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Abstract

Complexity and heterogeneity are intrinsic to neurobiological systems, manifest in every

process, at every scale, and are inextricably linked to the systems’ emergent collective

behaviours and function. However, the majority of studies addressing the dynamics and

computational properties of biologically inspired cortical microcircuits tend to assume (often

for the sake of analytical tractability) a great degree of homogeneity in both neuronal and

synaptic/connectivity parameters. While simplification and reductionism are necessary

to understand the brain’s functional principles, disregarding the existence of the multiple

heterogeneities in the cortical composition, which may be at the core of its computational

proficiency, will inevitably fail to account for important phenomena and limit the scope and

generalizability of cortical models. We address these issues by studying the individual and

composite functional roles of heterogeneities in neuronal, synaptic and structural properties

in a biophysically plausible layer 2/3 microcircuit model, built and constrained by multiple

sources of empirical data. This approach was made possible by the emergence of large-

scale, well curated databases, as well as the substantial improvements in experimental

methodologies achieved over the last few years. Our results show that variability in single

neuron parameters is the dominant source of functional specialization, leading to highly

proficient microcircuits with much higher computational power than their homogeneous

counterparts. We further show that fully heterogeneous circuits, which are closest to the

biophysical reality, owe their response properties to the differential contribution of different

sources of heterogeneity.

Author summary

Cortical microcircuits are highly inhomogeneous dynamical systems whose information

processing capacity is determined by the characteristics of its heterogeneous components
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and their complex interactions. The high degree of variability that characterizes macro-

scopic population dynamics, both during ongoing, spontaneous activity and active

processing states reflects the underlying complexity and heterogeneity which has the

potential to dramatically constrain the space of functions that any given circuit can com-

pute, leading to richer and more expressive information processing systems. In this study,

we identify different tentative sources of heterogeneity and assess their differential and

cumulative contribution to the microcircuit’s dynamics and information processing

capacity. We study these properties in a generic Layer 2/3 cortical microcircuit model,

built and constrained by multiple sources of experimental data, and demonstrate that het-

erogeneity in neuronal properties and microconnectivity structure are important sources

of functional specialization, greatly improving the circuit’s processing capacity, while cap-

turing various important features of cortical physiology.

Introduction

Heterogeneity and diversity are ubiquitous design principles in neurobiology (or in any bio-

logical system, for that matter), covering components and mechanisms at every descriptive

scale [1]. While many of these specializations, as well as their inherent complexity and diver-

sity, are functionally meaningful, intrinsically linked and responsible for the brain’s computa-

tional capacity and efficiency (see e.g. [2–4]), others are bound to reflect epiphenomena, by-

products of evolution, bearing little or no functional significance [5], or to subserve metabolic/

maintenance tasks [6] that, while crucial for healthy function, are not directly involved in the

computational process.

In order to study the functional role of heterogeneity in cortical processing, we need to

modularize complexity [7]: exploit the degenerate nature of the system [8, 9] and heuristically

identify groups of components that may behave as singular modules (depending on the scale

and processes of interest). Once these tentative ‘building blocks’ are identified, we need to

specify adequate levels of descriptive complexity that may shed light onto the underlying func-

tional principles. These pursuits, however, pose severe epistemological problems as we cur-

rently have no clear intuition as to what ‘adequacy’ means in this context (see, e.g. [10–12]).

Despite substantial progress, our ability to clearly identify the system’s core component

‘building blocks’ [3, 13] and to systematically characterize their relative contributions and

potential functional roles is still a daunting task given the multiple spatial and temporal scales

at which they operate, their complex, nested interactions and the, often incomplete or incon-

sistent, empirical evidence. Nevertheless, when studying neuronal computation, one needs to

keep in mind that, despite its tremendous complexity or because of it, the brain is a machine

‘fit-for-purpose’ and optimized to process information and operate in complex, dynamic and

uncertain environments, whose spatiotemporal structure it must extract in order to reliably

compute [1, 4]. As such, it is important to disentangle and quantify which and how the differ-

ent components of the system may modulate functional neurodynamics in meaningful ways

that can be paralleled with related experimental observations, and to which degree these spe-

cializations affect the system’s operations.

In the next section, we attempt to identify an appropriate partition of potential building

blocks of complexity and heterogeneity in neocortical microcircuits. We then proceed to

building a biologically inspired and strongly data-driven microcircuit model that explicitly

employs this partition in an attempt to understand and quantify the differential functional

roles and consequences of these different sources of heterogeneity applying systematic and

Heterogeneity in layer 2/3 cortical microcircuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006781 April 25, 2019 2 / 43

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006781


generic benchmarks. We will focus on generic properties in both the microcircuit architecture

and its information processing capacity. Rather than modelling specific microcircuits in spe-

cific cortical regions and corresponding functional specializations (as in e.g. [14, 15]), we gen-

eralize our approach and collate data pertaining to layer 2/3 microcircuit features (anatomical

and physiological) from different cortical regions, while evaluating the differential contribu-

tions of different forms of heterogeneity on the system’s dynamics and generic computational

properties, focusing particularly on their suitability for continuous, online processing with fad-

ing memory [16–18]. The approach also aims at providing an intermediate level of descriptive

complexity for studying computation in cortical microcircuit models, as discussed below.

Heterogeneous building blocks in the neocortical circuitry

On a macroscopic level, hierarchical modularity is easily identifiable as a parsimonious design

principle underlying various structural and functional aspects of cortical organization [19–23].

Different anatomophysiological [24, 25], genetic / biochemical [26–30] or functional [31–33]

criteria give rise to slightly different modular parcellations but, in combination, these criteria

reveal the relevant ‘building blocks’, the most important features whose variations and recom-

binations give rise to the complexity and diversity of the cortical tissue [34].

For convenience, these features can be coarsely (and tentatively) grouped into neuronal,

synaptic and structural components (see also [13]). Neuronal features refer to the different

cell classes and their laminar and regional distributions [35] along with their characteristic

electrophysiological and biochemical diversity [36, 37]. Synaptic components refer to a molec-

ular default organization characterized by variations in the differential expression and tran-

scription of genes involved in synaptic transmission [26, 28], which is reflected, for example,

in regional receptor architectonics [38–40]. Structural aspects include variations in cortical

thickness and laminar depth [41] along with neuronal and synaptic density [42, 43] and input-

output (both local and long-range) connectivity patterns [44, 45]. In combination, these fea-

tures highlight default organizational principles whose variations across the cortical sheet are

likely to contribute to the corresponding functional specializations.

Based either on morphological, electrophysiological or biochemical features (or, preferably,

a combination thereof), several different classes of neurons can be identified throughout the

neocortex (see e.g. [35–37, 46–48]). Apart from pronounced regional and laminar differences

in the types of neurons that make up the cortex and their relative spatial distributions, every

microcircuit in every cortical column is composed of diverse neuron types, with heteroge-

neous properties and heterogeneous behaviour.

Electrochemical communication between these diverse neuronal classes is an intricate,

dynamic and very complex process involving a multitude of nested inter- and intracellular sig-

nalling networks [49–51]. Their functional range spans multiple spatial and temporal scales

[52–54] and has, arguably, the most critical role in modulating microcircuit dynamics and

information processing within and across neuronal populations [2, 3, 55]. The specificities of

receptor composition and kinetics underlie the substantial diversity observed in the elicited

post-synaptic potentials [56, 57] across different synapse and neuronal types (see, e.g. [58–

62]). This occurs because the receptors mediating these events have distinct biochemical and

physiological properties depending on the type of neuron they are expressed in and, naturally,

the type of neurotransmitter they are responsive to. These varying properties have known

and non-negligible implications in the characteristic kinetics of synaptic transmission events

occurring between different neurons [63] and strongly constrain the circuit’s operations.

Additionally, cortical microcircuits are not randomly coupled, but over-express specific

connectivity motifs [64–70], which bias and skew the network’s degree distributions [71]

Heterogeneity in layer 2/3 cortical microcircuits
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and/or introduce correlations among specific connections [72], thus selectively modifying the

impact of specific pre-synaptic neurons on their post-synaptic targets. Analogously to the het-

erogeneities in neuronal and synaptic properties, such structural features are known to signifi-

cantly impact the circuit’s properties [73–77].

Descriptive adequacy

As discussed above, the variations in the anatomy and physiology of a cortical microcircuit are

experimentally well established and have been shown to influence computational properties.

However, the absence of complete descriptions of biophysical heterogeneity and well-substan-

tiated empirical evidence to support them (primarily due to technical limitations), has forced

computational studies to take a simplified approach. This has multiple additional advantages,

such as greater likelihood of analytical tractability and lower overhead for the researcher in

specifying the network parameters. Simplified, homogeneous models of spiking networks have

proven to be a valuable tool for a theoretically grounded exploration of microcircuit dynamics,

emerging from the interaction of excitatory and inhibitory populations [78–81].

The generic principles established by studying simple balanced random networks have sub-

sequently been applied to model specific cortical microcircuits with integrated connectivity

maps and realistic numbers of neurons and synapses [82]. This approach revealed that some

prominent features of spontaneous and stimulus-evoked activity and its dynamic flows

through a cortical column can be accounted for by the macroscopic connectivity structure,

mediated by local and long-range interactions [83]. However, by focusing on emergent

dynamics, these studies neglect the functional aspects and the fact that cortical interactions

serve computational purposes (but, see [84] for a study on the computational properties of the

[82] microcircuit model). In addition, although there are good reasons for taking a minimalist

approach, assuming uniformity and homogeneity on every component of the system tends to

lack cogency with respect to established anatomical and physiological facts and to disregard

biophysical and biochemical plausibility.

Some of these limitations were circumvented by [85], who not only accounted for detailed

and empirically-informed connectivity maps, but also employed more biologically motivated

models of neuronal and synaptic dynamics and placed them in an explicit functional/compu-

tational context. In line with the results obtained with the simpler microcircuit models [82,

84], this study demonstrated that considering realistic structural constraints is beneficial and

significantly improves the computational capabilities of the circuit. Several other studies pro-

vide important steps to move away from homogeneous systems by incorporating variability

(e.g. [75, 86, 87]), but tend to do so in a relatively arbitrary manner and/or focusing on specific

forms of heterogeneity while retaining homogeneity in other components (depending on the

scientific objectives of the study).

A completely different set of priorities for modelling cortical microcircuits are espoused by

[88] in the framework of the continuous efforts of the Blue Brain project [89]. The Blue Brain

approach lies on the other extreme of the descriptive scale, in that it attempts to model a corti-

cal column in full detail, explicitly accounting for the complexities of cellular composition

(based on neuronal morphology and electrophysiology), synaptic anatomy and physiology, as

well as thalamic innervation, essentially constituting an in silico reconstruction of a cortical

column (see also [90]). This approach is, naturally, extremely computationally expensive and

its explanatory power is limited. The model complexity at this end of the spectrum is so close

to the biophysical reality that it might not lend itself to a comprehensive understanding of dis-

sociable and important functional principles any more readily than studying the real thing

does. Nonetheless, it provides valuable insights in that it carefully replicates a lot of in vivo and

Heterogeneity in layer 2/3 cortical microcircuits
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in vitro responses of a real cortical column, while generating a wealth of complete and compre-

hensive data [88, 91].

Thus, we conclude that while simpler models are preferable, as they are generic enough to

be broadly insightful and allow us to uncover general principles, we should ask the question:

what is the cost of simplification? If a model simplifies away the core computational elements

of the system, our ability to account for its operations is lost. The findings discussed above

indicate that heterogeneity may be critical for the mechanisms of computation; therefore mod-

els aiming at uncovering computational principles in specific biophysical systems, such as a

cortical column or microcircuit, should account for these features.

In this study, we attempt to bridge this descriptive gap by building microcircuit models,

inspired and constrained by the composition of Layer 2/3, that account for key heterogeneities

in neuronal, synaptic and structural properties. We implement all types of heterogeneity such

that they can be switched on or off, thus enabling us to systematically disentangle and evaluate

the roles played by the different types of heterogeneity in the different tentative building

blocks, and how they collectively interact to shape the circuit’s dynamics and information pro-

cessing capacity.

