
R E S E A R CH A R T I C L E

Ablation of spinal cord estrogen receptor α-expressing
interneurons reduces chemically induced modalities of pain
and itch

May Tran1 | Joao Manuel Braz1 | Katherine Hamel1 | Julia Kuhn1 |

Andrew J. Todd2 | Allan I. Basbaum1

1Department of Anatomy, University of

California, San Francisco, California

2Spinal Cord Group, Institute of Neuroscience

and Psychology, College of Medical, Veterinary

and Life Sciences, University of Glasgow,

Glasgow, UK

Correspondence

Allan I. Basbaum, Department of Anatomy,

University of California, San Francisco, CA

94158.

Email: allan.basbaum@ucsf.edu

Funding information

NIH, Grant/Award Number: NSR35097306;

Wellcome Trust, Grant/Award Number:

102645

Peer Review

The peer review history for this article is

available at https://publons.com/publon/10.

1002/cne.24847.

Abstract

Estrogens are presumed to underlie, at least in part, the greater pain sensitivity and

chronic pain prevalence that women experience compared to men. Although previous

studies revealed populations of estrogen receptor-expressing neurons in primary affer-

ents and in superficial dorsal horn neurons, there is little to no information as to the con-

tribution of these neurons to the generation of acute and chronic pain. Here we

molecularly characterized neurons in the mouse superficial spinal cord dorsal horn that

express estrogen receptor α (ERα) and explored the behavioral consequences of their

ablation. We found that spinal ERα-positive neurons are largely excitatory

interneurons and many coexpress substance P, a marker for a discrete subset of nocicep-

tive, excitatory interneurons. After viral, caspase-mediated ablation of spinal ERα-

expressing cells, we observed a significant decrease in the first phase of the formalin test,

but in male mice only. ERα-expressing neuron-ablation also reduced pruritogen-induced

scratching in both male and female mice. There were no ablation-related changes in

mechanical or heat withdrawal thresholds or in capsaicin-induced nocifensive behavior.

In chronic pain models, we found no change in Complete Freund's adjuvant-induced ther-

mal or mechanical hypersensitivity, or in partial sciatic nerve injury-induced mechanical

allodynia. We conclude that ERα labels a subpopulation of excitatory interneurons that

are specifically involved in chemically evoked persistent pain and pruritogen-induced itch.
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1 | INTRODUCTION

Many chronic pain conditions, notably migraine, fibromyalgia, and

temporomandibular joint disorders are more common in women

than in men (Berkley, 1997; Unruh, 1996). This sex difference only

becomes apparent at puberty and diminishes after menopause

(Brandes, 2006; LeResche, 1997). Women are also more sensitive

than men on measures of acute pressure, electrical, heat, and cold

pain (Fillingim, King, Ribeiro-DaSilva, Rahim-Williams, & Riley III,

2009). It is very likely, therefore, that estrogen, the primary female

sex hormone, contributes to pain processing. Estrogens bind to a

number of receptors, notably estrogen receptor α and β (ERα and ERβ)

and to a G-protein-coupled estrogen receptor, GPER (Prossnitz & Bar-

ton, 2011; Toran-Allerand, 2005). Estrogen receptors are expressed
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throughout the body, including the ovaries, testes, liver, lungs, and

brain (Couse, Lindzey, Grandien, Gustafsson, & Korach, 1997). As a

result, estrogen can influence functions as diverse as sexual develop-

ment, immune regulation, and memory (McEwen & Alves, 1999).

With respect to pain circuitry, estrogen receptors are expressed

both in sensory neurons and in interneurons of the spinal and medul-

lary dorsal horns (Amandusson, Hermanson, & Blomqvist, 1995; Papka,

Srinivasan, Miller, & Hayashi, 1997; Shughrue, Lane, & Merchenthaler,

1997; Vanderhorst Veronique, Gustafsson, & Ulfhake, 2005). Recently,

we reported that aromatase, the enzyme that catalyzes the conversion

of testosterone to estradiol is expressed in inhibitory neurons of lami-

nae I and V of the spinal and medullary dorsal horns. We suggested

that in addition to circulating estrogen, spinal and medullary-derived

estrogen may also engage nociceptive circuits (Tran, Kuhn, Braz, &

Basbaum, 2017). Whether an interaction of estrogen with these differ-

ent populations of estrogen receptor-expressing neurons exerts com-

parable or differential effects is unclear. Furthermore, as estrogen

appears to be pronociceptive in some reports, for example, in a behav-

ioral model of mechanically-induced visceral pain (Ji, Tang, & Traub,

2011), but antinociceptive in other pain settings (Craft, 2007), contra-

dictory conclusions have been drawn as to the estrogen contribution

to pain processing. In addition, as yet, the contribution of spinal ERα to

somatic pain processing in general, or to specific pain modalities, for

example, heat versus mechanical pain, has not been reported.

