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Oxygen is delivered to brain tissue by a dense network of microvessels, which actively

control cerebral blood flow (CBF) through vasodilation and contraction in response

to changing levels of neural activity. Understanding these network-level processes is

immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging

(fMRI) signals, and (2) investigation of neurological diseases in which a deterioration

of neurovascular and neuro-metabolic physiology contributes to motor and cognitive

decline. Experimental data on the structure, flow and oxygen levels of microvascular

networks are needed, together with theoretical methods to integrate this information

and predict physiologically relevant properties that are not directly measurable. Recent

progress in optical imaging technologies for high-resolution in vivo measurement of the

cerebral microvascular architecture, blood flow, and oxygenation enables construction

of detailed computational models of cerebral hemodynamics and oxygen transport

based on realistic three-dimensional microvascular networks. In this article, we review

state-of-the-art optical microscopy technologies for quantitative in vivo imaging of

cerebral microvascular structure, blood flow and oxygenation, and theoretical methods

that utilize such data to generate spatially resolved models for blood flow and oxygen

transport. These “bottom-up” models are essential for the understanding of the

processes governing brain oxygenation in normal and disease states and for eventual

translation of the lessons learned from animal studies to humans.

Keywords: cerebral blood flow (CBF), cerebral blood flow measurement, cerebrovascular circulation, brain

imaging methods, modeling and simulations

INTRODUCTION

The energy requirements of the cerebral cortex are met almost exclusively by oxidative metabolism
of glucose, necessitating continuous delivery of oxygen by diffusion into the tissue from flowing
blood (Buxton and Frank, 1997; Attwell and Laughlin, 2001; Raichle and Gusnard, 2002; Lin et al.,
2010; Hall et al., 2012). The distance that oxygen can diffuse from blood into oxygen-consuming
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tissue is limited. An approximate upper bound is the one-
dimensional diffusion distance, LD = (2DαP0/M)1/2, where D
and α are the diffusivity and solubility of oxygen in tissue, P0 is
the partial pressure of oxygen (pO2) in blood, and M is the rate
of oxygen consumption (Secomb et al., 1993). Typical values for
rodent cerebral cortex are Dα = 6× 10−10 cm3O2/cm/s/mmHg,
P0 = 50mmHg and M = 6 cm3O2/100 g/min, resulting in
LD ≈ 77µm (Secomb et al., 2000). The tissue must therefore be
supplied by a dense network of microvessels (Hirsch et al., 2012;
Blinder et al., 2013), so that each point in the tissue is within a
distance LD of the nearest vessel. A further implication of this
result is that significant gradients in PO2, over a scale of tens
of µm, are present in the tissue surrounding each microvessel
that is contributing to the diffusive delivery of oxygen between
blood and tissue (Popel, 1989; Pittman, 2005; Goldman, 2008).
This does not necessarily imply that significant gradients in PO2

are present around all microvessels. For instance, if the oxygen
demand of the tissue is largely met by diffusion from arterioles
(Sakadžić et al., 2014), then PO2 gradients around neighboring
capillaries are correspondingly reduced. This is more likely to
occur at lower oxygen consumption rates (Secomb and Hsu,
1994). As a further example, heterogeneous levels of oxygen
within capillaries can lead to situations where some capillaries do
not participate in diffusive oxygen delivery and may even take up
oxygen (Secomb and Hsu, 1994).

The oxygen demand of cerebral cortex depends on the
level of neuronal activity, which varies in space and time
across cortical regions. However, in spite of significant research
efforts, our current understanding of the neurovascular coupling
mechanisms by which blood flow and oxygen delivery are
coordinated with spatially and temporally varying metabolic
demands in the brain remains incomplete in both healthy and
diseased brain (Iadecola, 2004; Girouard and Iadecola, 2006;
Raichle and Mintun, 2006; Iadecola and Nedergaard, 2007;
Gordon et al., 2008; Cauli and Hamel, 2010; Lecrux et al., 2011;
Devor et al., 2012). In the context of task-induced hemodynamic
activity in a healthy subject, neurovascular coupling is commonly
associated with the causal chain of events, where changes
in neural activity drive changes in energy metabolism which
then drive changes in blood flow (Raichle and Mintun, 2006).
However, recent experimental data suggests an alternative
hypothesis that much of the acute vasodilation and constriction
under healthy conditions appears to be driven by molecules
related to neural signaling itself, i.e., release of vasoactive
signaling agents such as neuropeptides, prostaglandins, nitric
oxide and, possibly, K+ from active neurons (Attwell and
Iadecola, 2002; Cauli and Hamel, 2010; Kleinfeld et al., 2011).
This implies that CBF and CMRO2 are driven in parallel by
neural activity, and potentially by different aspects of neural
activity (Devor et al., 2012; Buxton et al., 2014).

The mechanisms by which blood flow and oxygen delivery
are coordinated with spatially and temporally varying metabolic
demand in the brain critically depend on vascular network-level
interactions. In the present review, we focus on themicrovascular
networks (Figure 1) where the blood flow rate in any given
segment depends not only on the flow resistance of that segment
but also on the distributions of resistance and blood flow in

FIGURE 1 | Schematic illustration of cortical vasculature, showing

network structures involved in neurovascular coupling. The cerebral

cortex receives its blood supply from a mesh of pial arteries and veins lying on

the cortical surface. Penetrating arterioles and venules branch off the pial

vessels and traverse the thickness of the cortex, supplying dense arrays of

capillaries. Transient activation of neuronal signaling leads to an increased

metabolic demand in a tissue region, necessitating increased blood flow,

which is achieved by adjustment of vascular diameters in the upstream vessels

feeding that region and possibly also in the capillaries and downstream

vessels. Open arrows indicate direction of blood flow.

the vessel segments to which it is connected. An increase in
flow in a given segment requires dilation of the upstream
arterioles supplying that segment, in addition to possible dilation
of the segment itself and downstream segments. Furthermore,
the oxygen content of blood arriving at a given segment depends
on the extraction that has already occurred, and is therefore
affected by oxygen transport phenomena occurring along the
upstream part of the flow pathway. Conducted responses, in
which vasodilator or vasoconstrictor signals travel upstream
from capillaries along arterioles, play an important role by
coordinating upstream dilation (Jensen and Holstein-Rathlou,
2013).

A further challenge in understanding the dynamics of tissue
oxygenation is the heterogeneity of structural and hemodynamic
parameters in the microcirculation (Pries et al., 1995). The
significance of heterogeneous blood flow, resulting in high
capillary transit time heterogeneity (CTH), has been highlighted
by Jespersen and Østergaard (2012). By introducing variation
in capillary velocities in an array of capillaries, they showed
that high CTH can lead to reduced oxygen extraction. A
thorough analysis of the consequences of heterogeneity requires
consideration of microvascular network structure.