The choices and characteristics of the models and parameter sets used throughout this

study, as well as the general microcircuit composition are constrained and inspired by multiple

sources of experimental data (see section Data-driven microcircuit model and S1 Appendix)

and account for the prevalence of different neuronal sub-types and their heterogeneous physi-

ological and biochemical properties, the specificities of instantaneous synaptic kinetics and its

inherent diversity as well as specific structural biases in cortical micro-connectivity. All models

and model parameters were, as far as possible, chosen to directly match relevant experimental

reports and minimize the introduction of arbitrary model parameters, in order to ensure that

the effects observed are caused by realistic forms of complexity and heterogeneity and avoid

imposing excessive assumptions or preconceptions on the systems studied, i.e. to “allow biol-

ogy to speak for itself”.

In section Data-driven microcircuit model (complemented by the Methods section

and the Supplementary Materials), we explain all the details of the models and model

parameters used to build and constrain the microcircuit, as well as the underlying empirical

observations that motivate the choices. After specifying and fixing all the relevant parame-

ters to, as closely as possible, match multiple sources of empirical data, we study the effects

of heterogeneity on population dynamics in a quiet state, where the circuit is passively

excited by background noise (section Emergent population dynamics) and in an active state,

where the circuit is directly engaged in information processing (section Active processing
and computation). We evaluate the circuit’s sensitivity and responsiveness, as well as its

memory and processing capacity, demonstrating a clear and unambiguous role of heteroge-

neity in shaping the proficiency of the system by greatly increasing the space of computable

functions.

Results

Data-driven microcircuit model

In this section, we describe the process of building a complex data-driven cortical microcircuit

model capturing some of the fundamental features of layer 2/3. We specify the detailed archi-

tecture, composition and dynamics of the microcircuits explored throughout this study as well

as the motivation behind all model and parameter choices. In each relevant section, we high-

light the differences between the respective homogeneous and heterogeneous conditions. A

summarized, tabular description of the main models is provided in S1 Table, along with a list

Heterogeneity in layer 2/3 cortical microcircuits
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of the primary sources of experimental data used to constrain the model parameters, provided

in S1 Appendix.

All the circuits analysed throughout this study are composed of N = 2500 point neurons

(roughly corresponding to the size of a layer 2/3 microcircuit in an anatomically defined corti-

cal column; [92]), divided into NE = 0.8 N excitatory, glutamatergic neurons and NI = 0.2 N

inhibitory, GABAergic neurons. In addition, we further subdivide the inhibitory population

in two sub-classes, I1 and I2 (with NI1
¼ 0:35 NI and NI2

¼ 0:65 NI), corresponding to fast-

spiking and non-fast-spiking interneurons, respectively (see Neuronal properties). Accord-

ingly, there are nine different synapse types (all possible connections between neuronal popu-

lations), with distinct, specific response properties (see Synaptic properties). Similarly, there

are nine connection probabilities from which random connections are drawn (see Structural
properties).

For each of the key features of neuronal, synaptic and structural properties, we differentiate

between the homogeneous case, where all properties are identical, and the heterogeneous case,

where properties are drawn from appropriately chosen distributions. In this way, we can tease

apart the differential effects of the three sources of heterogeneity considered here: neuronal,

synaptic and structural.

For consistency, all the circuits’ structural (and synaptic) features are constrained primarily

by the composition of layer 2/3 in the C2 barrel column in the mouse primary somatosensory

cortex (S1), given the availability of direct, complete and significantly explored experimental

datasets (e.g. [92–94]).

Neuronal properties. We divide the neurons into one excitatory (E: glutamatergic, pyra-

midal neurons) and two inhibitory (I1: GABAergic, fast spiking interneurons, I2: GABAergic,

non-fast spiking) classes, consistent with the reports in [92, 93] and [94]. The three classes dif-

fer in relative excitability and firing properties, providing substantially more electrophysiologi-

cal diversity than commonly exhibited in cortical models on the abstraction level of point

neurons (e.g. [81, 82, 95–97]), while still being of a manageable degree of complexity. All neu-

rons are modelled using a simplified adaptive leaky integrate-and-fire scheme (see Methods

and [98, 99]).

The parameters used for the different neuron types (summarized in Table 1) were chosen

to match the respective ranges reported in the literature, considering both the data collected in

the NeuroElectro database [36, 100] encompassing tens of unique data points from different

experimental sources (see S1 Appendix) and those reported in [92, 93, 101, 102], and [94]

given the completeness of these reports and the direct similarities with our case study.

Due to the nature of the chosen neuronal formalism (see Neuronal dynamics), some model

parameters have no direct proxy with experimental measures and were instead determined

considering their relations to other variables for which direct experimental data exists. For

example, Vreset is not, strictly speaking, a biophysically meaningful variable; its value was cho-

sen considering the data for afterhyperpolarization potentials EAHP relative to the resting

membrane potentials EL. Whenever such discrepancies occurred or when parameters had to

be derived relative to others, we selected those values that better matched the experimental

data. Overall, we observed a remarkable consistency in the ranges of parameter values consid-

ered across the different data sources.

Neuronal heterogeneity. In the homogeneous condition, the parameters for all neurons

of a given class are fixed and chosen as a representative example of that class (see left side of

Table 1 and bold fI curves in Fig 1). To incorporate neuronal heterogeneity, the specific values

of each parameter are independently drawn from a probability distribution, specific to each

neuron class (see right side of Table 1 and individual fI curves in Fig 1).

Heterogeneity in layer 2/3 cortical microcircuits
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To ensure comparability among conditions, we tuned the intrinsic adaptation parameters

(a, b, see Neuronal dynamics) independently for each neuron type, in order to retain the fol-

lowing relations among neuronal classes:

• Rheobase current (excitability)—Irh(E)� Irh(I1)> Irh(I2)

• Slope of f-I curve (gain)—g(I1)> g(I2)> g(E)

• Minimum firing rate—νmin(I1)> νmin(I2)> νmin(E)

• Maximum firing rate—νmax(I1)> νmax(I2)> νmax(E)

This led to the following values (a, b) for sub-threshold and spike-triggered adaptation,

respectively: E = (4, 30), I1 = (0, 0), I2 = (2, 10).

One of the advantages of using the modelling approach presented in this study is the possi-

bility to directly interpret the biophysical meaning of the different parameters. In this case,

Table 1. Single neuron parameter sets. In the heterogeneous condition, three neuronal types have the values of the described parameters randomly drawn from a normal

(N ) or lognormal (logN ) distribution. The parameter values for these distributions were determined taking into account multiple sources of experimental data (see S1

Appendix). Note that, to make comparisons simpler, the values displayed for the lognormal distributions correspond to the mean and standard deviation of the distribu-

tion, not the actual μ and σ parameters (see Materials and methods).

Parameter Homogeneous Heterogeneous Description

E I1 I2 E I1 I2

Eleak[mV] −76.43 −64.33 −61 N ð� 73; 4Þ N ð� 67:5; 2Þ N ð� 62:6; 2Þ resting membrane potential

Vthresh[mV] −44.45 −38.97 −34.44 N ð� 42; 4Þ N ð� 40; 4Þ N ð� 36; 2Þ spike threshold

Vreset[mV] −54.18 −57.47 −47.11 N ð� 52; 5Þ N ð� 58; 6:4Þ N ð� 54; 5:4Þ reset potential

Gleak[nS] 4.64 9.75 4.61 N ð4:73; 0:38Þ N ð9:09; 0:75Þ N ð4:5; 0:2Þ leak conductance

Cm[pF] 116.52 104.52 102.87 N ð114; 8:7Þ logN ð68:9; 35:6Þ logN ð82:24; 17:7Þ membrane capacitance

tref[ms] 2.05 0.52 1.34 logN ð1:8; 0:25Þ logN ð0:5; 0:01Þ logN ð1:3; 0:05Þ absolute refractory time

τm[ms] 25.11 10.72 22.33 logN ð22; 2Þ logN ð9:5; 2Þ logN ð20; 2Þ membrane time constant

Rm[MO] 215.54 102.53 217.10 logN ð160; 50Þ logN ð100; 10Þ logN ð210; 10Þ input resistance

https://doi.org/10.1371/journal.pcbi.1006781.t001

Fig 1. Response properties of the three different neuronal types, E (left), I1 (middle) and I2 (right). For each neuronal class, the central

panels depict single neuron fI curves and the marginal panels give the corresponding distributions of the neuron’s rheobase currents (Irh[pA],

bottom), minimum firing rates (νmin[Hz], left); maximum firing rates (νmax[Hz], right) and the slope of the fI curve (Slope[Hz/nA], top). The

data was obtained from 1000 neurons of each class. The membrane potential traces depicted in the bottom correspond to the response of the

homogeneous neurons (bold traces in the fI curves) to a stimulus step of amplitude Irh + 10 pA, for a duration of 1 second.

https://doi.org/10.1371/journal.pcbi.1006781.g001
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these results highlight the fact that fast spiking interneurons (I1) do not exhibit any form of

intrinsic adaptation, which is a reasonable result for a neuron whose primary role is to respond

quickly and provide dense and fast, feed-forward inhibition [103]. It should be noted that,

after fixing all the neuronal parameters as described above, the absolute values of these four

properties did not exactly match the corresponding experimental reports. For example, the

values obtained for the rheobase currents were, on average, larger than the ranges reported

experimentally, for all 3 neuron classes (see S2 Table). These discrepancies in absolute values

and their potential impact were ameliorated by ensuring the above relations between the key

response properties of the different neuronal classes were retained.

Synaptic properties. With three neuronal populations, as described above, there are

nine possible types of synaptic connection, i.e. syn 2 {EE, EI1, EI2, I1E, I2E, I1I1, I1I2, I2I1,

I2I2}. Synapse types can be grouped by transmitter composition and/or post-synaptic effect,

as excitatory synE = {EE, I1E, I2E} and inhibitory synI = {EI1, EI2, I1 I1, I1 I2, I2 I1, I2 I2}, as

illustrated in Fig 2a. For simplicity, we consider all synaptic transmission as being mediated

by either glutamate (excitatory synapses) or gamma-aminobutyric acid (GABA, inhibitory

synapses), as illustrated in Fig 2b. This is a reasonable simplification given that these are,

by far, the primary neurotransmitters used in the neocortex, as demonstrated by immuno-

histochemistry [104] and receptor autoradiography studies [39, 105, 106]. Additionally, this

is a common assumption underlying the great majority of theoretical and computational

studies.

To accommodate the wealth of data available regarding the phenomenology of synaptic

transmission and to provide a significant step forward from the traditional approaches, we

chose a relatively complex biophysical model [99, 107–109]; primarily due to its plausibility

but also due to the availability of direct parameters in the experimental literature (e.g. [109]).

The model, described fully in the Materials and Methods, captures the detailed kinetics of sin-

gle receptor conductances (Fig 2b).

The use of this model allows us to specify different receptor parameters depending on the

neuron type they are expressed in (see Table 2), in order to directly match empirical data on

receptor kinetics and relative conductance ratios in different neuronal classes. In the absence

of such direct data for specific synapses (particularly those involving I2 neurons), we tuned

these parameters to match the resulting PSP/PSC kinetics, as well as the relative ratios of total

charge elicited by the receptors that compose such synapses. For a detailed list of the data

sources used to constrain these parameters, consult S1 Appendix.

Having fixed the kinetics of post-synaptic responses according to neuron class (Table 2), we

finally rescale the PSP amplitudes (wsyn) and latencies (dsyn) independently for each synapse

type (see below), in order to account for the effects of different presynaptic neuron classes and

to explicitly match the data reported in [93]. As a result of this parameter fitting process, the

responses generated by the synaptic model are good matches to the responses experimentally

observed in the nine types of biological synapses represented in this study.