Although studies using knockout mice, pharmacology, gonadec-

tomy, and other hormonal manipulations have made valuable contribu-

tions to our understanding of estrogenic function in both health and

disease (Couse & Korach, 1999; Paterni, Granchi, Katzenellenbogen, &

Minutolo, 2014), these approaches affect estrogen activity on a global

level, making it difficult to establish regional functional specificity in the

contribution of estrogens (Amandusson & Blomqvist, 2013; Greenspan

et al., 2007). Here, we specifically addressed the contribution of ERα-

expressing dorsal horn neurons to different modalities of pain and itch.

We first determined the extent to which these neurons express markers

of excitatory or inhibitory interneurons. Next, we used a Cre-dependent

viral strategy to ablate ERα+-expressing cells in the spinal cord dorsal

horn of adult mice and evaluated responses to a variety of mechanical,

thermal, chemical, and pruritic stimuli. We show that the ERα-

expressing neurons in the spinal cord dorsal horn are predominantly

excitatory interneurons. Their ablation led to a selective reduction in

formalin- and histamine-induced behaviors, suggesting that the ERα-

expressing neurons comprise a functionally distinct subset of excitatory

interneurons that mediate chemical pain and pruritogen-induced itch.

2 | MATERIALS AND METHODS

2.1 | Mouse lines

All experiments were approved by and performed according to the

guidelines of the University of California, San Francisco's Institutional

Animal Care and Use Committee. For ERα cell ablation experiments,

we used ERα-Cre mice, which are mice heterozygous for Cre rec-

ombinase that was knocked into the locus of the Esr1 gene in a

manner that preserves expression of ERα (Lee et al., 2014). We used

their wildtype littermates (ERα-WT) as controls. TR4 mutant mice

were generated as previously described (Wang et al., 2013).

2.2 | Viral injections for ablation and knockout

Spinal injection of virus was performed as previously described (Bráz

et al., 2012). In brief, we anesthetized mice with ketamine/xylazine

(60 and 8.0 mg/kg) and then made a dorsal laminectomy to expose the

left side of the lumbar enlargement. Using a micropipette attached to a

stereotaxic instrument-mounted microinjector, we made multiple injec-

tions of virus, rostrocaudally along two segments of the lumbar enlarge-

ment. Each mouse received a total of 2.0 μl of viral stock solution; each

injection contained up to 200 nl. For the ERα-Cre cell ablation experi-

ments, we injected AAV1-flex-taCasp3-TEVp (caspase virus, titer:

1.5–2.8 × 1012 viral particles/ml; Gene Therapy Vector Core at the

University of North Carolina at Chapel Hill and Dr. R. Jude Samulski;

Yang et al., 2013) into ERα-Cre mice and wildtype littermate controls.

2.3 | Viral injections for neuroanatomical
characterization

In a previous study, we injected a Cre-dependent EGFP reporter virus

(AAV1-FLEX-eGFP) into the spinal cord of Tac1-Cre mice (Gutierrez-

Mecinas et al., 2017) to characterize the distribution of Substance P-

expressing interneurons in the dorsal horn. Here we immunostained

spinal cord tissue from these animals for expression of ERα and evalu-

ated overlap with GFP.

2.4 | Behavioral tests

For all behavioral testing and scoring, the experimenter was blind to

mouse genotype. Mice were tested in a first session prior to caspase virus

injection to measure baseline thresholds and again 3 weeks after virus

injection to measure post-virus thresholds. For studies examining chronic

pain models (see below), mice were also tested post-tissue or nerve injury.

2.5 | Mechanical threshold

Mice were placed into individual acrylic cylinders on a wire mesh and

allowed to acclimate for 1–2 hr. Withdrawal responses to von Frey fila-

ments (North Coast Medical, Gilroy, CA) applied to the plantar surface of

the left hindpawwere recorded and mechanical thresholds were calculated

using the up-downmethod (Chaplan, Bach, Pogrel, Chung, & Yaksh, 1994).