The value of theoretical models for gaining quantitative
understanding of oxygen transport to tissue has long been
recognized (Krogh, 1919). A variety of approaches have been
used. In the Krogh cylinder model (Krogh, 1919), the exchange
of oxygen between a single capillary and a surrounding cylinder
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of tissue is analyzed, taking into account the radial gradients
of oxygen concentration in the tissue. The application of
this approach to cerebral oxygen transport is discussed by
Mintun et al. (2001). Other approaches have been based on the
assumption that oxygen efflux from capillaries is proportional
to plasma oxygen concentration (Buxton and Frank, 1997) or
proportional to the difference between intravascular and tissue
oxygen level, where the tissue space is represented as a well-
mixed compartment, characterized by a specific tissue oxygen
level (Jespersen and Østergaard, 2012). In order to represent the
contributions of different classes of vessels to oxygen transport, a
compartmental model was developed by Sharan et al. (1989).

While these modeling approaches provide useful insights
into aspects of cerebral oxygen transport, they do not explicitly
represent the effects of network structure and flow distribution.
Detailed network-level models are valuable because they permit
analysis of the effects of microvascular network architecture
and flow distribution on the distribution of oxygen in the
tissue (Popel, 1989; Secomb et al., 2000, 2004; Goldman, 2008).
Such models require extensive experimental data as input,
including information on the three-dimensional structure of
microvascular networks containing a large number (typically
hundreds or thousands) of segments, together with at least
partial information on vessel blood flow rates and oxygen
content, and estimates of key oxygen transport parameters.
Until recently, however, experimental data available for modeling
were mostly from planar or restricted three-dimensional
structures, flow rates were generally not measured in the
same structures, and data on tissue oxygenation were rarely
available.

Recently, high-spatial resolution optical imaging technologies
capable of penetrating up to 1mm into brain tissue have been
developed and applied to in vivo brain imaging, providing
enhanced capabilities to obtain the data needed for such
models. The advantages of optical imaging include high temporal
and spatial resolution within reasonable thicknesses of tissue,
numerous methods for enhancing contrast, and modest cost of
instrumentation. To provide the data needed for network-level
modeling of microvascular blood flow and oxygen transport,
the imaging modality should meet the following requirements.
(i) It should allow imaging of depths of several hundred
µm into the tissue, to enable three-dimensional mapping
of microvascular structures spanning a substantial fraction
of the cortical thickness. (ii) It should have high spatial
resolution, sufficient to resolve individual capillaries. (iii) It
should allow estimation of blood flow rates in individual
microvessels. (iv) It should allow estimation of spatially resolved
oxygen levels in microvessels and/or the surrounding tissue.
(v) For studies of neurovascular coupling, it should have
high temporal resolution (∼1 s), sufficient to resolve the time
course of hemodynamic changes. In this article, we review
state-of-the-art optical microscopy technologies for quantitative
in vivo imaging of cerebral microvascular structure, blood
flow, and oxygenation. We then review strategies for network-
level modeling of cerebral microcirculation using data obtained
from such in vivo imaging. These methods will contribute
to future investigations of neurovascular and neurometabolic

coupling and provide the essential bridge for translation from
the microscopic to the network/systems level needed for human
translation.

OPTICAL IMAGING OF CEREBRAL
MICROVASCULAR STRUCTURE,
HEMODYNAMICS AND OXYGEN
TRANSPORT

Optical Imaging of Cerebral Microvascular
Structure
Optical microscopy techniques that have been applied in vivo to
image the cerebral microvasculature in rodents include multi-
photon laser scanning microscopy (MPM), optical coherence
tomography (OCT), and photoacoustic imaging (PAI). Other
“methods to watch” are light-sheet (Keller and Ahrens, 2015)
microscopy and super-resolution ultrasound (US) (Errico et al.,
2015). The former has been initially targeted to relatively small
and transparent organisms and tissue samples (Huisken et al.,
2004) but was recently adapted for imaging of neurovascular
activity in the mouse cerebral cortex in vivo albeit with limited
depth penetration (Bouchard et al., 2015). The latter started as
a slow imaging modality (Viessmann et al., 2013; Christensen-
Jeffries et al., 2015), but the most recent report achieved mapping
of the vasculature in the whole rat brain with ∼8µm resolution
within tens of seconds (Errico et al., 2015).

Among these techniques, MPM is the most mature and
widely applied for in vivo acquisition of high- resolution
cortical angiograms (Helmchen and Denk, 2005; Svoboda and
Yasuda, 2006). MPM detects photoluminescence (fluorescence
or phosphorescence) from endogenous or exogenous
chromophores, and images are typically created from the
sequences of sequential point measurements. Brain imaging with
MPM can be performed through the thinned skull in mice (Drew
et al., 2010), although more commonly a glass-covered cranial
window is used allowing increased penetration depth into the
brain. Images with a high signal-to-noise ratio are routinely
obtained down to a 600–700µm cortical depth by commercially
available MPM setups, and recent technological advances have
allowed imaging at a depth of >1mm through the entire depth
of the mouse cortex (Kobat et al., 2011; Horton et al., 2013).
Spatial resolution of MPM in vivo imaging is typically 1µm
or better, which enables accurate imaging of all microvessels,
including capillaries. However, the method is relatively slow,
typically needing tens of minutes to acquire a three-dimensional
angiogram over a ∼1mm field of view. Shadows beneath
the large cortical surface vessels can cause discontinuities
in the acquired data, and optical wave front distortions can
impair imaging at larger depths. An example of a mouse
cortical microangiogram obtained in vivo by MPM is shown in
Figure 2 (Dorr et al., 2012). This study examined changes in
cortical microvascular structure and function in a transgenic
mouse model of Alzheimer’s disease. Structural microvascular
impairment (increased tortuosity and decreased diameter of the
penetrating arterioles) was associated with accumulation of the
amyloid-β and rescued by the administration of scyllo-inositol.
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FIGURE 2 | MPM microangiography. In vivo multi-photon fluorescence microscopy images of the cortical microvasculature in a 3-month old non-transgenic

mouse. Acquired in the primary somatosensory cortex, this maximum intensity projection image (A) shows penetrating arterioles running vertically down from the

cortical surface (top of the bottom row image) as well as ascending venules interspersed with a dense capillary network. (B) A tubular model obtained by

segmentation of the branching vessel network shown in (A). The color bar indicates the coding of average vessel diameters. Top row images are parallel with the

cortical surface, while bottom row images are perpendicular to the cortical surface. Adapted with permission from Dorr et al. (2012).