Synaptic heterogeneity. As all the receptor parameters are fixed and neuron-specific

(Table 2), we introduce synaptic heterogeneity by simply distributing the individual values of

weights and delays (Fig 2d and Table 3). Whereas in the homogeneous condition, synaptic effi-

cacies (wsyn) and conduction delays (dsyn) are fixed and equal for all connections of a given

type, in the heterogeneous condition, these values are randomly drawn from lognormal

distributions, left-truncated at 0 for weight distributions and 0.1 for delay distributions, and

parameterized such that the distributions’ means are equal to the homogeneous value. For con-

sistency among the various data sources, we fix the connectivity parameters, including not

only structural aspects, but also synaptic weights and delays, to match the data reported in

[93]. It is worth noting that variability in delay distributions could also be considered

Heterogeneity in layer 2/3 cortical microcircuits
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structural since they are primarily determined by morphological features (axonal length).

However, the synaptic delays were chosen to match the observed latencies in postsynaptic

responses. So, for convenience and simplicity, we treat variations in synaptic weights and

delays as synaptic properties.

Fig 2. Diversity of synaptic transmission in the microcircuit. (a) Illustration of the three neuron and nine synapse types considered in this

study. (b) Characteristics of synaptic transmission in excitatory (blue) and inhibitory (red) synapses, comprising fast and slow components. (c)

Kinetics of spike-triggered PSPs dependent on pre- and post-synaptic neuron type and determined by the specific receptor kinetics and

composition in the postsynaptic neuron. The depicted traces are the PSPs at rest in E neurons (top row) and at a fixed holding potential of −55

mV for inhibitory neurons (I1: middle row, I2: bottom row), as a function of receptor composition and correspond to the values reported in

Table 2 (last column). (d) Distributions of PSP amplitudes and latencies after rescaling (by wsyn and dsyn, respectively, see Table 3) in the

homogeneous (top arrows) and heterogeneous (distributions) conditions, for synapses onto E (top), I1 (middle) and I2 (bottom) neurons. Note

that the latency distributions are discrete in that for technical reasons, they can only assume values that are a multiple of the simulation

resolution.

https://doi.org/10.1371/journal.pcbi.1006781.g002
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The mean weight values were chosen to rescale the PSP amplitude of each synapse type to

the target value. Additionally, as described below, if both structural and synaptic heterogeneity

conditions are considered simultaneously, the weight distributions are skewed in order to

introduce structural weight correlations (see Generating structural heterogeneity in Materials

and methods).

Structural properties. The structure of the network is defined by the density parameter

psyn, which is specific for each of the nine connection types. For consistency with the results

and methods presented in [110] and [71], we set the connection densities (psyn) to the values

reported in [93] (see Table 3). However, it is worth noting that the values reported in the

Table 2. Differential receptor expression in the different neuron types. The kinetics and relative conductance of the different receptors that make up an inhibitory or

excitatory synapse onto each neuron results in post-synaptic potentials with equally discernible kinetics. The parameters were chosen based on the corresponding receptor

conductance data, if directly available and/or on the characteristics of the resulting PSPs, resulting in a substantial diversity of postsynaptic responses (see Fig 2c). (�) The

PSP values reported in this table were obtained by fitting a double exponential function to single, spike-triggered PSPs, recorded at rest for E neurons and at a fixed holding

potential of −55 mV for I neurons.

Neuron Type Receptors Conductance parameters Resulting PSPs (�)

�g ½ nS� E[mV] τrise[ms] r tdecayf ½ms� tdecays ½ms� Jsyn[mV] τrise[ms] τdecay[ms]

E AMPA 0.9 0 0.3 1 2 - 0.82 3.16 17.8

NMDA 0.14 0 1 0 - 100

GABAA 0.15 −75 0.25 1 6 - −0.1 3.2 64.3

GABAB 0.009 −90 30 0.8 200 600

I1 AMPA 1.6 0 0.1 1 0.7 - 0.5 0.8 10.7

NMDA 0.003 0 1 0 - 100

GABAA 1 −75 0.1 1 2.5 - −0.25 1.65 17.5

GABAB 0.022 −90 25 0.8 50 400

I2 AMPA 0.8 0 0.2 1 1.8 - 0.6 2.4 17.3

NMDA 0.012 0 1 0 - 100

GABAA 0.7 −75 0.2 1 5 - −0.6 3.2 42

GABAB 0.025 −90 25 0.8 150 500

https://doi.org/10.1371/journal.pcbi.1006781.t002

Table 3. Synaptic and structural parameters in the microcircuit. Each of the nine connection types (which can be grouped as indicated) is characterized by a specific

connection density, weight and delay. In the homogeneous condition, weights and delays are fixed and equal to the mean values (m syn
w , m

syn
d ) for all synapses of a given type,

whereas in the heterogeneous condition they are independently drawn from lognormal distributions with the corresponding mean and standard deviation. The last two

rows in the table are the connection-specific structural bias parameters, used to skew the network’s degree and weight distributions. The indicated values were taken

directly from [110] and [71]. The cases marked with—or x, correspond to connections that were either tested, revealing no significant effect (-) or untested due to missing

data (x). In both cases, we set the corresponding values to 0.

Parameter Connection Types Description

synE synI

EE IE EI II

E! E E! I1 E! I2 I1! E I2! E I1! I1 I1! I2 I2! I1 I2! I2

psyn[%] 16.8 57.5 24.4 60 46.5 55 24.1 37.9 38.1 Connection density

m syn
w 0.45 1.65 0.638 5.148 4.85 2.22 1.4 1.47 0.83 Synaptic weights

s syn
w 0.10 0.10 0.11 0.11 0.11 0.14 0.25 0.10 0.2

m
syn
d 1.8 1.2 1.5 0.8 1.5 1 1.2 1.5 1.5 Synaptic delays

s
syn
d 0.25 0.2 0.2 0.1 0.2 0.1 0.3 0.5 0.3

k syn
in 5 5 0 - 0 - - x x Degree distribution bias

k syn
out 5 0 0 - - 0 - x x

c syn
in 1 1 1 - x - - x x Weight correlation bias

c syn
out 0 1 0 - x 0 - x x

https://doi.org/10.1371/journal.pcbi.1006781.t003
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literature can vary substantially, possibly reflecting methodological/technical limitations and/

or the fact that connection density is a highly region- / species-specific feature. In fact, among

all the complex parameter sets used throughout this study, the single parameter that was most

difficult to reconcile across multiple sources was psyn. In the homogeneous case, random con-

nections are created between neurons in a source population pre and target population post
(with pre, post 2 {E, I1, I2}) with a probability given by psyn.

Structural heterogeneity. In order to account for structural heterogeneity, we bias the

network’s degree distributions by modifying the structure of the connectivity matrix Asyn, fol-

lowing the methods introduced in [71, 110] and validated against the same primary sources of

experimental data used in this study.

By controlling the skewness of the out-/in-degree distributions (kout/in parameters, see

Generating structural heterogeneity in Materials and methods), we can generate completely

random, uniform connectivity (kout/in = 0, Fig 3a) or highly structured in-/out-degree distribu-

tions, with a larger variance in the number of connections per neuron (kout/in > 0, Fig 3b).

For the structural heterogeneity condition, these parameters were fixed to the values that were

shown to provide a better fit for the experimentally determined connectivity data (see [71,

110] and Table 3).

Additionally, in conditions where synaptic heterogeneity is also present (fully heteroge-

neous circuit), structural heterogeneity is further expressed as a bias in the synaptic efficacies

for all incoming and outgoing connections to a given neuron. Following [71, 110] and [72],

this bias is implemented by rescaling individual synaptic efficacies in order to introduce

correlations between them, see Table 3 and Materials and methods. It should be noted that

structural heterogeneity only modified connections from E neurons as most of the other con-

nections were shown to have negligible effects (marked with—in Table 3) or were not success-

fully tested (marked with x), due to technical constraints. Even though this is likely to be

incomplete, it appears to be sufficient to capture the most significant structural effects and

their impact in population dynamics, while explicitly accounting for the experimental data in

Fig 3. Microcircuit connectivity for (a) homogeneous and (b) heterogeneous network structures. The large panels show the circuit’s

complete connectivity matrix Asyn, comprising all connections among all neuron classes. The panels on the left sides show the corresponding

out-degree (kout) distributions for the neuronal populations (E, I1 and I2 from top to bottom); the panels at the bottom show the corresponding

in-degree (kin) distributions (E, I1 and I2 from left to right).

https://doi.org/10.1371/journal.pcbi.1006781.g003
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[93]. So, for consistency, we implemented and parameterized structural heterogeneity in the

same manner as that reported in [71] and [110].

Emergent population dynamics

Throughout this study, and in order to isolate the effects of different sources of heterogeneity,

we consider five different microcircuits: fully homogeneous (Hom), structural (Str), neuronal

(Neu) or synaptic (Syn) heterogeneity in isolation and a fully heterogeneous circuit (Het),

accounting for the combined effects. In this section, we set out to quantify and evaluate the

specific impact of the different forms of heterogeneity on the characteristics of population

activity. To do so, we consider the circuit’s responses to an unspecific and stochastic external

input, modelling cortical background / ongoing activity (see Input specifications in Materials

and methods). We determine and compare the circuit’s responsiveness by looking at the popu-

lation rate transfer functions, as exemplified in Fig 4a for I2 neurons (complete results are pro-

vided in S1 Fig), and summarize the results by the change in absolute gain (ΔGain) and offset

(ΔOffset) introduced by each source of heterogeneity, relative to the homogeneous condition

(Fig 4b).

All heterogeneous conditions, particularly neuronal and synaptic, cause a slight offset for all

neuron types (more significant for I2 neurons), making them more responsive (firing at lower

input rates) but the effect is not substantial (Fig 4b, top). In most of the conditions analysed,

Fig 4. Characteristics of population activity in the quiet state. (a): Rate transfer function of the I2 neurons in the homogeneous (dots) and

structurally heterogeneous (squares) conditions. (b): Change in absolute gain (ΔGain, expressed as a percentage of rate gain relative to the

baseline homogeneous condition) and offset (ΔOffset), see annotations in (a), for the E (blue), I1 (red) and I2 (orange) populations, for each

heterogeneous condition (structural, neuronal, synaptic, and all forms combined), relative to the homogeneous condition. Error bars indicate

the standard deviation across ten simulations per condition. (c): Fraction of active E neurons in the different conditions as a function of input

rate νin. (d): Distributions of absolute distances between neurons’ mean membrane potentials hVmi and their firing threshold Vth, for the three

neuronal populations considered, under the different heterogeneity conditions. The dashed lines indicate the corresponding values reported in

[94]. For illustrative purposes, we depict Vm traces for a small set of randomly chosen neurons in the background. (e): Effective membrane time

constants (τeff = Cm/hGtotali) in the noise-driven regime, for the different neuronal classes and conditions. Error bars correspond to the means

and standard deviations across each population. The dashed lines indicate the baseline values (τ0 = Cm/gleak). All results depicted were calculated

over an observation period of 10 s. The results depicted in (d, e) were acquired with a fixed input rate of νin = 10 spikes/s and correspond to the

distributions across the population, for a single simulation per condition.

https://doi.org/10.1371/journal.pcbi.1006781.g004
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the E population is rather unresponsive, with less than 1% of the neurons active (Fig 4c) and

firing at rates inferior to 1 spikes/s, regardless of the input rate. While structural and neuronal

heterogeneity are incapable of circumventing this effect, synaptic heterogeneity appears to be

important for the network to fire at more reasonable rates (albeit, still very sparsely), resulting

in a substantial modulation of the gain of the rate transfer function (Fig 4b, bottom).

It should be noted that the impact of structural heterogeneity alone is mitigated by the low

E rates, since the structural bias exists only within excitatory synapses or between excitatory

neurons and fast-spiking interneurons (i.e. E E, I1 E, see Table 3). So, if the E population rarely

fires, it is difficult to ascertain the effects of structural heterogeneity, suggesting either that its

relevance pertains mostly to active states, when population activity is slightly higher, or that it

is negligible at this scale.

