a mixture of isoflurane,
oxygen and nitrous oxide, the cranium was exposed, a 5 mm-thick stainless-steel disc was
glued onto the skull midway between bregma and lambda sutures, and a 50 g weight was
dropped from 85 cm on the metal disk, while the mouse was placed on a foam mattress,
with the body immobilized. This injury setting causes mild to moderate traumatic axonal
injury [35,36]: there is no evident contusion at the impact site or intracranial bleeding [8],
while death due to respiratory arrest is uncommon (3%). Sham animals did not receive the
weight drop. Immediately after injury, the disc was removed, and the skull was inspected
for skull fractures (typically <2%, n = 0 for this cohort). The scalp incision was closed with
surgical staples. Spontaneous breathing was observed and the presence and duration of
apnea or abnormal breathing was recorded. Apnea was defined to be present if it lasted
more than 20 s after impact. Mean duration of apnea was 55 s (SD = 31 s). Neurological
recovery was assessed by the return of the righting reflex. Mean duration of time-to-righting
reflex was 234 s (SD = 123 s). No subject had apnea/irregular breathing >150 s and/or
time to righting reflex >550 s, i.e., criteria that would disqualify subjects from further study
to avoid hypoxic confounders. Surgical procedures and injury were performed under
aseptic conditions and all animal handling and postoperative procedures were carried
according to protocols approved by the Animal Care and Use Committee of the Johns
Hopkins Medical Institutions.
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4.2. Preparation of Tissues, Imaging and Morphometry

Injured and sham-injured mice were randomized to either the 7- or 21-day survival
group. At each indicated survival time point, YFP-H mice were transcardially perfused
with freshly depolymerized paraformaldehyde in PBS (4% in 0.1 m PBS, pH 7.4), dissected
and postfixed overnight in the same fixative. Blocks containing the lower cervical spinal
cord were cryoprotected (20% glycerol, 5% DMSO) and 50 µm sections at the level of
C6-C7 were cut using a freezing microtome. Sections were mounted on slides, air dried
and coverslipped with Vectashield ((Vector Laboratories Inc., Newark, CA, US). Sections
from YFP-H mice were imaged on a Zeiss LSM 880 Confocal with Airyscan FAST Module
(RRID:SCR_015963, Carl Zeiss Microscopy, LLC, White Plains, NY, US). In this case, 15 µm
z-stacks covering the CST were taken at 63× objective with Airyscan FAST, deconvoluted
and stitched with ZEN Black software (RRID:SCR_018163, Carl Zeiss Microscopy, LLC,
White Plains, NY, US)). Images were binerised using adaptive 3D thresholding (plugin
developed by Christian Henden) on FIJI (RRID:SCR_002285) [37] and individual axons
were analyzed for Feret’s diameter (Supplementary Figure S2).

For electron microscopy studies, C57BL/6 J mice were transcardially perfused with
4% paraformaldehyde, 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH = 7.2)
for 30 min. Spinal cord blocks were dissected and post-fixed overnight at 4 ◦C in the
same fixative. After rinsing in buffer for 15 min, tissues were immersed in 1% osmium
tetroxide overnight. After rinsing in distilled water tissues were dehydrated in a graded
ethanol series, transitioned in propylene oxide and embedded in EMbed 812 resin, using
manufacturer’s recommended recipe (Electron Microscope Sciences, Hatfield, PA 14120)
in BEEM capsules (reversed with cap down, Size 00). The resin was cured at 60 ◦C
for 72 h. Semithin sections (1 µm) were cut at the level of C6-C7 and stained with 1%
toluidine blue 70–90 nm thin sections were taken in the same plane as the semi-thin sections.
300 mesh Gilder Thin Bar Copper Grids (Gilder Grids Ltd., Grantham, UK, G300HS copper,
EMS cat#T300-cu) were used. Grids were stained with 3% ethanolic uranyl acetate and
lead citrate for 5 min and observed in a Hitachi H7600 (Hitachi High-Tech America, Inc.,
Schaumburg, IL, US). In each EM grid, the random superposition of the sample on the
copper grid lines, allows for an unbiased sampling of the CST region. Areas of interest were
identified at low magnification (4000×) at the corners and center of each hole (90 × 90 µm)
in the copper grid array; and then micrographs were captured at 20,000× (10–15 images
per case) and were analyzed with AxonDeepSeg for Feret’s diameter [38] (Supplementary
Figure S1A).

4.3. Axon Diameter Distribution (ADD) Analysis

In order to assess the ADD, Feret’s diameters of axons were analyzed for each case
within each experimental group by relative frequency histograms, with a bin size of 0.1µm,
with Prism 9 (RRID:SCR_002798, GraphPad Software, San Diego, CA, USA). Relative fre-
quencies per bin per case were used for fitting longnormal models for each group and
for plotting average frequencies and standard error of the mean (SEM) per bin per group.
For each case and each group, we estimate shape features of the ADD that may discrimi-
nate between the groups (e.g., geometric mean, geometric standard deviation) and their
variance of the estimates were computed by the leave-one (mouse) Jackknife re-sampling
algorithm [39]. Statistical differences between groups were assessed by ANOVA and t-test
post hoc comparisons. p Values were calculated using the permutation distribution of the
F-statistic and t-statistic [40], in order to retain validity with sample sizes under consid-
eration. For estimation of axon changes with adjustment for axon losses and relative to
the sham group, adjusted relative frequencies were calculated as the product of relative
frequencies for each bin with the mean axon survival per group. In this case calculated
standard errors account for the original variance in the relative frequencies but not for the
variance in axonal survival within each group.
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