In comparison with MPM, other modalities for high-
resolution in vivo imaging of cortical microvasculature have been
explored less. Among the other modalities, OCT has significant
potential (Wang et al., 2007; Vakoc et al., 2009; Srinivasan
et al., 2010). An optical analog of ultrasonic pulse-echo imaging
(Drexler and Fujimoto, 2008), OCT detects scattering within
the tissue to form cross-sectional images, and does not require
exogenous contrast agents. Spatial resolution generally ranges
from∼1µm to a few tens of µm. Signals reflected from multiple
locations along the optical axis (A-scans) can be acquired
simultaneously, which gives OCT a significant speed advantage
over MPM in volumetric imaging, with OCT microangiography
taking several seconds compared with several minutes for MPM
in comparable volumes of tissue. The typical penetration depth
in rodent brain is ∼1mm (Srinivasan et al., 2011). The high-
speed volumetric imaging is achieved by utilizing low numerical
aperture (NA) imaging objectives, providing long depths of focus
but reduced lateral spatial resolution. While OCT is currently
subject to this tradeoff between lateral resolution and imaging
depth, advances in hardware and processing algorithms may
alleviate this limitation in the future (Leitgeb et al., 2006;
Grulkowski et al., 2014; Mo et al., 2015). Shadows beneath large
cortical surface vessels and optical wave front distortions at larger
imaging depths are also present in OCT angiograms. In a study
conducted by Vakoc et al. (2009), OCT microangiography was

utilized to assess angiogenesis induced by a brain tumor. OCT
provided microangiograms comparable to those obtained by
MPM, including microvascular diameters (Figure 3).

PAI’s contrast mechanism comes from the absorption of the
excitation light by endogenous or exogenous chromophores,
thereby creating heat. Images are formed by detecting ultrasonic
waves generated by thermoelastic tissue expansion (Wang and
Gao, 2014; Yao andWang, 2014) The high-resolution application
of PAI (optical-resolution photoacoustic microscopy, OR-PAM)
relies on tight focusing of excitation light (Maslov et al., 2008)
and can achieve a spatial resolution of several µm with ∼1mm
penetration depth in a rodent brain (Hu et al., 2009; Wang et al.,
2013a). The detection of ultrasonic waves in OR-PAM allows
rapid acquisition of A-scans and, analogous to OCT, generation
of three-dimensional images from two-dimensional scans.

Relative to in vivo microangiography, ex vivo imaging uses
more invasive sample preparation and imaging approaches,
and permits imaging of larger microvascular networks at high
resolution (Yuan et al., 2015). Such methods include physical
sample sectioning combined with confocal microscopy (Cassot
et al., 2006; Lee et al., 2009) or two-photon microscopy (Blinder
et al., 2013), tissue optical clearing (Chung and Deisseroth, 2013),
and vascular casting with subsequent chemical tissue clearing
and imaging with scanning electron microscopy (Konerding
et al., 2001) or ionizing radiation (Plouraboue et al., 2004).
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FIGURE 3 | (A) The depth-projected vasculature within the first 2mm of mouse brain bearing a xenotransplanted U87 human glioblastoma multiforme tumor imaged

with OFDI. Depth is denoted by color: yellow (superficial) to red (deep). Scale bar, 500µm. Right panels: Validation of the morphological measurements obtained from

OFDI and MPM. (B,C) Normal brain vasculature acquired by OFDI (B) and MPM (C). The automated vascular tracing was applied to registered vascular data sets to

quantify the resolution of OFDI angiography and (D) validation of the morphological measurements obtained from OFDI. Scale bars, 250µm. Adapted with permission

from Vakoc et al. (2009).

Disadvantages of ex vivo microangiography include possible
changes in vascular diameters compared to the in vivo state,
difficulty in achieving complete filing of the vasculature when
labeling the intravascular lumens, and spatial distortions due to
sample preparation and/or physical sectioning.

Segmentation of Cerebral Microvascular
Angiograms
Regardless of the imaging method used, the resulting data set
typically consists of a volumetric intensity map. To provide a
basis for analyzing functional properties such as blood flow or
oxygen transport, this map must be converted into a defined
vascular structure (Plouraboue et al., 2004; Wang et al., 2007;
Reichold et al., 2009; Blinder et al., 2013; Yuan et al., 2015).
Typically, this requires two main steps. First, the intravascular
space must be distinguished from the extravascular space by
segmentation, usually achieved setting an intensity threshold.
From the results of this step, basic parameters such as vascular
volume and vascular surface area can be deduced. Second, the
intravascular space must be represented as a set of connected
vessel segments, with identified lengths, diameters and nodal
connection points. This information is required for the analysis
of blood flow in the network, and provides a basis for modeling
oxygen transport to tissue. Numerous vascular segmentation
algorithms have been developed in recent years (Fridman et al.,
2004; Kirbas and Quek, 2004; McIntosh and Hamarneh, 2006;
Tyrrell et al., 2007; Shikata et al., 2009; Tsai et al., 2009; Rennie
et al., 2011; Fraz et al., 2012; Hong et al., 2014). Detailed
discussion of these algorithms is beyond the scope of this review.

Although the process of segmentation of the volumetric
microvascular intensity images is simple in principle, it is subject

to a number of practical difficulties. The spatial resolution of the
imaging system is an important factor. If vessel boundaries are
not sharply resolved, estimates of vessel diameters may be subject
to substantial uncertainty. Furthermore, the choice of intensity
threshold affects the region identified as being intravascular.
According to Poiseuille’s law, the flow rate in a vessel segment
resulting from a given pressure drop varies as the fourth power of
diameter. Predicted blood flow rates in microvascular networks
are therefore very sensitive to estimated diameters. Variations
in image contrast or intensity across the region of interest can
lead to systematic deviations. In regions of low image intensity,
some segments may fall below the chosen threshold, leading
to incomplete mapping of the network and the appearance of
multiple blind-ended vessels. The type of fluorescent labeling
used for red blood cells, blood plasma or endothelial cells
must also be considered when estimating vessel diameters. If a
macromolecular plasma marker is used, the apparent diameter
may be less than the anatomical diameter because largemolecules
may be excluded from the endothelial surface layer or glycocalyx,
a layer up to about 1µm thick of glycoproteins, polysaccharides
and proteins that covers the inner surface of the vasculature
(Pries et al., 2000; Vink and Duling, 2000).

The process of describing the vascular network in terms of
segments and nodes, based on a three-dimensional map of the
intravascular space, presents further challenges, particularly if the
map is not of high quality. Available segmentation algorithms
are unable to achieve high accuracy in an automated mode,
and manual intervention by the user is often needed to achieve
satisfactory results. This is highly time-consuming for cortical
volumes such as those obtained in vivo by MPM (∼700 × 700
× 700µm3). Development of improved methods for analysis
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of three-dimensional in vivo microvascular images is a pressing
need (Wang et al., 2013a; Leahy et al., 2015).

Imaging of Cerebral Microvessel Blood
Flows
Information on microvessel blood flow rates is essential for
the analysis of oxygen delivery to cerebral tissue. Measurement
of flow in all segments of extensive microvascular networks is

currently not feasible. However, flow measurements in a subset
of segments can be combined with theoretical models of blood
flow in microvascular networks, permitting estimation of flow in
all segments, as discussed below.

MPM can be used for high-resolution depth-resolved
measurements of vessel diameters, RBC fluxes and flow velocities
in small animal models (Kleinfeld et al., 1998; Kamoun et al.,
2010; Shih et al., 2012; Figure 4). MPM utilizes fluorescent

FIGURE 4 | TPM flow. Simultaneous measurement of lumen diameter and red blood cell velocity in multiple vessels using spatially optimized line scans. (A) Image of

fluorescein-dextran-labeled vessels in the rat somatosensory cortex taken with a 4X objective. (B) High-magnification image of a surface arteriole and venule in the

forelimb region collected with a 40X objective. The pattern of the two-photon scanning laser is superimposed. Portions of the scan path along the length of the vessel

are used to calculate red blood cell (RBC) velocity, whereas portions moving across the width of the vessels are used to calculate lumen diameter (Driscoll et al., 2011).