2.6 | Thermal threshold

Mice were placed into individual chambers inside acrylic boxes on a

25.0�C heated glass surface of a thermal nociception test device (Dirig,

Salami, Rathbun, Ozaki, & Yaksh, 1997; Hargreaves, Dubner, Brown,

Flores, & Joris, 1988) and allowed to acclimate for 1–2 hr. Radiant heat
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intensity was set to 65 units (current output: 4.2–4.5 A) and then the

light source was positioned to stimulate the plantar surface of the left

hindpaw. Withdrawal latencies to the infrared light were recorded up

to a cutoff of 20 s.

2.7 | Capsaicin and formalin test

For capsaicin and formalin tests, the mice were placed into individual

acrylic cylinders on a glass surface on top of an angled mirror and

allowed to acclimate for 30 min. Mice were then lightly restrained with

a towel and then capsaicin (Sigma-Aldrich, St. Louis, Missouri; 3 μg in

10 μl of 10% ethanol, 10% Tween-80, 80% saline) or formalin (10 μl of

2% solution made by diluting 37% formaldehyde 1/50 in saline;

ACROS Organics, Morris Plains, NJ) was injected into the plantar sur-

face of the left hindpaw with a 100 μl-capacity Hamilton syringe

(Hamilton Company, Reno, NV) fitted with a 30-gauge needle. Mice

were immediately returned to the cylinders and video recorded for

5 min (capsaicin) or 1 hr (formalin). Behavior was scored as time spent

licking and/or biting the left hindpaw. Formalin behavior was separated

into three distinct phases: phase I was defined as the first 0–5 min fol-

lowing the injection, interphase as the period 5–10 min after the injec-

tion, and phase II lasted from 10 to 60 min postinjection.

2.8 | Tests of pruritoception

To distinguish itch from pain after an injection into the hindlimb, we

followed the protocol of LaMotte, Shimada, and Sikand (2011), in

which an algogen and pruritogen, respectively, provoke licking and

biting of the injected region. Using the same cylinders, we made a

subcutaneous injection of 100 μl of either chloroquine (200 μg diluted

in saline; Sigma-Aldrich) or histamine (500 μg diluted in saline; Sigma-

Aldrich) into the left calf (Akiyama, Nagamine, Carstens, & Carstens,

2014; LaMotte et al., 2011). Mice were immediately returned to the

cylinders and video recorded for 30 min. Behavior was scored as time

spent licking and/or biting the injection area.

2.9 | Tissue injury-induced chronic pain: Complete
Freund's adjuvant

To induce prolonged inflammation, we injected complete Freund's

adjuvant (CFA; Sigma-Aldrich; 20 μl of 1:1 emulsion in saline) into the

plantar surface of the left hindpaw of mice lightly restrained with a

towel. Three to 4 days later, when animals display significant paw

edema and hypersensitivity (Malmberg, Gilbert, McCabe, & Basbaum,

2003), we used the von Frey and Hargreaves tests to measure

mechanical and thermal (heat) thresholds.

2.10 | Neuropathic pain: Sciatic nerve injury

To model neuropathic pain, we performed sciatic nerve injury (SNI) as

described previously (Shields, Eckert III, & Basbaum, 2003). Briefly,

under 2% isoflurane anesthesia, we exposed the sciatic nerve, and

then ligated and excised 2.0 mm of the peroneal and sural branches,

sparing the tibial branch. The incision was then sutured closed and the

mice were allowed to recover and returned to their home cages. One

and 7 days later, when animals display significant hypersensitivity,

mechanical thresholds were measured.

2.11 | Retrograde tracing

Under ketamine/xylazine anesthesia, mice were placed in a stereotaxic

apparatus (Kopf Instruments, Tujunga, CA) and 0.5–1.0 μl of Fluorogold

(Fluorochrome, Denver, CO) was injected into the left lateral para-

brachial nucleus, according to coordinates from Paxinos and Franklin's

The Mouse Brain in Stereotaxic Coordinates. Animals were perfused

7 days later and tissue was processed for immunohistochemistry.