The extremely sparse firing of E neurons that we observe is consistent with physiological

measurements in layer 2/3 (e.g. [92, 94, 111–114]), but it significantly limits the degree to

which we can quantify the effects of heterogeneity on population activity. So, in order to

obtain a greater insight, we look at the sub-threshold responses and characteristics of mem-

brane potential dynamics (Fig 4d and 4e). Excitatory neurons are always significantly hyper-

polarized, with their mean membrane potentials kept far from threshold (Fig 4d, blue) and

thus require much stronger depolarizing inputs to fire, compared with both inhibitory types.

The inhibitory populations are, on average, much more depolarized and their membrane

potentials fluctuate closer to their firing thresholds, particularly I1 (Fig 4d, red). Qualita-

tively, the ratio of average degree of depolarization among the different populations is

retained across all conditions, with I1 neurons being strongly depolarized, followed by I2 and

E and is consistent with experimental reports for circuits in a state of quiet wakefulness (Fig

4d, dashed lines). This feature stems directly from the electrophysiological properties of the

different neuronal classes and the interactions among the 3 populations (given that it is

already observed in the homogeneous circuit). Both synaptic and neuronal heterogeneity

greatly increase the variability in the distribution of mean membrane potentials across all the

neurons and cause a slight overlap between E and I2 populations, an effect that is also consis-

tent with experimental evidence [94].

Active synapses contribute to the total membrane conductance and cause a deviation from

the resting membrane time constant [115, 116]. This shunting effect may be mild in sparsely

active circuits [117], but it provides a form of activity-dependent modulation of single neu-

rons’ integrative properties [118], which constrain the circuit’s responsiveness. In the absence

of synaptic input, I1 neurons have faster responses, characterized by a short baseline mem-

brane time constant (τ0 = Cm/gleak� 10.7 ms), whereas I2 and E neurons are slower (τ0� 22.3

and 25.1 ms, respectively) and can thus integrate their synaptic inputs over a larger time scale

(dashed lines in Fig 4e). This relationship between the neuronal classes (τeff(I1)< τeff(I2)<

τeff(E)) is a consequence of the neurons’ physiological properties and is consistent with empiri-

cal evidence [59, 118, 119]. However, when driven by external input, the ratio is modified and

I2 neurons respond slowest, i.e. τeff(I2)> τeff(I1)> τeff (E). The presence of heterogeneous syn-

apses is important to ameliorate the magnitude of this shunting effect (Fig 4e), which is very

substantial in all conditions. It should be noted that, while the sparsity of recurrent activity

(particularly that of E neurons), would prompt us to expect a very minor reduction in τeff, the

observed results are caused by the large synaptic input provided as background.

Excitation/inhibition balance. The balance of excitation and inhibition is one of the most

important and widely observed features in the neocortex. It plays a pervasive role in modulat-

ing and stabilizing circuit dynamics [120], shifting the population state [121–123], selectively

gating and routing signals [124–126] and maintaining sparse, distributed dynamics [114, 117],

critical for adequate processing and computation [127–129].
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As demonstrated in the previous section (Fig 4), the different sources of heterogeneity sig-

nificantly influence the circuit’s responsiveness, partially by modifying how the different neu-

rons and neuronal populations receive and integrate their synaptic inputs. These differences

can also be observed in the amplitude and time course of the total excitatory and inhibitory

drive onto each neuron, as can be seen in Fig 5. The results shown are a compound effect of

the kinetics of the specific receptors involved and the post-synaptic currents they elicit, the

physiological properties of the different neuronal classes as well as the density of specific

connections.

In a globally balanced state, the amplitudes of excitatory and inhibitory synaptic currents

cancel each other on average. This occurs in our microcircuit model only in the presence of

neuronal heterogeneity (Fig 5a). Variability in connectivity structure is indistinguishable from

the homogeneous condition, whereas variability in synaptic weights and delays significantly

increases the variance in the distribution of post-synaptic current amplitudes, but does not

shift the mean. This results in an inhibition-dominated synaptic input, resembling that of the

homogeneous condition (see also Fig 5c), despite the substantially different distributions.

Apart from being balanced on average, a condition of “detailed” balance [126, 130] is char-

acterized by E and I currents that closely track each other and are strongly anti-correlated (Fig

5b). In the homogeneous circuit, excitatory and inhibitory currents are most weakly anti-

Fig 5. Balance of excitation and inhibition in excitatory neurons driven by background, Poissonian input at νin = 10 spikes/s. (a):

Distribution of mean amplitudes of excitatory (blue) and inhibitory (red) membrane currents onto E neurons in the different conditions, as well

as the absolute difference between them (grey). For each condition, we show the single data points, where the currents onto a given neuron are

summarized as a set of 3 points (hIexci in blue, hIinhi in red and |hIinhi − hIexci| in grey). Overlaid on top of these data points are the distributions

across all the neurons, summarized as box-plots: the box represents the first and third quartiles (IQR); the median is marked in red; the whiskers

are placed at 1.5 IQR and the outliers can be seen in the underlying data points. The white markers in the middle display the mean difference of

synaptic amplitudes across all neurons, for each condition. (b): zero-lag correlation coefficient between excitatory and inhibitory synaptic

currents (mean and standard deviation across the E population). (c, d): Examples of the total excitatory and inhibitory synaptic currents

received by a randomly chosen E neuron in the homogeneous and fully heterogeneous conditions, respectively. Results in (a) and (b) were

gathered from 10 simulations per condition.

https://doi.org/10.1371/journal.pcbi.1006781.g005
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correlated (CC� −0.63, see also Fig 5c). Synaptic heterogeneity causes a slight improvement,

but the most important contribution to this effect comes from neuronal heterogeneity. In this

condition, the mean correlation coefficient reaches CC� −0.8, although it also introduces a

greater variance than synaptic or structural heterogeneity (see also Fig 5d).

Both global and detailed balance thus appear to be emergent properties of heterogeneous

microcircuits, primarily due to neuronal diversity, but encompassing also a clear influence of

synaptic diversity. As is the case with all results presented so far, the fully heterogeneous circuit

retains several key properties of interest, but appears to inherit them from different sources. As

before, the effects of structural heterogeneity are mitigated by the very sparse firing of the E

population, which render its effects moot and no significant deviation from the homogeneous

condition is observed.

Active processing and computation

In order to induce a functional state, engaging the circuit in active processing, we introduce an

additional input signal, directly encoded as a piece-wise constant somatic current (see Input
specifications in Materials and methods). We began by tuning the input amplitudes (of both

background input firing rate νin and external input current ρu) independently, for each condi-

tion, in order to approximate the relative ratio of mean firing rates among the different popula-

tions (see S2 Fig), i.e. we attempt to find a combination of input parameters that allows the

mean firing rates to remain within realistic bounds (νE 2 [0.5, 5], n I1
2 ½10; 25�, n I2

2 ½3; 15�,

considering the values reported in [93, 94, 111, 114]).

We consider the circuit’s responses to this input signal as an active state, as opposed to

the condition explored in the previous sections, where the circuit was driven solely by back-

ground, stochastic input (noise). It is worth noting, however, that the similarities between

what we call quiet and active states and their biological counterparts are limited (see Discus-

sion). In the following, we show that despite these limitations, the actively engaged circuit

operates in similar dynamic regimes to its biological counterpart and maintains the key sta-

tistical features that are most likely to play a significant role in modulating the circuit’s pro-

cessing capacity.

In this section, we assess the microcircuit’s capacity to compute complex functions of the

input signal, as described in the Materials and Methods. Note that we purposefully removed

any predetermined structure in the input signal, such that the measurements reflect the prop-

erties of the system and not the acquisition of structural information in the input. If we were to

consider naturalistic sensory input as the driving signal, this would not be the case. Further-

more, we intentionally focus on generic information processing as the ability the perform

arbitrary transformations on an input signal and not on specific functions which might be per-

formed by specific microcircuits.

Spiking activity in the active state. Due to the extremely sparse firing observed in the

quiet state, an adequate comparison of spiking statistics is only sensible in the active condition.

While no explicit effort was taken to constrain the circuit’s operating point when tuning the

input parameters (the focus was purely on average firing rates), all conditions operate on an

asynchronous irregular regime (exemplified by the raster plots in Fig 6a). This regime is char-

acterized by low pairwise correlations (CC < 0.03) and high coefficients of variation (CVISI�

0.9), for all neuron classes, in all conditions. Each condition generates different spiking

responses with slight variations in activity statistics. The profiles of the activity statistics for the

three neuronal classes are summarized in Fig 6c–6g for the five different conditions. The com-

plete results, displaying the specific profiles for the different classes and conditions separately

can be consulted in S3 Fig.
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In the homogeneous condition (Fig 6a and 6c), I1 neurons exhibit the most distinctive

profile, with the highest amount of synchrony and the largest firing rates as well as a very

bursty and regular firing relative to any other neuronal class and any other condition. Con-

sistent with empirical observations [94, 114, 131, 132], E neurons retain an extremely low

firing rate (νE� 1 spikes/s), even when stimulated by the extra input current that character-

izes the active state. The main difference is that a larger fraction of the population is engaged

and actively firing. This result demonstrates that sparse firing of E neurons is a stable charac-

teristic of layer 2/3 microcircuits, emerging from the strong and dense inhibition provided

primarily by I1 neurons that, firing at very high rates, strongly inhibit the E population,

regardless of the variations introduced by different sources of heterogeneity and the addition

of the extra excitatory input.

The impact of the various heterogeneity conditions particularly affects the degree of syn-

chronization and burstiness across the different populations. Only the firing rates of I1 neurons

are significantly modified by heterogeneity, whereas for all other neuron classes, they remain

consistently low. Irregularity and randomness in the firing patterns are mostly unaffected as is

clear by observing the similarity in the respective axes (HISI and CVISI in Fig 6c–6g).

The effects of structural heterogeneity (Fig 6d) are only noticeable on the neuronal classes

that are directly affected (E and I1, see Table 3); no changes in activity statistics are observable

for the I2 population (orange profiles in Fig 6c and 6d). Excitatory neurons fire less synchro-

nously and exhibit a much lower tendency to fire in short spike bursts, compared with the

homogeneous condition. On the other hand, I1 neurons show a slight decrease in synchrony

and firing rate.

Fig 6. Statistical properties of spiking activity in the active state for the E (blue), I1 (red) and I2 (orange) populations. (a, b): Example raster

plots depicting the activity of a small, randomly chosen subset of neurons, over a recording period of 2.5s in a homogeneous and fully

heterogeneous circuit, respectively. (c)-(g): Activity statistics profiles for the different populations (overlaid) in the different conditions. The

radial axes represent: mean pairwise correlation coefficient (CC), coefficient of variation of the inter-spike intervals (CVISI), mean firing rate (ν
[spikes/s]), entropy (HISI[bits]) and burstiness (ISI5%[s]) of the firing patterns. The values along the radial axes are normalized to the largest

value across all neuron classes in each condition. The units have been removed for better legibility (see S3 Fig). (h)-(j): Distribution of firing

rates ν[spikes/s], CVISI and CC for the E population in the different heterogeneity conditions (see legend in (j)). The results depicted are

population averages, obtained from one simulation per condition.

https://doi.org/10.1371/journal.pcbi.1006781.g006
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Diversity in neuronal parameters (Fig 6e) strongly affects the response properties of I2

neurons, slightly increasing their firing rates and correlation coefficient. The most noticeable

effect, however is a greatly increased tendency to fire in short bursts (ISI5%� 1s) which is the

most significant deviation of the standard profile exhibited by this neuronal class in all other

conditions (for a more complete comparison, consult S3 Fig). Heterogeneous E neurons have

a higher tendency to fire synchronously (albeit still with very low CC), compared to any other

condition. As for the I1 population, the most significant effect of neuronal heterogeneity is a

reduction of the mean firing rate.

Synaptic heterogeneity (Fig 6f) causes a clear alteration of the firing profile of all neuron

classes, particularly E and I1, resulting in a noticeable decrease in synchronization in all popu-

lations, thus having a marked decorrelating effect. It also produces a substantial reduction in

the tendency for burst spiking in the E and I2 populations. The firing rates of both inhibitory

populations are reduced (due to the chosen input parameters, see S2 Fig) which, consequently,

leads to a slight increase in the E neurons’ firing rates that also fire slightly more regularly.