Scans were acquired at a rate of 733 scan cycles per second. (C) The scan path is colored to show the error between the desired scan path and the actual path the

mirrors traversed. The error along linear portions of the image is typically <1µm and increases when the mirrors undergo rapid acceleration. The error between

successive scans of the same path is <0.15µm, several times lower than the point-spread function of a two-photon laser scanning microscopy. (D) The upper traces

show the scan path and mirror speed as a function of time. Note that portions used to acquire diameter and velocity data are constant speed. The line scans

generated from the path can be stacked sequentially as a space–time plot as shown in the lower image panels. Each image panel shows ∼100ms of data collected

before, during, and after an electrical stimulation of the contralateral forelimb of the anesthetized rat. The stimulus was a 1mA current, delivered for 3 s at 3Hz with a

100-ms pulse width (Devor et al., 2007). (E) Vessel diameter is calculated as the full-width at half-maximum of a time-average of several scans across the width of a

vessel (left). Red blood cell velocity is calculated from the angle of the RBC streaks (right; Drew et al., 2010). (F) Data traces of lumen diameter, RBC velocity, and RBC

flux for the arteriole and venule after processing to remove heartbeat and smoothing with a running window. Figure adapted from Driscoll et al. (2011, Book chapter).
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labeling of either plasma or RBCs and tracks RBC speed and
flux in individual microvessels, including capillaries. There is
a tradeoff between the number of simultaneously monitored
vessels and temporal resolution. Fast blood flow transients
that are characteristic of functional hyperemia or spreading
depressions and require ∼1 s imaging temporal resolution can
be continuously monitored in only a few vessel segments at
a time, while all vessels in the field of view can be sampled
with ∼12 s temporal resolution (Kamoun et al., 2010). However,
multiplexing strategies for MPM are being explored (Ducros
et al., 2013; Lecoq et al., 2014; Yang et al., 2016).

OCT enables depth-resolved imaging of the absolute blood
flow in individual cortical arterioles and venules (Wang et al.,
2007; Wang and An, 2009; Srinivasan et al., 2010; Bouwens
et al., 2013; Lee et al., 2013, 2014) as well as measurements
of RBC flux in capillaries (Ren et al., 2012a; Srinivasan et al.,
2012; Lee et al., 2013; Tokayer et al., 2013; Weiss et al., 2013;
Figure 5). Compared to MPM measurements of blood flow,
the advantages of OCT include increased penetration depth
through the thinned skull in mice and >1mm penetration
depth through a cranial window, reliance on endogenous
contrast (i.e., optical scattering) instead of exogenous contrast
agents, and improved acquisition speed. OCT measurements
of cortical blood flow have been validated (Srinivasan et al.,
2011) and full volumetric imaging of blood flow over a cortical
surface area of 1mm2 is possible in ∼1min (Srinivasan et al.,

2010). In addition to CBF measurements in non-capillary
vessels, significant progress was made in the quantitative OCT
measurement of capillary blood flow (Srinivasan et al., 2012;
Lee et al., 2013, 2014). Volumetric images of capillary RBC
flux can be obtained in a few minutes, opening the possibility
of studying capillary perfusion in the brain and providing
extensive empirical data for theoretical models of RBC flux
distribution within capillaries. In combination with MPM,
this technology will enable studies of the role of pericytes
in CBF control. Commercial systems are available, facilitating
widespread adoption of OCT. However, the data analysis for the
OCT blood flow measurements is significantly more complex
than for the MPM flow measurements. Therefore, widespread
adoption of OCT flow measurements may also require the
availability of sophisticated data processing tools. In short,
while OCT has only recently emerged as a tool for studying
brain CBF (Jia et al., 2009; Srinivasan et al., 2011; Ren et al.,
2012b; Shen et al., 2014), its importance is expected to grow
rapidly.

PAI can be also applied for measuring blood flow. By utilizing
this technology, the characteristics of cerebral blood flow (CBF)
can be measured using several different approaches, including
blood velocity measurement in arterioles and venules based on
Doppler broadening of the ultrasonic bandwidth (Yao et al.,
2010), combining ultrasonic thermal tagging with PAI (Wang
et al., 2013b), and even single RBC velocity measurement (Wang

FIGURE 5 | OCT RBC flow. (A) The enface MIP of the 3D angiogram with color indicating the depth from the cortical surface. Bar = 100µm. (B–D) Estimated RBC

speed, flux, and density are presented as color spots on the MIP angiogram. We used relatively comparable ranges (median ± 40%) for all quantities. (E) Histograms

(top) and depth profiles (bottom) of the RBC speed, flux, and density measured from three animals (n = 2; 259 measures in total). Comparable histogram ranges

(median ± 40%) are used. In the depth profiles, data are presented as mean ± s.d. (F) Correlations between the flux vs. the speed and density (n = 2259). Dashed

lines indicate median ± 40% of the density (left) and speed (right). Adapted with permission from Lee et al. (2013).
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et al., 2013a). A combination of PAI measurements of cortical
blood flow and oxygen saturation may allow estimation of local
oxygen consumption rates.

Imaging of Cerebral Oxygenation
Theoretical models can be used to predict the distribution of
tissue oxygen levels surrounding a microvascular network, as
discussed later. However, direct measurement of tissue and/or
blood oxygen levels is needed to provide boundary conditions for
such models, to allow estimation of unknown parameters, and
to test the resulting predictions. A large body of experimental
studies have established the basic properties of intra- and
extravascular oxygen changes during increases in neuronal
activity and associated functional hyperemia (vasodilation and
an increase in CBF and volume) (Vanzetta and Grinvald, 1999;
Vovenko, 1999; Ances et al., 2001; Erecińska and Silver, 2001;
Masamoto et al., 2003; Thompson et al., 2003; Offenhauser
et al., 2005; Viswanathan and Freeman, 2007; Sharan et al., 2008;
Yaseen et al., 2009; Vazquez et al., 2010). However, only recently
several optical microscopy imaging technologies were developed
opening the door formicroscopic in vivo imaging of intravascular
and tissue oxygenation with unprecedented spatial and temporal
resolution within cortex.