2.12 | Immunohistochemistry

To determine marker overlap and for viral tracing experiments, we

performed fluorescent immunohistochemistry. Mice received an intra-

peritoneal injection of 2.5% Avertin (2,2,2-Tribromoethanol, Sigma-

Aldrich) and were transcardially perfused with 10 ml of phosphate

buffered saline (PBS) followed by 30 ml of 10% formalin in PBS. Spinal

cord and dorsal root ganglia (DRGs) were dissected out and postfixed

in 10% formalin in PBS overnight. Tissue was then cryoprotected in

30% sucrose overnight. For immunostaining, spinal cord (25 μm) and

DRG (14 μm) sections were cut on a cryostat, mounted on slides and

blocked for 1 hr in 10% normal goat serum in PBS containing 0.3%

Triton X-100. Primary antibody incubation was done overnight at

room temperature (RT). Table 1 provides details of the primary anti-

bodies used. The following day, after three PBS washes, the sections

were incubated in secondary antibodies for a minimum of 2 hr at

RT. Secondary antibodies were Alexa Fluor 488, 594, or 647 raised in

goat (Thermo Fisher Scientific, Waltham, MA) and used at 1:1000 in

PBS. Following three final washes with PBS, the slides were allowed

to dry and then coverslipped using Fluoromount-G aqueous mounting

medium (SouthernBiotech, Birmingham, Alabama). Tissue from the

AAV1-FLEX-eGFP-injected Tac1-Cre mice was postfixed for 2 hr and

cut at 60 μm on a vibrating blade microtome. Primary antibody incu-

bations were performed at 4�C. After completion of behavioral test-

ing, the animals were perfused for immunohistochemistry to quantify

numbers of ERα+ cells remaining in the lumbar spinal cord dorsal horn.

We did not perform fluorescent immunohistochemistry because

debris from the injection was highly autofluorescent, making debris

difficult to distinguish from ERα + immunoreactivity. The DAB immu-

nohistochemistry was performed following the protocol of Llewellyn-

Smith, DiCarlo, Collins, and Keast (2005). First, to remove endogenous

peroxidase activity, we incubated slides at RT in methanol peroxide

(1% hydrogen peroxide, 30% methanol, diluted in water) for 30 min.

The slides were then washed three times for 10 min each in 10 mM

TRIS base (Trizma, Sigma-Aldrich) and 0.05% merthiolate (Thimerosal,
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Sigma-Aldrich) in 10 mM phosphate buffer, pH 7.4 (TPBS) that also

contained 0.3% Triton X-100 (TPBS + Triton = immunobuffer, IB).

Sections were then blocked for a minimum of 30 min in 10% normal

horse serum (NHS) in IB followed by overnight RT incubation in ERα

primary antibody (1:20,000in 10% NHS in IB; rabbit, Millipore,

06-935). The next day, the slides were washed three times for 10 min

each time in TPBS and then incubated overnight at RT in biotin-SP-

conjugated donkey anti-rabbit secondary antibody (Jackson Immuno-

Research, West Grove, Pennsylvania, United State; diluted 1:500 in

1% NHS in IB). The following day, the slides were washed three times

for 10 min each in TPBS and then incubated for a minimum of 4 hr in

ExtrAvidin-Peroxidase (Sigma-Aldrich; diluted 1:1500 in IB). The sec-

tions were subsequently washed three times for 10 min each time in

TPBS and then incubated for 10 min in a solution of 0.004% ammo-

nium chloride, 0.2% D-glucose, 0.04% nickel ammonium sulfate, and

0.5 mg/mL 3,30diaminobenzidine tetrahydrochloride in 10 mM PB,

pH 7.4. An equal volume of the same buffer, but containing 2.0 μl/ml

of glucose oxidase was then added to the slides to yield a final con-

centration of 1.0 μl/ml, glucose oxidase. After 8 min, we stopped the

reaction by rapidly rinsing the slides six to seven times in TPBS,

followed by three to four rinses with distilled water. After drying at

RT for several hours, the sections were cleared by washing twice in

xylene and coverslipped using Permaslip mounting medium (Alban Sci-

entific, St. Louis, MO).