Interestingly, the firing profile observed in the fully heterogeneous circuit (Fig 6b and 6g)

exhibits some unique features, different from any of those created by the individual sources of

heterogeneity in isolation. Particularly prominent is the complete abolishment of any degree

of synchronization in any of the neuronal populations, which show the smallest correlation

coefficients of all the cases considered. This effect is likely primarily acquired from synaptic

heterogeneity, but goes further than the effect observed there. The firing profile of I2 neurons

in the fully heterogeneous circuit retains all the features observed in the homogeneous circuit,

indicating that the variations introduced by neuronal and synaptic heterogeneity are counter-

acted by the complex interactions between the different sources of heterogeneity.

Overall, the statistics of population activity clearly demonstrate that the fully heterogeneous

circuit is more than the sum of its parts, i.e. the variations introduced by the combination of

multiple sources of heterogeneity cannot be fully accounted for by their individual effects and

lead to more complex interactions that strongly modulate the circuit’s operating point. In

addition, all heterogeneity conditions give rise to similar distributions (Fig 6h–6j), i.e. lognor-

mal distributions of firing rates (argued to be a beneficial feature [72, 133]) and correlation

coefficients as well as a Gaussian distribution of CVISI, with mean close to 1. The different con-

ditions simply modulate the parameters of the distributions: synaptic and neuronal heteroge-

neity broaden the firing rate distributions; synaptic heterogeneity alone is responsible for

skewing the CCs to smaller values, an effect that is stronger and more pronounced in the fully

heterogeneous circuit. It should be noted that the tails of the rate distributions in networks

with heterogeneous neurons and/or synapses fall beyond the range typically observed in layer

2/3 microcircuits. The extra somatic current with which we emulate the active state drives the

targeted sub-population to fire excessively in these conditions, which highlights a limitation of

our approach (see Limitations and future work).

Temporal tuning and memory capacity. Online processing requires the continuous

acquisition and integration of temporally extended information arriving through multiple

time-varying input streams. As such, cortical microcircuits need to retain information over

time (fading memory) and combine it in meaningful ways. This generic operating principle

thus constitutes an important feature underlying cortical information processing (see e.g. [4,

134–136]), and is primarily determined by architectural constraints that potentially modulate

the circuit’s operating timescales. In this section, we investigate the effect of heterogeneity on

the ability of our microcircuit model to retain information over long timescales, enabling it to

operate over a broad dynamic range.

The baseline, homogeneous circuit already exhibits these properties (Fig 7a), with an aver-

age intrinsic time constant (measured as the decay of the membrane potential autocorrelation
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functions, see Materials and methods) of� 126.75 ms in the quiet state and a relatively broad

dynamic range. Thus, even when all the system’s components are homogeneous, neurons

appear to operate at relatively long time scales. This can be partially attributed to the fact that

each input elicits very small, sub-millivolt responses [137, 138] and these neurons are strongly

hyperpolarized. Therefore, the microcircuit complexity, in combination with the nature of the

sub-threshold dynamics, is inherently sufficient to allow it to operate over a large and long

temporal range and to rapidly switch to the timescales of its primary driving input (Fig 7a,

top).

In order to reliably compute, it is beneficial if the system’s high-dimensional dynamics

become transiently ‘enslaved’ by the input [16]. This would correspond to a switch in the sys-

tem’s intrinsic timescale to the dominant input time scale, allowing the intrinsic fluctuations

to help the circuit track the input dynamics. The observed features of having a broad dynamic

range in the quiet state, along with the ability to rapidly switch to the shorter timescale of the

Fig 7. Temporal tuning and linear memory capacity. (a): distributions of intrinsic timescales (τint) in the quiet (Q, bottom) and active (A, top)

states, for each of the different conditions. (b) Optimal stimulus resolution (Δt) that allows each circuit to perfectly track its input signal (see also

red star markers in (a) and S4 Fig). (c): Fading memory functions for the different heterogeneity conditions, determined as the ability to

reconstruct the input signal at different delays (k). Colours as in panel (d) below. (d): Total memory capacity, corresponding to the area under

the curves in (c). Apart from the main conditions depicted in (c), pair-wise combinations among conditions are depicted in between. (e) Effects

of synaptic heterogeneity on memory capacity, in conditions where the weight distributions are fixed, but re-shuffled such that the strongest

weights are assigned to the connections among the input population (Shuffled1), from the input population to all excitatory neurons (Shuffled2),

or from the input population to all neurons (Shuffled3). Results depicted in (b), (d) and (e) were gathered from 10 simulations per condition.

https://doi.org/10.1371/journal.pcbi.1006781.g007
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driving input during active processing appear to stem primarily from the microcircuit’s com-

position and dynamics (homogeneous condition). However, they are present to greater extents

in the presence of structural and neuronal heterogeneity (see Fig 7a). The same pattern is true

for memory capacity, whereby neuronal heterogeneity causes a large extension of the circuit’s

memory range, leading to a slowly fading and relatively long memory store (Fig 7c and 7d).

We express the memory functions as the ability to use the current state of the circuit x[n]

to reconstruct the input sequence at different time lags u[n − k] for k 2 [0, 1, 2, . . ., T] (as

depicted in Fig 7c). The total memory capacity CM (Fig 7d) is then the sum of the individual

capacities at different lags k and thus characterizes the maximum extent to which information

about past inputs is retained in the current state. It is worth noting, however, that these results

should be interpreted cautiously as the different circuits exhibit different responsiveness to the

input signal. For comparability, the time constant at which the input varies (Δt) was chosen

independently for each condition as the value that maximizes the circuit’s ability to reconstruct

its input, i.e. the value that allowed optimal performance at 0 time lag (see Fig 7b and S4 Fig).

The memory range of structurally heterogeneous networks is similar to that of the fully het-

erogeneous circuit (CM� 3.65 and 3.49, respectively) and both are markedly larger than in the

corresponding homogeneous case (CM� 2.67, Fig 7c and 7d). Thus, despite having a barely

noticeable effect on microcircuit dynamics and state transitions, structural heterogeneity

appears to have non-negligible functional effects. This is somewhat surprising, in light of all

the results discussed so far, but consistent with e.g. [139], who proposed that a heterogeneous

network structure can give rise to broad and diverse temporal tuning.

The fact that physiological diversity in single neuron properties (neuronal heterogeneity)

extends the dynamic range and memory capacity, is to be expected since it directly decreases

redundancy and adds variability to the population responses. However, the magnitude of the

effect is very significant, nearly doubling the memory capacity, thus making neuronal hetero-

geneity stand-out as the most functionally relevant condition. In the presence of neuronal

heterogeneity alone, the circuit becomes much more responsive, with broader temporal tun-

ing and memory capacity (Fig 7) and capable of achieving optimal performance in recon-

structing the input signal, even when it varies at short timescales (peak reconstruction

performance is achieved with Δt� 3.9 ms versus Δt� 13.3 ms in the homogeneous circuit,

see Fig 7b and S4 Fig).

Counter-intuitively, it appears that synaptic heterogeneity makes the circuit ‘sluggish’, in

the sense that it appears to be less responsive and incapable of tracking fast fluctuations in the

input signal (Δt� 20 ms, Fig 7b and S4 Fig). These circuits are also endowed with a very short

memory capacity (CM� 2.7) that is similar to that of the homogeneous circuit. Accordingly,

diversity in synaptic components enforces a very narrow temporal tuning, skewed towards

short timescales in the quiet state (mean τint� 30 ms) and reduces the circuit’s ability to

acquire the input timescale (Fig 7a and 7b).

These, apparently deleterious, effects of synaptic heterogeneity hint at an important limita-

tion of our implementation (further discussed in Limitations and future work): heterogeneous

connection strengths in biological circuits are not randomly assigned, but result from learning

and adaptation processes and sub-serve the development of a functional architecture see, e.g.

[185], tailored to the circuit’s processing demands. For simplicity, however, we did not intro-

duce any form of synaptic adaptation in our microcircuit model and we have randomly dis-

tributed the connection strengths across the network, which may have precluded us from

capturing the functional relevance of synaptic heterogeneity.

In order to investigate whether non-random features of the distribution of synaptic weights

play a role in the memory capacity, we perform an additional test whereby the weight distribu-

tions were retained as in the original implementation, but the individual values were re-
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shuffled according to three different assumptions about which connections are most likely to

have the strongest weights (see Fig 7e): connections within the sub-population of E neurons

that were directly stimulated (Shuffled1); connections between these input-driven neurons and

other E neurons (Shuffled2); and connections from the input-driven neurons to every other

neuron in the microcircuit (Shuffled3, i.e. also involving synapses onto I1 and I2 populations).

The results depicted in Fig 7e demonstrate that any of these modifications improves the cir-

cuit’s memory capacity, relative to the random synaptic heterogeneity condition. These

improvements are only marginal (reaching a maximum value of CM� 2.78), but substantiate

the claim that the non-random nature of synaptic heterogeneity is functionally meaningful

and ought to be carefully scrutinized. Among the conditions tested, the strengthening of excit-

atory synapses connecting the input-driven neurons to the remaining E neurons (Shuffled2)

appears to be the most beneficial.

Overall, these results demonstrate a clear relation between the system’s responsiveness to

temporal fluctuations in the input signal, the intrinsic timescales that characterize the neurons’

activity and the circuit’s memory capacity. There appears to be a ‘push-and-pull’ phenomenon

caused by the interactions of neuronal and synaptic heterogeneity, whereby the first signifi-

cantly boosts the circuit’s dynamic range and memory capacity, whereas the second pulls it

back to values similar to the homogeneous condition. Additionally, the independent sources

of heterogeneity co-modulate each other’s effects in unexpected ways (Fig 7d). For example,

structural and neuronal heterogeneity, which individually cause the most noticeable positive

impact on the circuit’s memory capacity, fail to do so when combined. On the other hand, the

negative impact of synaptic heterogeneity alone is ameliorated when it is combined with either

neuronal or structural heterogeneity.

Processing capacity. To complement the results of the previous sections and determine

the microcircuit’s suitability for online processing with fading memory, we adopt the notion of

information processing capacity introduced in [140], which allows us to quantify the system’s

ability to employ different modes of information processing and, by combining them, deter-

mine the total computational capacity of the circuit (for a formal description, see Processing
capacity in Materials and methods). By this definition, the memory capacity discussed in the

previous section corresponds to the capacity to reconstruct the set of k different linear func-

tions (degree 1 Legendre polynomials) of the input u, each corresponding to a specific time

lag, see also [141]. As such, it corresponds to the fraction of the total capacity associated

with linear functions (since no products are involved) and measures the circuit’s linear pro-

cessing capacity (d = 1 in Fig 8). Accordingly, degrees d� 2 correspond to larger and increas-

ingly complex sets of non-linear basis functions (products of Legendre polynomials, see

illustrative example in Fig 8a) and thus require increasingly more sophisticated computational

capabilities.

We can thus distinguish between computational complexity / non-linearity (specified by

the maximum degree of the basis functions used, dmax) and memory (specified by the maxi-

mum delay taken into consideration, kmax). By evaluating a very large set of functions of u,

we can quantify the circuit’s information processing capacity over the space of basis func-

tions (Fig 8b). The total capacity CT (Fig 8b), defined as the sum of the individual capacities

(C[X, z]) for all the different functions z tested, thus quantifies the circuit’s ability to compute

multiple transformations of u, with variable degrees of complexity and provides a summa-

rized description of the system’s information processing capacity (see Processing capacity in

Materials and methods).

In line with the results on the previous section, heterogeneity in neuronal parameters

has the most significant effect, greatly extending the space of computable functions, both

linear and nonlinear. By allowing the circuit to retain contextual information for longer
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(extended memory range), these circuits have a high capacity even for relatively large delays,

as demonstrated by the slowly decaying memory curves in Fig 8b. As a consequence, the

total capacity of microcircuits with heterogeneous neurons is the largest among all the con-

ditions (Fig 8c).