Two-photon microscopy-based phosphorescence lifetime
imaging (PLIO2) allows mapping intravascular and tissue
partial pressure of O2 (PO2) with micrometer spatial
resolution (Finikova et al., 2008; Sakadžić et al., 2010; Lecoq
et al., 2011; Figure 6). The technique measures oxygen-
dependent phosphorescence lifetimes of an exogenous contrast
agent (Vanderkooi et al., 1987; Rumsey et al., 1988). The
phosphorescence lifetime of a probe depends on the PO2

in the immediate vicinity of the probe, providing a spatially
localized measurement of dissolved oxygen. Probe molecules
for MPM were specially designed for two-photon excitation,
with a high degree of encapsulation that ensures stability of
the lifetime calibration in a complex biological environment

(Finikova et al., 2008; Lebedev et al., 2009; Roussakis et al.,
2014). Unlike spectroscopy-based hemoglobin saturation
measurements, PLIO2 lifetime imaging is insensitive to changes
in tissue optical properties during imaging. The acquisition
speed is currently limited to 0.2–0.5 s per measurement point
by relatively long phosphorescence lifetimes and the number
of decay averages required at each point. Further development
of oxygen sensitive dyes with significantly higher quantum
yield, two-photon absorption cross section, and dynamic range
will enable significant improvements in acquisition speed and
precision of PO2 imaging (Esipova and Vinogradov, 2014). This
technology has been used to obtain high-resolution maps of
oxygen concentration distribution in both the microvasculature
and tissue under various conditions (Devor et al., 2011;
Kazmi et al., 2013; Parpaleix et al., 2013; Sakadžić et al., 2014;
Spencer et al., 2014) and the awake mouse brain (Lyons et al.,
2016).

Intravascular oxygenation can be also measured with PAI
because hemoglobin is the dominant optical absorber of
visible and near-infrared radiation in the brain. PAI provides
quantification of both oxygen saturation and total hemoglobin
concentration (Figure 7). In particular, high spatial resolution
variants of PAI can achieve ∼1mm penetration depth in the
brain and were successfully applied to measure arteriolar, venular
and capillary oxygen saturation (SO2) as well as single RBC
oxygenation (Wang et al., 2013a; Yao andWang, 2014). Recently,
high acquisition rate PAI was used to image the hemodynamic
response to hind limb stimulation in the mouse somatosensory
cortex (Yao et al., 2015). PAI has also been applied to image brain
pathologies including edema after cold injury (Xu et al., 2011),
and dynamics of the microvascular oxygenation after middle
cerebral artery occlusion (Hu et al., 2011) and during epileptic
seizure (Tsytsarev et al., 2013). The ability of PAI to measure
RBC oxygen saturation and flux in capillaries has potential
applications for analyzing capillary flow and oxygenation under
various conditions.

FIGURE 6 | Two-photon microscopy imaging of PO2. (A) Maximum intensity projection (MIP) of the 200−µm-thick cortical microvascular stack obtained by TPM.

Blood plasma was labeled by FITC. (B) Top-view projection of the segmented microvasculature with the intravascular PO2 measurements obtained by TPM. Mean

vascular segment PO2 measurements were color-coded and overlaid on the segmented microvascular structure. Scale bars, 200µm. Adapted with permission from

(Sakadžić et al., 2014). (C) Simultaneous measurement of PO2 in cortical vasculature and tissue. Measured PO2 values overlaid with the gray scale phosphorescence

intensity image at 60µm depth. Measurements were performed at the location of an ascending venule. Measurement location is marked with the white rectangle in

the inset (bottom right), showing MIP of 80µm-thick FITC-labeled microvasculature stack. Ascending venule (blue) and branches of the descending arteriole (red) are

color-coded for easier identification. Scale bars, 50µm. Adapted with permission from Sakadžić et al. (2010).
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FIGURE 7 | Fast functional photoacoustic microscopy (PAM) of the mouse brain. (A) Representative xy projected brain vasculature image through an intact

skull. (B) Representative enhanced xz projected brain vasculature image acquired over a 0.6× 0.6mm2 region with depth scanning, where the signal amplitude was

normalized depthwise. (C) PAM of oxygen saturation of hemoglobin (SO2) in the same mouse brain as in (A), acquired by using the single-wavelength

pulse-width-based method (PW-SO2) with two lasers. SV, skull vessel. Adapted with permission from Yao et al. (2015).

Another imaging technique, visible light OCT (vis-OCT), is
emerging as an alternative that may provide rapid non-invasive
measurements of microvascular oxygenation (Robles et al.,
2011; Pan et al., 2014; Chong et al., 2015a). This will permit
measurements of tissue and vascular structure, blood flow and
oxygen transport, all obtained using OCT (Figure 8).

THEORETICAL MODELING OF CEREBRAL
MICROVASCULAR HEMODYNAMICS AND
OXYGEN TRANSPORT

Blood Flow Simulation
Analysis of oxygen transport in a microvascular network requires
knowledge of blood flow and red blood cell (RBC) fluxes
in each vessel segment, since they govern the convective
transport of oxygen. To model microvascular hemodynamics,
the network is generally represented as a set of interconnected
cylindrical segments, in which each segment is characterized by
its conductance, defined as the ratio of volume flow rate (Q) to
pressure drop (1P) (Lipowsky and Zweifach, 1974). According to
Poiseuille’s law, the conductance is given by πd4/(128Lµ), where
d is the diameter, L is the length and µ is the viscosity of blood.
This formula shows that conductance is strongly dependent on

vessel diameter: a small increase in diameter leads to a significant
flow increase. In network flow simulations, small inaccuracies
in diameters derived from image processing can therefore
significantly affect the predicted flow distributions. The effective
viscosity of blood, µ, has been determined experimentally,
and varies strongly with vessel diameter as a result of the
particulate nature of blood (the Fåhraeus-Lindqvist effect).
Empirical equations derived from experimental observations
give apparent blood viscosity as a function of vessel diameter
and hematocrit (Pries et al., 1992, 1994). These equations take
into account the inhomogeneous characteristics of blood flow
in microvessels, including the formation of a cell-free or cell-
depleted layer near vessel walls, resulting from the fact that it is a
concentrated suspension of RBCs. The effects of the endothelial
surface layer adjacent to the vessel walls are also included.

As a result of the particulate nature of blood, the partition
of RBC flux at diverging microvessel bifurcations generally
differs from the partition of plasma flow. This implies that
the hematocrit in each daughter vessel may differ from that in
the parent vessel. Empirical equations have been developed to
describe this “phase separation” effect, including its dependence
on the flow split in the bifurcation, the vessel diameters, and the
discharge hematocrit in the parent vessel (Pries et al., 1989; Pries
and Secomb, 2005). The discharge hematocrit (HD) is defined
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FIGURE 8 | OCT measurement of SO2. Quantification of chromophores in the mouse brain in an en face view. (A) Maximum intensity projection of R2 values from

the fit (Equation 19) shows the highest values near the centers of vessels, with a decrease at the edges. (B) The parameter Φ accounts for RBC scattering effects. (C)

Saturation map, showing clear distinctions between arteries and veins. (D) Map of the maximum of the product of oxygenated hemoglobin concentration and

distance shows that veins and arteries contain oxyhemoglobin. (E) By comparison, under the given experimental conditions, most of deoxyhemoglobin is contained in

the veins. (F) The map of the maximum of the product of total hemoglobin concentration and distance shows larger values in larger vessels, with localized increases at

vessel crossings. It should be noted that quantitative measurements of chromophores can be achieved by integrating the maps (D–F) in the transverse plane (x and y

dimensions). All maps were displayed with transparency based on the local R2 values at each transverse location, averaged over depth. An artery (a) and vein (v) are

labeled. Adapted with permission from Chong et al. (2015b).