2.13 | Antibody characterization

Table 1 lists all antibodies used in this study. Rabbit anti ERα detects in

Western blots a roughly 58 kDa band from MCF7 cell lysate (manufac-

turer's information) and a 55 kDa band from cichlid whole brain extract

(Munchrath & Hofmann, 2010). Preincubation with the antigen elimi-

nates all bands (Friend, Resnick, Ang, & Shupnik, 1997). In addition,

there was no detectable signal in spinal cord tissue immunostained

from ERα conditional knockout mice (unpublished observation). Mouse

anti NeuN recognizes neuronal nuclei and cytoplasm. Antibody speci-

ficity has been evaluated with immunohistochemistry and immunoblot

analysis, showing that immunoreactivity is present only in neurons

(Mullen, Buck, & Smith, 1992). Anti-PKCγ antibodies were raised in

guinea pigs and when used in formaldehyde-fixed animals generated

the following pattern of spinal cord immunostaining: dense immunore-

activity in lamina IIi and the corticospinal tract of wildtype mice. This

pattern is in complete agreement with our previous studies using

rabbit-generated PKCγ antibodies that did not immunostain the spinal

cord or brain of PKCγ mutant mice (Malmberg, Chen, Tonegawa, &

Basbaum, 1997). Anti-calretinin antibodies were produced in mice by

immunization with recombinant human calretinin-22 k, an alternative

splice product of the calretinin gene and identical with calretinin up to

Arg178. The antibody 6B3 recognizes an epitope within the first four

EF-hands domains common to both calretinin and calretinin-22 k. This

antibody does not cross-react with calbindin D-28 k or other known

calcium binding-proteins and does not immunostain the brain of cal-

retinin mutant mice (manufacturer's specifications). The pattern of

Rabbit anti-Pax2 immunostaining that we observe completely agrees

with previous reports that characterized spinal cord dorsal horn

Pax2-expressing cells as inhibitory interneurons (Kardon et al., 2014;

Punnakkal, von Schoultz, Haenraets, Wildner, & Zeilhofer, 2014). In

addition, for this particular antibody, Western blot from human fetal

kidney tissue recognizes a band at the proper expected size of 45 kDa

(manufacturer's information). Anti-GFP antibodies were raised in

chicken against the recombinant full-length protein corresponding to

GFP. Our own studies have established that there is no GFP immuno-

reactivity in wildtype mice (Braz, Enquist, & Basbaum, 2009).

2.14 | Imaging and quantification

Immunofluorescent tissue samples were imaged with ZEN 2010 soft-

ware (Zeiss) in a LSM 700 confocal microscope (Zeiss, Oberkochen,

Germany) using a ×20 objective. Images of 3–6 randomly selected spi-

nal cord sections from each mouse were acquired and processed in

Fiji/ImageJ (NIH), which involved cropping, assigning colors to individ-

ual channels, brightness and contrast adjustment, maximum intensity

projections of Z-stacks, and quantification. For quantification, the Iso-

data Threshold algorithm was used to define labeled cells in each

channel and the Particle Analyzer tool (size range: 15–150 μm, circu-

larity: 0.5–1) was used to count cells. An overlay of the channels was

then used to distinguish double-labeled cells. Any changes to bright-

ness and contrast were applied uniformly within a single image and

across images in the same experiment.

To count cells in the ablation experiments, the slides were auto-

matically scanned with a ×20 objective under brightfield conditions

using a Zeiss Axio Scan.Z1 slide scanner. Images were stitched with

Zeiss ZEN2 software and then exported to FIJI/ImageJ. The images

TABLE 1 Primary antibodies used for immunohistochemistry

Antibody Manufacturer Cat # Species Concentration RRID

ERα Millipore 06-935 Rabbit 1:10,000-20,000 AB_310305

NeuN Millipore MAB377 Mouse 1:5000 AB_2298772

PKCγ Strategic BioSolutions Gift Guinea-pig 1:5000

Calretinin Swant 6B3 Mouse 1:5000 AB_10000320

GFP Abcam ab13970 Chicken 1:2000 AB_30798

Pax2 Abnova H00005076-M01 Mouse 1:2000
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were converted to 8-bit grayscale and then Brightness/Contrast was

modified using the “Auto” feature. Images were then cropped to dis-

play only the area from the central canal to the dorsal border of the

tissue. To distinguish one side of the spinal cord from the other, we

drew a perpendicular line from the central canal to the dorsal border

of the cord. Using the Cell Counter tool, an observer blinded to

mouse genotype manually counted ERα+ cells on each side of the

cord. To calculate the percentage of ERα+ cells remaining after virus

injection, we divided the number of ERα+ cells on the ipsilateral side

by the number of cells on the contralateral side. For our ERα cell

ablation experiments, we set a threshold of 25% for ablation; that is,

if an ERα-Cre mouse had less than 25% of ERα cells remaining, we

considered it to be a successful ablation and included data generated

from this mouse in our analysis, but if more than 25% of cells

remained, data from this mouse were excluded. Conversely, for ERα-

WT control mice, if fewer than 50% of cells remained, the data were

excluded.