Despite its very modest effects on population activity, structural heterogeneity has very

interesting consequences on the microcircuit’s processing capacity, particularly in the ability

to compute complex nonlinear functions. Although the memory functions decay abruptly

(almost as abruptly as in the homogeneous condition, Fig 8b), the circuits achieve a larger

capacity for more complex functions (Fig 8c) and the total capacity at d = 4 (largest degree

evaluated) is the largest among all conditions tested, as can be seen by comparing the top crim-

son bars in Fig 8c.

Also in line with the results for d = 1 (linear memory capacity), synaptic heterogeneity has a

deleterious effect on processing capacity, reducing it to values smaller than the homogeneous

case (CT� 13.9 versus CT� 14.4 for the homogeneous condition, Fig 8c). Consequently, the

beneficial effects introduced by both structural and neuronal heterogeneity are counteracted

by the negative effect of synaptic heterogeneity, as observed in the previous section. These can-

celling effects result in the fully heterogeneous circuit having a total capacity that is only mod-

estly superior to the homogeneous case (CT� 16.9).

Fig 8. Computational capacity in the different heterogeneity conditions. (a) Illustration of the setup used to assess computational capacity.

An input signal, u, is used to drive a sub-set of E neurons and the population responses, x, are recorded and gathered in state matrix X. These

states are then used to reconstruct a set of time-dependent functions z = f(u−k). These target functions vary in complexity (degree of

nonlinearity, color-coded) and memory requirements. (b) Normalized capacity space, i.e. ability to reconstruct functions of u at different

maximum delays (kmax, memory) and degrees (dmax, complexity/nonlinearity). For any given function, the capacity is normalized such that C

[X, z] = 1 corresponds to perfect reconstruction of z. (c) Total processing capacity, expressed as the sum of all capacities for a given degree (the

incremental color code in each bar corresponds to the maximum degree for each segment, varying from 1 to 4 and is also illustrated in (a)).

https://doi.org/10.1371/journal.pcbi.1006781.g008
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Under idealized conditions, the total capacity is bound by the number of linearly indepen-

dent state variables of the dynamical system, which, in the limit of T!1, equals N (the

number of neurons), in systems that perfectly obey the fading memory property and whose

neurons’ activity is linearly independent (for proofs, see [140]). In that respect, the values we

have obtained for the total capacity are very modest and close to only 1% of the theoretical

limit. On the one hand, this is due to methodological limitations (we could only investigate a

short range of dmax), and on the other, suggests that there may be important aspects that were

neglected in this study that significantly boost the total capacity and, at least partially explain

the difference (see Limitations and future work).

Nevertheless, the results demonstrate a consistent pattern to that observed in the memory

capacity, i.e. the functional consequences of the different sources of heterogeneity are consis-

tent for both the ability to compute linear and non-linear functions with fading memory, as

circuits with the largest linear memory capacity are also the ones with the largest non-linear

processing capacity (namely neuronal heterogeneity). However, these results indicate that neu-

ronal heterogeneity has its main effect on memory (kmax), greatly extending the capacity to

compute functions of u−k for larger values of k (Fig 8b) while structural heterogeneity (that has

the second largest functionally beneficial effects) boosts the ability to compute more complex

functions, with a main effect on dmax.

Discussion

Heterogeneity and diversity in cellular, biochemical and physiological properties seen within

and across cortical regions and layers exerts a significant influence on population dynamics.

Although often disregarded by the reduced models commonly used in computational neuro-

science, these features of the neural tissue may well be partially responsible for the high

computational proficiency and functional properties of these systems. In order to understand

the functional relevance of the different ‘building blocks’ and their inherent complexity and

diversity, it is important to start from relatively simple formalisms and gradually account for

the biological complexity while maintaining coherence with the relevant empirical observa-

tions at multiple levels. The present study proposes a data-driven modelling approach as an

exploratory strategy to systematically uncover the computational benefits of different micro-

circuit features in an attempt to elucidate and quantify the biophysical substrates of neural

computation.

We have focused on the composition of layer 2/3 cortical microcircuits, since their highly

recurrent connectivity [142, 143] and sparse, asynchronous activity [93, 111, 113, 117, 142,

144] are ideally suited to study the nature of sparse distributed processing in cortical microcir-

cuit models. The relatively small extent of the neuritic processes (in comparison with deeper

layers), makes it acceptable to assume that the potential role of dendritic compartmentalization

[145, 146] and other effects caused by the detailed neuronal morphology [147, 148] are negligi-

ble, allowing us to use simple point-neuron models with limited loss—which would not be the

case if we accounted for the deeper layers. Additionally, the input/output relations and unique

position of layer 2/3 in a cortical column suggests a particularly prominent computational role

as it must integrate and process multiple streams of information in meaningful ways.

In an attempt to disentangle the role played by heterogeneity in different components of

the system, we tentatively partitioned it into neuronal, structural and synaptic components

(see Introduction, Data-driven microcircuit model and Supplementary Materials). These differ-

ent sources of heterogeneity differentially influence the characteristics of population responses:

from introducing variability in how different neurons and neuronal classes respond to and

integrate their synaptic inputs, to variations in the magnitude and distribution of those inputs,
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among other effects. These, often subtle, differences have complex effects at the population

level and strongly condition the system’s operating point. The fully heterogeneous circuit pro-

vides the closest approximation to the biophysical reality, exhibiting important commonalities,

and appears to inherit different features from different sources of heterogeneity. Naturally,

given the simplifications required, our conclusions on the effects of the various heterogeneities

are primarily qualitative. However, the extent to which the model responses differ from the

empirical observations can also be informative about the potential impact of microcircuit fea-

tures and processes that were not explicitly considered or were overlooked or oversimplified,

as we discuss in the following section.

Collecting, validating and organizing experimental data relevant for these type of studies is

still a monumental challenge. Manual annotation and parameter extraction are cumbersome,

error-prone strategies and only feasible on well-constrained systems and well-defined prob-

lems. The creation and active curation of stable and reliable large-scale databases (of which

good examples exist: Allen Brain Atlas [149], NeuroMorpho [150], NeuroElectro [100], NMC

[91], ICGenealogy [151], to name a few), along with standard and widely accepted registration

and sharing practices [152, 153] are increasingly a priority in a community-driven effort to

better constrain neuroscience models and integrate knowledge from multiple disciplines. In

addition, automated parameter extraction, estimation as well as model fitting and comparison

is strictly and increasingly necessary for studies in this direction. These are complex challenges

as they must meet the requirements of an ever-changing scientific field that, consequently,

doesn’t lend itself easily to standardization.

Apart from the considerable efforts to explicitly include and account for experimental data

to constrain the microcircuit models and make use of publicly available datasets, we addition-

ally emphasize the importance of ensuring transparency, openness and reproducibility. To

this end, the complete materials for this study are publicly available through the [154] (see S2

Appendix for details). Our efforts in that direction are a mere example and proof-of-concept,

but demonstrate that the field is mature enough to embrace these practices, which should

become a standard in computational neuroscience (see also [155]). Given the complexity of

these studies, the ability to reproduce and verify are paramount not only to impose the scien-

tific ‘golden standards’, but to extend and build upon existing work.

Limitations and future work

Despite providing a significant step towards biological verisimilitude, our results demonstrate

important limitations that ought to be addressed in future work. At the neuron level, and even

though we consider three different neuronal populations, including two separate inhibitory

classes, further sub-divisions have been reported in neocortical layer 2/3 populations, both for

glutametergic [46] and, in particular, for GABAergic neurons [113, 144, 156–158]. It is possible

that these reflect regional specializations particularly prominent in specific cortical areas (such

as the prefrontal cortical regions; [34, 46, 159]) or that they represent separate instances of

broader classes and can, for simplicity, be grouped together. Parameterized correctly, our

choice of neuron model proved to be sufficient for the purposes of this study and allowed us to

account for the most important physiological characteristics of the different neuronal classes

and their relations (see Neuronal properties). Such simplifying assumptions, however, are

bound to miss relevant structural and functional features, particularly when it comes to spe-

cialization of inhibitory neurons and synapses [160–164], the effects of dendritic nonlinearities

and active dendritic processes [145–148], intrinsic adaptation processes [165], to name a few.

It is also important, in future work along this direction, to consider the intricate relations

between model parameters, i.e. explicitly include not only the empirical variability but also the
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covariance across multiple parameters (as e.g. [101]). In this context, it should be pointed that

the neuronal heterogeneity condition entailed a modification of a larger number of parameters

than the other forms of heterogeneity, and so further work is needed to disentangle their con-

tributions and obtain a single-parameter level comparison of their effects. Overall, our results

lead us to conclude that it is important to understand the role of multiple interacting popula-

tions (e.g. [166]), particularly including inhibitory sub-types and their different physiological

properties and interactions, given their clearly distinct contributions.

When it comes to synaptic transmission, we have focused on the specificities of instanta-

neous response kinetics and its inherent diversity, disregarding any form of synaptic plasticity.

However, in our model, synaptic heterogeneity was shown to severely constrain the microcir-

cuit’s processing capacity and memory (Fig 8), counteracting the benefits introduced by neu-

ronal and structural heterogeneity. Additionally, the fact that the total measured capacity is

very modest even in the best-performing systems (only about 1% of the theoretical maximum),

and considering the computational requirements posed on these systems in ecological condi-

tions, this suggests it is reasonable to assume that there are important aspects of synaptic trans-

mission that we have failed to consider, but contribute significantly to the circuit’s processing

capacity. Adaptation and plasticity are likely to be important missing components, due to

their critical roles in learning and memory processes [55]. Furthermore, variability in synaptic

parameters, being the result of adaptive processes, is bound to reflect the circuit’s functional

architecture, as demonstrated in e.g. [167]. Failure to consider the specificities of cortical con-

nectivity is partially responsible for the absence of a substantial functional impact of synaptic

heterogeneity in this study.

Throughout this study, we have investigated the behaviour of our microcircuit model in

two dynamic regimes, which we associated with the biological quiet and active states. However,

the stimulation applied to bring the circuits into the active state was not biologically realistic,

as we purposefully removed any spatiotemporal structure in order to measure the computa-

tional properties of the system and not the acquisition of structural information present in

the input signal. Thus, the degree to which we are able to account for and explicitly compare

empirical observations with the model is restricted and only qualitative. Moreover, whilst mea-

suring the capacity of the network, we significantly under-sampled the space, as the results

clearly demonstrate (Fig 8a). A more complete set of basis functions would lead the capacity

along both axes to decay to 0: as the complexity and memory requirements increase, the capac-

ity to compute these functions decreases to negligible values in all systems. While accounting

for delays of up to kmax = 100 allowed us to capture this effect (since the memory range in all

conditions is inferior to that), we failed to account for a sufficiently large dmax. The primary

reason for this was computational cost, as our current implementation is extremely time-

consuming (see S2 Appendix). As a consequence, the capacity space is sub-normalized, incom-

plete and underestimated, due to the relatively small number of basis functions tested. Addi-

tionally, the limited sample size (T = 105) may bias the individual results.

While we have explored information processing capacity in a generic sense, future work

along these lines would benefit from being more directed towards specific microcircuits

engaged in specific computations. For example, the specific role of layer 2/3 microcircuits in

primary and secondary visual cortices for long-range perceptual grouping have been systemat-

ically explored [14, 15, 168] and constitute a fruitful avenue for future research.

Cortical states

The state of any given cortical microcircuit, both in terms of macroscopic spiking statistics

and, particularly, membrane potential dynamics can differ dramatically between behavioural
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states [94, 114, 131, 132] given that they require different levels of active ‘engagement’. The

three neuronal classes behave in very specific ways, with specialized response features provid-

ing differential contributions to the different circuit states. These neuron-class-specific contri-

butions play an important role in the observed dynamics, providing a potential mechanism to

support state modulations [123, 169].

Spontaneous cortical activity during states of quiet wakefulness (a quiescent state in

which the animal is awake but the circuit is not directly engaged in active processing), is

commonly characterized by short-lasting, large amplitude depolarizations [132, 170, 171]

that reflect the presence of strongly synchronized excitatory inputs and resemble the dynam-

ics observed under light anaesthesia [114, 132, 138, 144]. Naturally, driven by a homoge-

neous Poisson process, the system does not exhibit such behaviour (see Results section on

Emergent population dynamics), which indicates that such effects are partially inherited by

the spatiotemporal structure of the background input [172], which in turn may reflect the

structure of the sensory input [173]. Additionally, or alternatively, this may be a conse-

quence of propagating waves of excitation [171] which are likely related to spatial connectiv-

ity features that were not taken into consideration in this study (see Limitations and future
work).