as the volume flux of RBCs as a fraction of the total volume
flow rate, and should be distinguished from the tube hematocrit
(HT), which is defined as the fraction of the vessel volume
occupied by RBCs. Generally HD is larger than HT , because
RBCs preferentially flow near the vessel center-line where the
velocity is higher, a phenomenon known as the Fåhraeus effect.
According to the above definitions, the volume flux of RBCs is
given by QHD, where Q is the volume flow rate of the segment.
The empirical equations referred to above for phase separation
refer to situations where a single vessel splits into exactly two
branches. An alternative approach, which has the advantage of
applicability to branch points with more than two outflowing
segments, has been proposed (Gould and Linninger, 2015b). This
approach excludes the possibility of zero hematocrit in low-flow

branches, whereas such behavior can be observed in vivo, and fits
experimental data less closely than the earlier empirical equations
(Pries et al., 1989; Gould and Linninger, 2015a). A further
alternative approach has been proposed based on the assumption
that the distribution of RBCs in diverging bifurcations satisfies an
optimality principle (Sriram et al., 2014).

When network models of this type are applied to observed
microvascular network structures, the problem arises that many
vessels typically cross the boundaries of the sampled region.
To obtain a unique flow solution, it is necessary to impose
flow or pressure boundary conditions (BCs) on these inflowing
and outflowing segments, and hematocrit boundary conditions
on inflowing segments. Not all these flow or pressure BCs are
generally available from experimental observations, although a
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subset may be available. Several approaches have been used
to address this difficulty. Lorthois et al. (2011a,b) considered
two regimes: (i) uniform pressure BCs applied to boundary
capillaries, with a pressure value chosen to give zero net flux
into the capillaries; (ii) zero flow conditions imposed at boundary
capillaries. These two cases gave upper and lower bounds on the
total network perfusion. The latter approach was also used by
Gagnon et al. (2015a,b). Fry et al. (2012) developed an approach
to address this problem by solving for the flows throughout
the network while minimizing the deviation from an expected
“target” pressure and shear stress in each vessel segment. These
target values must be estimated based on observations of typical
values in the tissue under consideration. In an analysis of flow
distribution in cortical networks (Gagnon et al., 2015a), pressure
boundary conditions were imposed using literature values based
on vessel diameters. The computation was constrained using
measurements of flow in a subset of vessels (Figure 9). This was
shown to reduce the impact of pressure boundary conditions and
estimated vessel resistances. The error in flow computation was
reduced by 50% when flow measurements in major outflowing
vessels were included in the set of constraints.

Models for Oxygen Transport
Oxygen transport takes place over a range of spatial scales
and involves multiple biophysical processes. The challenge of

developing theoretical models for oxygen transport to tissue has
stimulated a variety of approaches. Here we briefly review the
development of the field, focusing on cerebral microcirculation.
For a more detailed review, see Goldman (2008).

A key early contribution was a model inspired by the
somewhat regular structure of skeletal muscle (Krogh, 1919).
The Krogh cylinder model assumes an array of parallel, evenly
spaced capillaries, each of which supplies oxygen to a tissue
cylinder surrounding it, with a fixed rate of consumption.
This leads to a simple steady-state reaction-diffusion equation,
through which the radial variation in tissue PO2 can be
computed as a function of distance from the vessel. The Krogh
model has been extended to include other effects including
time-dependent transport, PO2-dependent oxygen consumption
according to Michaelis-Menten kinetics, myoglobin-facilitated
tissue transport and intravascular resistance to radial oxygen
diffusion. Hudetz et al. (1999) adapted the Krogh model to
study oxygenation in the cerebral cortex, assuming the capillary
supplied a conical tissue region that tapered downstream, such
that venous capillaries supply smaller regions. This model
exhibited a non-linear relation between consumption and blood
flow, i.e., for a significant rise in consumption rate, the blood flow
increase required to avoid hypoxia was disproportionately larger.

Using a finite-element model of oxygen transport by discrete
moving RBCs, Lücker et al. (2015) analyzed the transient

FIGURE 9 | Reconstruction of microvascular cerebral blood flow in the mouse cortex using Doppler OCT flow measurements in outflowing venules to

constrain the computation. (A) MPM angiogram. (B) Doppler OCT velocity projection map. (C) Reconstructed flow. Adapted with permission from Gagnon et al.

(2015a).
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variation in tissue oxygenation due to the passage of RBCs
and the difference in PO2 between RBCs and plasma. These
variations have been termed erythrocyte-associated transients
(EAT). The authors suggested that a higher capillary density on
the venular side of the network must be present to ensure tissue
oxygenation. Network-scale models of oxygenation including
transient effects associated with each RBC would be very
expensive computationally. An approximate approach based on
an effective blood PO2 is generally used, as described in the next
section.

In general, Krogh-type approaches are appropriate for muscle,
particularly under conditions of high oxygen demand, but do
not provide a good approximation in situations where the
geometry is not approximated by parallel capillaries. The Krogh
model overestimates minimum tissue PO2 and thus fails to
predict the onset of hypoxia in such geometries (Secomb et al.,
1993, 2000). Therefore, approaches have been developed for
modeling oxygen delivery by networks of vessels. One relatively
simple approximate approach is to treat the extravascular
space as a well-mixed compartment with respect to oxygen
transport, with the resistance to oxygen transport residing
in the vessel wall (Jespersen and Østergaard, 2012; Angleys
et al., 2015). Finite element or finite difference methods have
been employed to simulate oxygenation in arrays of parallel
capillaries (Hoofd, 1995; Goldman and Popel, 2000; Beard
and Bassingthwaighte, 2001), networks with interconnected
parallel capillaries (Wieringa et al., 1993; Goldman and Popel,
2000; Beard and Bassingthwaighte, 2001), synthetic networks
generated based on measured distributions of anatomical
properties (Lauwers et al., 2008; Linninger et al., 2013; Safaeian
and David, 2013; Park and Payne, 2016) and networks extracted
from three-dimensional angiograms (Fang et al., 2008; Gagnon
et al., 2015b). An efficient computational method applicable to
arbitrary vascular network geometries has been developed using a
Green’s function approach (Hsu and Secomb, 1989; Secomb et al.,
2004), as discussed later.