Nevertheless, our quiet state, where the circuit is driven by background noise, highlights

relevant features of population activity and their relations among different neuronal

classes, emerging from the effects of the different sources of heterogeneity. The most promi-

nent feature is the extremely sparse firing of E neurons (Fig 4c), which appears to stem

directly from the circuit’s composition (homogeneous condition) and is a robust and

replicable effect emerging as a direct consequence of dense, strong and fast inhibition.

While structural heterogeneity has no measurable effects, synaptic heterogeneity makes

the E population more responsive and places some of these neurons closer to their firing

thresholds (Fig 4d). Neuronal heterogeneity, on the other hand, leads to more strongly

hyperpolarized E and I1 populations, compared to all other conditions. This has the positive

effect of shifting the distribution of membrane potential in the I1 population to a range that

overlaps with the empirical values in [94]. However, E neurons become excessively hyperpo-

larized and their membrane potentials are kept farther from threshold and farther from the

corresponding experimental value (to which all other conditions provide a better match).

Despite these differences, neuronal heterogeneity is responsible for placing all three neuro-

nal populations operating within the range of values reported in the literature (dashed lines

in Fig 4d).

Neocortical pyramidal neurons (particularly in layer 2/3) fire very sparsely and are never

driven to saturation, despite a large and constant synaptic bombardment. For this to occur,

excitatory and inhibitory input currents onto each neuron must be carefully balanced such

that, on average, they cancel each other, allowing the net mean input to be small and the output

rates moderate [95, 174]. Co-active and balanced excitation and inhibition thus stabilizes and

shapes the circuit’s activity and must be actively maintained to allow the networks to operate

in stable regimes [127, 175, 176]. Importantly, it also plays a critical role in active processing

and computation, with the most clear experimental evidence coming form the development of

input selectivity in visual and auditory cortices (see e.g. [138, 177, 178] and references therein).

We demonstrate that such balance condition is an emergent property from circuits with het-

erogeneous neurons, without the need for changing any of the system’s parameters. This

observation may also provide a complementary mechanism by which cortical circuits are able

to achieve and retain this dynamic balance, despite the large, potentially disruptive, variations

introduced by other sources of heterogeneity, without necessarily requiring specific compensa-

tory mechanisms as has been recently proposed by [86].
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Heterogeneity and information processing

At any given point in time, the state of the circuit reflects a nonlinear combination of the cur-

rent and past inputs, mediated by complex recurrent interactions. The state of each neuron is

thus a nonlinear, fading memory function of the input (the characteristics of which are deter-

mined by the circuit’s specificities and input encoding) and the population state a set of N
basis functions that can be linearly combined to approximate arbitrary nonlinear functions

with fading memory. In that sense, these circuits are endowed with universal computing

power on time invariant functions [16–18, 134]. This is where complexity and heterogeneity

play a particularly prominent role, as they can greatly extend the space of computable func-

tions by diversifying population responses and, consequently, the richness of the circuit’s high-

dimensional state-space.

With specific functions in mind, circuits can be “designed” to perform certain computa-

tions by explicitly solving the credit-assignment problem, i.e. determining how each neuron

ought to contribute to the computation [179] in order to achieve the desired outcome. This is

typically achieved by constraining the microcircuit connectivity [180, 181] and/or by postulat-

ing and building-in specific functionality (e.g. efficient coding; [128, 182]). The great majority

of these approaches, however, assumes idealized conditions and neglects the complexities of

real biophysics (but see, e.g. [183]), which limits their scope and generalizability.

Since we were not interested in specific functions, but in universal computational proper-

ties, instead of “designing” functional microcircuits or assuming specific computations, we

sought to mimic fundamental design principles of the real neocortical microcircuitry and sys-

tematically evaluate how they affect the circuit’s computational capabilities. While this explor-

atory approach has its limitations, we were able to partially disentangle the computational role

of complexity and heterogeneity in the microcircuit’s building blocks and pinpoint potential

sources of functional specialization. Globally, the functional analysis on the computational

benefits of the different sources of heterogeneity revealed the same effect: neuronal diversity,

on its own, significantly boosts linear and nonlinear processing capacity and memory (see

Results sections on memory and processing capacity) and dramatically increases its dynamic

range and sensitivity. Surprisingly, and even though its effects on population activity were

barely noticeable, structural heterogeneity has the second largest computational effect, particu-

larly boosting the ability to compute highly nonlinear functions (capacity at d = 4 was much

larger than any other condition, see Fig 8).

The functional benefits introduced by neuronal and structural heterogeneity are not

reflected in the fully heterogeneous circuit, given that synaptic heterogeneity prevents this

from happening. It would be expectable and desirable that the computational benefits would

combine in a way that could dramatically increase the total capacity of the most realistic condi-

tion. As discussed above, these synaptic effects likely reflect important limitations in our ability

to capture their real influence in the biological system. Nevertheless, some of these results are

in line with recent works on the effects of heterogeneity and complexity. In particular, the

impact of structural heterogeneity in both macro- and microscopic connectivity have been the

subject of recent investigations and are increasingly recognized as critical sources of functional

specialization, endowing a network with broad and diverse temporal tuning [139] and provid-

ing important contributions to efficient memory storage and robust recall in attractor net-

works [184, 185].

Despite limitations in our study, discussed above, our results highlight the importance of

developing new theories of cortical function and dynamics based on the complex interactions

of multiple neuronal sub-populations, as different neuronal classes have a non-negligible dif-

ferential contribution to the circuit’s dynamics. Additionally, the prominent functional role of
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structural and neuronal heterogeneity suggest that they are part of a critical minimum neces-

sary to account for computation in cortical microcircuit models as their effects appear to

underlie a variety of important phenomena.

Materials and methods

Neuronal dynamics

In all systems analysed, the neuronal dynamics is modelled using a common, simplified adap-

tive leaky integrate-and-fire scheme [98], where the total current flow across the membrane of

neuron i is governed by:

Cm
dVi

dt
¼ � gleak ViðtÞ � ELð Þ � Ii;adaptðtÞ �

X

k2 syn

X

j2pre

IkijðtÞ ð1Þ

The spike times of neuron i are defined as the set F(i) = {tf|Vi(tf)�Vthresh}. At these times,

the membrane potential is reset to the constant value V(t) = Vreset for all times t 2 (tf, tf + trefr],

after which integration is resumed as above. I(t) is the total synaptic current generated by

inputs from all pre-synaptic neurons j 2 pre mediated by synapse type k 2 syn.

To provide greater control over neuronal excitability properties and a more realistic account

of cortical neuronal dynamics, we model intrinsic adaptation processes as proposed by [99]:

tw
dIi;adapt

dt
¼ � Ii;adapt þ a ViðtÞ � ELð Þ þ b

X

tf 2FðiÞ

d t � tf
� �

ð2Þ

where the parameters a and b determine the relative contribution of sub-threshold and spike-

triggered adaptation processes, respectively.

Synaptic dynamics

The synaptic current (I syn
ij ) elicited by each spike from presynaptic neuron j is determined by

the conductivity (Grec) of the corresponding, responsive receptors (each synapse type being

composed of a pre-determined set of receptors, see below):

I syn
ij ðt;ViÞ ¼ w syn

ij

X

k2 rec

Gk
ijðt;ViÞðViðtÞ � EkÞ ð3Þ

The amplitude of post-synaptic currents is rescaled by the dimensionless weight parameter

(w syn
ij ), specific to each connection type and whose value was chosen, such that the PSP ampli-

tudes matched the data reported in [92, 93] (see Table 3). The synaptic conductivity Gk
ij in Eq 3

models the response of receptor k to spike arrival from pre-synaptic neuron j with a total con-

duction delay of d syn
ij :

G rec
ij ðt;ViÞ ¼

X

tf 2Fj

g rec
ij ðt � tf � d syn

ij ;ViÞ ð4Þ

The conductance transient elicited by a single pre-synaptic event on a single post-synaptic

receptor is then modelled as [99, 107–109]:

g rec
ij ðt;ViÞ ¼ �g recn recðViÞ 1 � exp �

t
t rec
rise

� �� �

r rec exp �
t

t rec
decayf

 !

þ 1 � r recð Þ exp �
t

t rec
decays

 !" #

YðtÞ

 !

ð5Þ

where �g rec is the peak conductance of the corresponding receptor, nrec(V) is a voltage-gating
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function assuming a constant value of 1 for all receptor types, except NMDA, in which case

[186]:

n NMDAðViÞ ¼ 1þ
½Mg2þ�

3:57mM
expð� 0:062ViÞ

� �� 1

ð6Þ

This gating function is thus used to model the voltage-dependent magnesium block at

NMDA receptors. For simplicity, we assume a fixed [Mg2+] = 1 mM. The remaining parame-

ters in Eq 5 correspond to the receptors’ characteristic time constants, namely the rise, fast

and slow decay times, as well as the relative balance between fast and slow decay (rrec). In

order to account for the differential receptor composition and expression across different

neuronal classes, all these parameters are specific for each receptor, synapse and neuron

type.

Generating structural heterogeneity

Consider the sparse adjacency matrix Asyn, specifying the anatomical connectivity between all

neurons in source population pre and target population post (with pre, post 2 {E, I1, I2}). The

indices i, j of the nonzero entries in Asyn are independently drawn from normalized, truncated

exponential distributions, with probability:

P preðjÞ ¼
kout

N pre exp �
jkout

N pre

� �

ð7Þ

P postðiÞ ¼
kin

N post exp �
ikin

N post

� �

ð8Þ

for pre- and postsynaptic neuron indices, respectively. Npre/post is the total number of pre-/

postsynaptic neurons and kout/in are the parameters used to define the skewness of the out-/in-

degree distributions, respectively. Setting kout/in = 0 corresponds to a random, uniform con-

nectivity, whereas values >0 generate structured in-/out-degree distributions, with a larger

variance in the number of connections per neuron.

Weight correlations. For each existing connection, the individual synaptic efficacies

(w syn
ij ) can be equal to a fixed scalar value (homogeneous synaptic condition) or randomly

drawn from a lognormal distribution (heterogeneous condition). To introduce weight correla-

tions, we specify additional scaling variables z for each pre- or postsynaptic neuron (zj, zi),

whose values are independently drawn from logN ð� ðc syn
in=outÞ

2
=2; c syn

in=outÞ. The parameters c syn
in=out

determine the strength of induced correlations, which we fix and set to the values reported in

[110] and [71]. The original weight values w syn
ij are then re-scaled by z of the corresponding

pre- and postsynaptic partner, i.e.:

wij ¼ wijzizj ð9Þ

For completeness, and given that lognormal distributions are widely employed throughout

this study, it is worth noting that the lognormal probability density function has the following

form:

PðxÞ ¼
1

xs
ffiffiffiffiffiffi
2p
p exp �

lnðx � mÞ2

2s2

� �

ð10Þ

parameterized by scale (μ) shape (σ) values.
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Profiling the microcircuits

To adequately quantify the relevant functional properties of the microcircuits and the impact

of the different features analysed, we employ metrics that are system-agnostic, i.e. independent

from the specificities of the circuit analysed and, preferably, parameter-free such that the

choices of metric parameters do not influence the measured outcome and any results obtained

are unbiased and objectively reflect the circuit’s properties. Of particular interest, for the pur-

poses of this study, is the adequate quantification of the characteristics of population dynamics,

under active synaptic bombardment as well as the circuit’s capacity for stimulus processing

and computation, in order to establish links between the features of population dynamics, the

circuit’s composition and complexity and its ability to perform complex computations.