Intravascular Oxygen Transport
The rate of oxygen transport along a microvessel by convection is
given by:

J(Pb) = Q[HD C0 S(Pb)+HD αrbc Pb + (1−HD)αpl Pb] (1)

where Pb is the PO2 in the blood, S is the fractional
oxyhemoglobin saturation, HD is the discharge hematocrit, C0

is the concentration of hemoglobin-bound oxygen in a fully
saturated RBC and αpl and αrbc are the solubilities of oxygen in
plasma and RBCs respectively. This may be simplified to give:

J(Pb) = Q[HD C0 S (Pb)+ αeff Pb] (2)

where αeff, the effective solubility of oxygen in blood, depends
on the discharge hematocrit HD and on the solubilities in plasma
and red blood cells. Under normal conditions, the majority of
transported oxygen is bound to hemoglobin in the RBCs. The
contribution of dissolved oxygen to convective oxygen transport
is normally small, but may become significant if Pb is very high

or HD is very low. The binding of oxygen to hemoglobin is
a complex process which depends on several factors including
blood pH, temperature and CO2 concentration. However, the
saturation can be fairly accurately represented by the Hill
equation:

S(Pb) = Pnb/(P
n
50 + Pnb) (3)

where P50 is the PO2 at 50% saturation, which is in the range
29–40.5mmHg depending on the species, and n is the Hill
exponent, which is typically in the range 2–3 (Ellsworth et al.,
1988; Uchida et al., 1998; Ellis et al., 2002). The value of P50 is
important in determining the critical range of PO2 values for
oxygen unbinding, due to the sharp gradient in the Hill equation
curve around this value. Conservation of mass implies that:

dJ(Pb)/ds = −qv(s) (4)

where s is distance along the segment and qv is the rate of
diffusive oxygen efflux per unit vessel length. In simulations of
oxygen delivery by microvascular networks, the above equations
are applied to each segment in the network.

The above equation for convective oxygen flux J assumes
that the blood PO2 at each point along the vessel is described
by a single value, Pb. In reality, significant gradients in PO2

occur within the vessel cross-section, associated with the radial
diffusion of oxygen from blood to tissue (Hellums, 1977).
Therefore, the quantity Pb represents an effective average blood
PO2, such that the convective oxygen flux is correctly specified.

Oxygen Diffusion and Consumption in
Tissue
If the diffusivity D and solubility α of oxygen in the tissue are
uniform, the tissue PO2, P(x, y, z) satisfies:

Dα∇2P = M(P) (5)

under steady-state conditions, where∇2 is the Laplacian operator
and M(P) is the oxygen consumption rate. Experimentally,
oxygen consumption rates are approximately constant above
a certain tissue PO2 value, but drop sharply below this. This
behavior is commonly represented byMichaelis-Menten kinetics:

M(P) = M0P/(P + P0), (6)

where M0 is the rate when oxygen is not rate-limiting (maximal
consumption rate), and P0 is the PO2 value at half-maximal
oxygen consumption. In previous work, this has usually been
assumed to be about 1mmHg, but recent experimental results put
it closer to 5–10mmHg (Golub and Pittman, 2012).

At the blood-tissue interface, the tissue oxygen field P(x,
y, z) must satisfy boundary conditions representing continuity
of diffusive oxygen flux and continuity of partial pressure.
Continuity of flux implies that:

qv(s) = −Dαa

2π∫

0

∂P

∂r
dθ
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where r is radial distance from the vessel centerline, a is the vessel
radius and the integral is around the vessel circumference. The
matching of PO2 values at the interface requires consideration of
the radial intracapillary gradients, mentioned earlier. Since these
gradients drive the radial flux of oxygen, they can be assumed to
be proportional to the rate of oxygen loss from the vessel. This
relationship can be expressed as

Pv(s) = Pb(s)− Kqv(s) (7)

where Pv(s) is the tissue PO2 averaged around the circumference
of the vessel and K represents intravascular resistance to radial
oxygen transport. This resistance parameter shows a strong
dependence on vessel diameter (Hellums et al., 1996) and
depends on hematocrit (Roy and Secomb, 2014). As a result of
these matching conditions, the equations for oxygen transport
by convection in the vessels and by diffusion in the tissue are
strongly coupled and must be solved simultaneously. This is
a challenging problem when large networks containing many
segments with a complex geometry are considered.

Green’s Function Methods
One approach to address this challenge is to represent the
tissue oxygen field as a superposition of fields resulting from a
distribution of oxygen sources (the vessel segments) and oxygen
sinks (consumption in the tissue). In an infinite domain, under
steady-state conditions, the PO2 field resulting from a unit point
source of oxygen is given by:

P = 1/(4πDαr) (8)

where r is the distance from the source. This is the Green’s
function for the three-dimensional Laplacian operator. This
approach permits computation of spatially resolved oxygen fields
for complicated vascular network structures with a reasonable
computational cost (Hsu and Secomb, 1989; Secomb et al.,
2004) and has been applied to a various tissues including
brain (Secomb et al., 2000). The Green’s function approach
uses an iterative solution method and can be applied when
the reaction rate kinetics are non-linear, as in the case of
Michaelis-Menten kinetics, or the solute binding characteristics
in blood are non-linear, as in the case of the Hill equation
for oxygen binding to hemoglobin. An analogous approach
has also been developed for time-dependent diffusion problems
(Secomb, 2015).

APPLICATIONS AND FUTURE DIRECTIONS

Estimation of Microvascular Blood Flow
As already described, current imaging approaches can provide
three-dimensional maps of extensive network structures,
including vessel diameters, together with flow rate measurements
in a subset of segments. Theoretical models can then be used
to reconstruct the entire flow distribution. The limitation of
incomplete flow information for boundary segments can be
addressed by constraining flows in selected segments (Figure 9)
to match measured values (Gagnon et al., 2015a) or by using
an optimization approach based on typical distributions of

pressures and shear rates (Fry et al., 2012). Combining these
two methods represents a logical future development. The
emergence of new imaging modalities for measuring flow in
capillaries, such as OCT (Srinivasan et al., 2012; Lee et al.,
2013, 2014), MPM (Kleinfeld et al., 1998; Desjardins et al.,
2014) and PAM (Wang et al., 2013a) will provide flow data for
more vessel segments, and therefore allow more accurate flow
reconstructions. Improvements in acquisition speed will allow
for dynamic measurements during brain activation, which will
permit studies aiming to improve interpretation of fMRI signals
that are routinely used in human neuroscience studies (Bouchard
et al., 2015).

In a study of blood flow in the microvessel networks of
the rat mesentery, Pries et al. (1994) showed that the apparent
viscosity of blood differed strongly from that in glass tubes of
corresponding diameters. Themain cause of this discrepancy was
found to be the presence of a relatively thick (∼1µm) glycocalyx
or endothelial surface layer (Pries et al., 2000). However, it is not
known to what extent this effect occurs in other tissues, including
brain. The methods discussed here provide a potential approach
for investigating the hemodynamic effects of the ESL in brain
microcirculation.

Assessment of Tissue Oxygenation
Overall oxygen transport rates to cortical tissue can be estimated
from tissue-level parameters. For instance, the rate of oxygen
consumption per unit volume is given by:

CMRO2 = CaO2 × CBF×OEF, (9)

where CaO2 is the arterial oxygen concentration and OEF is the
oxygen extraction fraction given by:

OEF = (SaO2 − SvO2)/SaO2. (10)

and SaO2 and SvO2 are the oxygen saturations in arteries
and veins, respectively. With the development of cortical
measurements of PO2, SO2, and CaO2 withMPM (Sakadžić et al.,
2010; Lecoq et al., 2011), PAM (Yao et al., 2013), andOCT (Chong
et al., 2015b), SaO2 and SvO2 can be measured in vivo and OEF
can be computed from these parameters, allowing assessment of
local variations in these quantities.