Input specifications. We model cortical background / ongoing activity as an unspecific

and stochastic external input driving the circuit, considered to be excitatory, i.e. mediated by

glutamatergic synapses, and to consist of independent Poissonian spike trains, at a fixed rate

νin spikes/s. Given the small network size and, in order to compensate for the relatively small

numbers of synapses involved, we rescale the input rates by a constant factor, Kin = 1000, such

that each neuron receives, on average, background input through Kin synapses, with each pre-

synaptic source firing at a fixed rate of νin spikes/s. The postsynaptic neuron’s responsiveness

to this background input is then determined by its specific receptor composition (the kinetics

of AMPA and NMDA receptors), with synaptic weights and delays equal to any other excit-

atory synapse onto that neuron, i.e. win ¼ m
a E
w and din ¼ m

a E
d , where α refers to the postsynap-

tic neuron class (see Table 3).

In addition, to emulate an active state and evaluate the microcircuit’s processing capacity,

we introduce an additional input signal, directly encoded as a somatic input current (Iin(t)),
which changes every Δt ms, and deliver it to a randomly chosen sub-set 25% of the E popula-

tion. We choose this direct encoding strategy in order to ensure that the input signal has a

direct influence on the membrane dynamics, making it easier to decode [187–189]. As further

specified below, the values of this piece-wise constant input current were independent and

identically drawn (i.i.d.) from a uniform distribution over the interval [0, 1] and scaled by a

constant factor ρu, independently chosen for each condition (see S2 Fig).

Population dynamics. To quantify and characterize the population responses to different

input conditions and assess how the different sources of heterogeneity modulate those

responses, we look at the statistics of spiking activity as well as the relevant sub-threshold

dynamics across the different neuronal populations.

The circuit’s state or operating point is typically determined primarily by the firing rate and

the degree of population-wide synchrony and regularity [78], as measured by the following

statistics:

Synchrony.—average spike count correlation coefficient (CC), computed pair-wise, for a

large number of npairs = 500 randomly sampled, disjoint, neuronal pairs (see, e.g. [115]).

Regularity.—degree of dispersion of the inter-spike interval (ISI) distribution, as measured

by the coefficient of variation (CVISI), averaged across the population. A value of 0 indicates a

clock-like, regular firing pattern, whereas a completely irregular, Poisson process has a value of

1. Values larger than 1 are obtained for very bursty firing patterns.

Burstiness.—degree of burstiness in the firing patterns can be captured by the 5-th percen-

tile of the ISI distribution (ISI5%), averaged across the population. This measure has been suc-

cessfully used to classify neuronal firing patterns in identified populations [190, 191]. A low

value indicates higher burstiness, for a given rate.

Randomness.—The entropy of the log-ISI distribution is an important metric that captures

the randomness in a spike train [192]. It was recently demonstrated that this metric was one of
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the key features of cerebellar neurons’ spike trains, allowing their accurate identification [190].

This metric is defined on the probability density of the natural logarithm of the ISIs:

HISI ¼ �
XN

i¼1

pðIiÞ log2
ðpðIiÞÞ ð11Þ

This last metric is added for completeness, and can be seen as an additional measure of regu-

larity. The higher the entropy value, the more irregular the firing pattern.

On the sub-threshold level, we assess and summarize the characteristics of membrane

potential dynamics, synaptic currents and conductances. We analyse the distributions of mean

membrane potentials (hVmi) and their variances (σ2(Vm)), as well as the mean excitatory and

inhibitory synaptic currents (hIsyni) onto each neuron. For the computational analyses, we

consider the dynamics of the membrane potentials the main state variable [189].

Intrinsic timescale (τint).—to quantify the characteristic timescale of population activity, we

look at the autocorrelation function of each neuron’s membrane potentials:

RiðtlagÞ ¼
CovðViðtÞ;Viðt � tlagÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðViðtÞÞVarðViðt � tlagÞÞ

q ð12Þ

For each neuron, we fit the autocorrelation by an exponential function:

RiðtlagÞ ¼ a� ½exp ð� tlag=tintÞ þ b� ð13Þ

where τint specifies the decay time constant, characterizing the neuron’s intrinsic timescale.

Processing capacity. To analyse the processing capacity of the networks, following [141],

we begin by defining an input sequence u[n], of finite total length T, comprising values inde-

pendent- and identically drawn (i.i.d.) from a pre-determined probability distribution p(u).

Since we are interested in measuring the circuit’s generic processing properties and not spe-

cific transformations on specific inputs, considering the input a random variable ensures

that it has no pre-imposed structure so that any measured structure reflects only the system’s

intrinsic properties and not the acquisition of structural relations present in the input. We set

p(u) to be the uniform distribution over the interval [0, 1]. This input sequence is then directly

encoded into the circuit as explained above.

The circuit’s initial states are randomized (V0 � U ½EL ;Vth�
) and the circuit is driven by the

input, for a total simulation time of T×Δt. In order to obtain accurate results and diminish

potential errors and biases, we use a large sample size of T = 105. The circuit state in response

to the input is sampled at every Δt ms, resulting in a collection of state vectors x[n] correspond-

ing to a sample of the circuit state at time point t� = n × Δt ms. The resulting state matrix

X 2 R N E�T
and the corresponding input u 2 R1�T will then be used to estimate the capacity.

The aim of the analysis is to quantify the system’s ability to carry out computations on u.

For that purpose, we measure the capacity C to reconstruct time-dependent functions z on

finite sequences of k inputs, z[n] = z(u−k[n]), from the state of the system, using a simple linear

estimator:

C½X; z� ¼
ðXTXÞ� 1Xz
jjzjj2

ð14Þ
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The numerator in the capacity measure corresponds to the linear estimator that minimizes

the quadratic error between the target function to be reconstructed z and its linear estimate ẑ :

Wout ¼ argminWout

XT

n¼1

ðz½n� � ẑ½n�Þ2
 !

¼ ðXTXÞ� 1Xz ð15Þ

where

ẑ ¼WoutX ð16Þ

For any given function z and observed states X, C[X, z] is normalized, such that, in a system

that allows perfect reconstruction of z, C[X, z] = 1, meaning that there exists a linear combina-

tion of x[n] that equals z[n], for all n. On the other hand, a capacity of 0 indicates that it is not

possible to even partially reconstruct the target function. Evaluating C[X, z] for large sets of

target functions y{l} = {z1, . . ., zL}, allows us to gain insights into the information processing

capacity of the system. If the evaluated functions are sufficiently distinct (preferably orthogo-

nal), their corresponding capacities measure independent properties and provide independent

information about how the system computes. As such, we systematically probe the capacity

space by evaluating the complete set of orthonormal basis functions of u, using finite products

of normalized Legendre polynomials:

yfdkg ¼
Y

k

Pdk
ðu½n � k�ÞÞ ð17Þ

where Pdk
ð:Þ is the Legendre polynomial of degree dk� 0:

PdðsÞ ¼
1

2d

Xd

i¼0

� d
i

�2

ðs � 1Þ
d� i
ðsþ 1Þ

i
ð18Þ

and is a function of input u delayed by k steps. The total capacity then corresponds to the sum

of the individual capacities for a given set of target functions y{dk}
:

Cfdkg ¼
X

fdkg

C½X; fdkg� ð19Þ

Naturally, we use finite data and a finite set of indices d to evaluate the capacities, leading to an

unavoidable underestimation of the total capacity.

Linear memory and nonlinearity. Using the notations introduced above, and following

[140, 141], we can consider the linear memory capacity as the total capacity associated with lin-

ear functions:

CM ¼
X

fdkg

d
X

k

dk � 1

 !

C½X; fdkg� ð20Þ

for a maximum polynomial degree of d = 1, i.e. each of the functions tested corresponds to a

delayed version of the input:

z½n� ¼ P1ðu½n � k�Þ ¼ ðu½n � k�Þ; 8k 2 ½0; kmax� ð21Þ

Accordingly, the capacity associated with nonlinear functions corresponds to d� 2. For

more details on the implementation, consult [141] and the code we provide in the Supplemen-

tary Materials.

Heterogeneity in layer 2/3 cortical microcircuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006781 April 25, 2019 31 / 43

https://doi.org/10.1371/journal.pcbi.1006781


Numerical simulations, implementation and data analysis

All the work presented in this manuscript was implemented using the Neural Microcircuit

Simulation and Analysis Toolkit (NMSAT) [193], a python package designed to provide the

first steps towards complex microcircuit benchmarking, as suggested and exemplified in this

study. The core simulation engine running all the numerical simulations is NEST. Due to the

specificities of this project, we used a modified version of NEST 2.10.0 [194], which includes

all the models used in this manuscript (some of which are not available in the main release). A

complete code package is provided in the supplementary materials that implements project-

specific functionality to the framework, allowing the reproduction of all the numerical experi-

ments presented in this manuscript. Computing resources were provided by the JARA-HPC

Vergabegremium on the supercomputer JURECA [195] at Forschungszentrum Jülich. All

numerical simulations were performed at a resolution of 0.1 ms, using the GSL implementa-

tion of the adaptive fourth-order Runge-Kutta method.

Supporting information

S1 Table. Tabular description of network model after [196].

(PDF)

S2 Table. Discrepancies between electrophysiological parameters reported in the literature

and model results. The results obtained after careful choice of the individual parameters for

the different neuronal classes did not exactly match the experimental reports, but the relative

relations between classes are retained. (�) Note that the ranges reported in this table are a

rough approximation to the range of mean values reported in different studies (see below).

Naturally, values like the maximum rate (νmax[Hz]) depend entirely on the range of input cur-

rent considered in a given experiment, so in this case, only the relative ratio is pertinent.

(PDF)

S1 Appendix. Primary data sources. List of the main references used to constrain model

parameters.

(PDF)

S2 Appendix. Reproducibility and replication.

(PDF)

S1 Fig. Population rate transfer functions. Characteristics of population spiking activity in

response to background, Poissonian input (quiet state) in the various conditions analysed and

for the 3 different population types (E, blue; I1, red; I2, orange), as a function of the input rate

νin for a total simulation time of 10 seconds. The top row corresponds the population rate

transfer functions, showing that E neurons fire extremely sparsely and synaptic heterogeneity

is strictly required to obtain an active E population. The middle and bottom row depict the

measured irregularity (CVISI) and synchrony (CC) in all conditions analysed. Note that in

many conditions the spiking activity in the E population is so sparse that it is not possible to

compute these metrics, since the total number of spikes is insufficient.

(TIF)

S2 Fig. Tuning the input parameters for the active state. To emulate an active processing

condition, an extra input current of maximum amplitude ρu is given to a randomly chosen

subset of 25% excitatory neurons. The circuits in the different conditions exhibit different

degrees of sensitivity to their inputs. To achieve adequate and comparable responses, we

attempt to find combination of input parameters that allows the mean firing rates to remain
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within realistic bounds (νE 2 [0.5, 5], n I1
2 ½10; 25�, n I2

2 ½3; 15�).

(TIF)

S3 Fig. Population spiking activity in the active state. Complete statistics of population spik-

ing activity in the active state for the different neuron classes: E (top, blue), I1 (middle, red)

and I2 (bottom, orange) and for the different conditions (columns). The radial axes in each

plot correspond to: regularity (CVISI), synchrony (CC), burstiness (ISI5%), entropy of the ISI

distribution (HISI), and the mean firing rate (ν). All statistics were computed for an observa-

tion period of 10s, in a single realization for each condition, with all input parameters fixed

and set to the values determined in S2 Fig.

(TIF)

S4 Fig. Temporal receptivity of the microcircuits analysed. (a) capacity to reconstruct the

original input signal at zero lag (i.e. maximum polynomial degree d = 1, maximum delay k = 0,

Cd=1,k=0) as a function of the signal resolution (Δt). Since the capacity values converge asymp-

totically to 1, we determine the optimal resolution as the minimum Δt at which Cd=1,k=0�

0.99. (b) Decoding capacity at minimum resolution Δt = 0.1 ms (equal to the simulation reso-

lution). (c) Capacity at the maximum resolution tested (Δt = 20 ms). (d) Optimal resolution

for each condition. All results correspond to the mean and standard deviations for 10 simula-

tions per condition.

(TIF)

S1 File. Software package.

(GZ)
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