However, these parameters are not sufficient to allow
estimation of tissue oxygen levels. Due to the heterogeneous
structure of the microcirculation and the significant gradients
in PO2, the spatial frequency distribution of tissue PO2 is
much wider than would be the case in an ideal structure
such as a Krogh cylinder (Secomb et al., 2000). Theoretical
models for oxygen transport are needed to compute the spatially
resolved tissue oxygen field (Secomb et al., 2000, 2004; Fang
et al., 2008; Linninger et al., 2013; Gagnon et al., 2015b).
However, the predictions of such models depend on oxygen
consumption rate, oxygen levels in inflowing vessels, vessel flow
rates, and other parameters that are not accurately known.
A combination of modeling and measurements is needed to
constrain these parameters (Gagnon et al., 2015b; Figure 10).
The increasing availability of micro-scale measurements of tissue
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FIGURE 10 | (A) Distribution of the partial pressure of oxygen (PO2) simulated across the vascular network using the FEM model. (B) MPM experimental

measurement of PO2 in vivo. (C) Quantitative comparison of simulated and experimental PO2 and SO2 distributions across the vascular network. Adapted with

permission from Gagnon et al. (2015b).

and vessel PO2, combined with the computationally efficient
Green’s function method for simulating oxygen transport, will
make possible increasingly detailed and robust predictions of
network-scale tissue PO2 distributions under a range of normal
and pathological conditions.

Modeling of Neurovascular Coupling and
fMRI Signals
On the macroscopic level of vascular dynamics, a number of
theoretical models have been developed to describe the active
regulation of blood flow to the brain. Among them, Ursino
and Lodi (1998) used a compartmental model to analyze the
regulation of CBF in response to changes in arterial pressure,
intracranial pressure and carbon dioxide level. Other models
such as the Balloon model (Buxton et al., 1998) or the double-
compliance model (Mandeville et al., 1999) have also been
developed.

The mechanisms of blood flow regulation and neurovascular
coupling at the microscopic level are still not fully understood.
Recently, a number of groups produced controversial evidence
regarding the role of pericytes in controlling dilation and
constriction of the capillary bed (Hall et al., 2014; Hill et al.,
2015). The population of pericytes is heterogeneous, and not
all of them are contractile as documented by many groups in
various tissues including brain (Armulik et al., 2011; Attwell
et al., 2015; Hartmann et al., 2015; Trost et al., 2016). There
is a general agreement that high-branching-order capillaries
cannot actively dilate or constrict (Hall et al., 2014; Hill et al.,
2015). The debate is focused on low order branches off diving
arterioles in a mouse cortex and whether these branches should
be considered capillaries or precapillary arterioles. Hall at al.
classified all branches off diving cerebral arterioles as capillaries
based on the presence of pericytes. However, pericytes are present
also on top of the smooth muscle wall in arterioles including
larger pial arteries. Therefore, capillary definition based on the

presence of pericytes may be ambiguous. Two-photon imaging
indicates that the first couple of branching orders off diving
cerebral arterioles are noticeably thicker that the average high
order capillary supporting the existence of precapillary arterioles
in between diving arterioles and the capillary bed. Regardless of
nomenclature issues, there is a consensus across studies that these
low-order branches (which may include true capillaries) can
dilate and constrict (Tian et al., 2010; Hall et al., 2014; Uhlirova
et al., 2016).

The distinction between precapillary arterioles and capillaries
at sites of control is functionally relevant because terminal
arterioles typically supply several capillaries, and so do not
provide control at the individual capillary level. Also, an arteriole
is spatially separated from the capillaries that it feeds, implying
the need for mechanisms to coordinate arteriolar contraction
with metabolic needs at the capillary level. The modeling
approaches described above can be used to investigate the
implications of different proposed mechanisms of neurovascular
coupling. For example, networkmodels can be used to investigate
the effects of local vascular dilation on flow distribution (Reichold
et al., 2009). Development of spatially resolved network-level
models of neurovascular coupling is at an early stage and
represents an important challenge for future work. Complexity
arises from the fact that multiple biological mechanisms are
involved. The roles of pressure-dependent (myogenic), shear-
dependent and metabolic responses, and of conduction of signals
along the vessel wall, have been explored in an integrated
model for flow regulation in a simplified vascular network
in skeletal muscle (Arciero et al., 2008; Carlson et al., 2008).
In the brain, the roles that potassium ion fluxes in synaptic
regions, astrocytes and arterioles play in vasodilation have been
investigated theoretically (Witthoft et al., 2013). Progress in
developing spatially resolved models for neurovascular coupling,
network blood flow and oxygen transport has potential to lead to
better understanding of the mechanisms determining CBF and
oxygen transport (Boas et al., 2008; Fang et al., 2008) and to
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FIGURE 11 | (A) Spatiotemporal evolution of SO2 changes following a 2 s forepaw stimulus. (B) Comparison of simulated SO2 changes (n = 6 animals) with

experimental SO2 changes (n = 10 animals) measured in pial vessels during a forepaw stimulus with confocal microscopy. Adapted with permission from Gagnon

et al. (2015b).

provide a basis for bottom-up modeling of fMRI signals (Gagnon
et al., 2015b).

As a step in this direction, the experimental and theoretical
methods reviewed here provide a basis for modeling the effects of
prescribed changes in vascular diameter on blood flow and tissue
oxygenation (Figure 11). For instance, Gagnon et al. (2015b)
used experimental time courses of arterial dilation obtained
with MPM (Tian et al., 2010) as a basis for simulating the
resulting changes in blood flow and tissue oxygenation. Given
the dynamics of CBF in the vasculature and the time course
of CMRO2 in the cortical tissue, the dynamic distribution
of SO2 was computed (Figure 11). Good agreement was
obtained between the simulations and the experimental confocal
microscopic measurements of SO2 during functional activation.
The results of such simulations can be extended to model fMRI
signals from first principles with Monte Carlo simulations of
proton diffusion. This approach allowed quantification of the
compartmental microvascular origin of BOLD-fMRI for different
magnet strengths and MR pulse sequences with high accuracy.
This approach also predicted that the BOLD response measured
in human studies is influenced by the local folding of the
cortex and its orientation in the magnet, a prediction that was
confirmed by measuring the amplitude of the BOLD response
to hypercapnia for different cortical orientations (Gagnon et al.,
2015b).

CONCLUSION

Progress in understanding neurovascular function (or its
dysfunction in disease) requires experimental technologies
and computational tools to accurately account for spatially
distributed and dynamic processes of vasodilation/constriction
and O2 transport. These tools—on their own—will not be
sufficient for reconstruction of the underlying neuronal activity.
Eventual progress toward this goal, however, will not take
place without understanding the normal vascular network
dynamics and how it is altered in disease. In the future,
coupling these realistic 3D vascular network models to large-
scale models of cortical circuits (Markram et al., 2015) would
enable testing specific mechanistic hypotheses of functional
hyperemia.
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