2.15 | Experimental design and statistical analysis

Statistical analyses were chosen in consultation with the University of

California, San Francisco's Clinical and Translational Science Institute.

To compare anatomical results between male and female mice, we

used Unpaired (Student's) t tests, provided that the data were nor-

mally distributed (Shapiro–Wilk test) and demonstrated homogeneity

of variances (F test). If groups had unequal variances, we used

unpaired t tests with Welch's correction. If the groups were not nor-

mally distributed, we used the Mann–Whitney U test.

For each behavioral test, the results were unblinded and grouped

by two factors: sex (male, female) and genotype (ERα-Cre or ERα-WT).

Each of the four resulting groups was then tested for normality using

the Shapiro–Wilk test. If data were not normally distributed, all four

groups were log transformed to normalize the data so that data would

fulfill the requirements for analysis with two-way analysis of variance

(ANOVA). The following data sets underwent log transformation: ERα

cell ablation mechanical threshold, ERα cell ablation capsaicin, ERα cell

ablation formalin interphase, ERα cell ablation formalin phase II, and

ERα cell ablation chloroquine. In the case of ERα cell ablation formalin

interphase, prior to log transformation, data were translated by adding

one to all data points because certain scores had a value of 0. All data

sets demonstrated homogeneity of group variances as assessed by

Levene's test. The Shapiro–Wilk test and Levene's test were per-

formed in Microsoft Excel 2011 using the Real Statistics Resource

Pack for Mac (Release 3.5.3), copyright 2013–2017 by Charles

Zaiontz, www.real-statistics.com. Data were next transferred to

F IGURE 1 Estrogen receptor
α (ERα) expression in the spinal
cord. (a) ERα (green) is expressed
by NeuN (magenta) positive
neurons in the spinal cord dorsal
horn. Insets 1 and 2 depict
examples of overlap. (b) ERα is
mainly expressed by cells of
lamina II of the dorsal horn, with

scattered cells both superficially
and in deeper laminae (III–V). A
subset of PKCγ excitatory
interneurons serves as a landmark
for inner lamina II. ERα and PKCγ
do not overlap. (c) Males and
females have comparable
numbers of dorsal horn ERα+

cells. Right panel displays
quantification from three male
and three female mice. Data are
presented as mean ± SEM (males:
54 ± 0.88 and females: 54 ± 11).
Two-tailed unpaired t test with
Welch's correction for unequal
variances: t = 0.05349, df = 2,
p = .9622. Dashed lines outline
the border of the spinal cord
dorsal horn. Scale bar: 100 μm;
inset: 50 μm [Color figure can be
viewed at wileyonlinelibrary.com]
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GraphPad Prism (version 6.0h for Mac) for two-way ANOVA with

Sidak's multiple comparisons test. We set up two comparisons: ERα-

WT males versus ERα-Cre males and ERα-WT females versus ERα-Cre

females. Statistical significance is indicated in the figure legends. For

nonnormal data sets, transformed data were used for statistical analy-

sis, but raw data were used in graphs for ease of comprehension. In

the experiments where data from male and female were pooled due

to low numbers of subjects with successful ablation, we applied t tests

F IGURE 2 ERα predominates in excitatory interneurons. (a) Very few neurons express ERα in the spinal cord of TR4 knockout mice, which
lack large numbers of excitatory interneurons. The remaining few ERα+ cells are likely inhibitory, as determined by colocalization with
GAD67-GFP. (b,c) The great majority of ERα-expressing cells overlap with TdT-Tomato in a VGLUT2-Td-Tomato reporter mouse (b), but not with
Pax2 (c), a marker of spinal cord inhibitory interneurons. (d) Consistent with this conclusion, only a small number of ERα-expressing cells
coexpress GFP in the spinal cord of the GAD67-GFP reporter mice. (e) ERα-expressing cells were never retrogradely labeled after injection of the
Fluorogold retrograde tracer into the lateral parabrachial nucleus. Arrows in all panels, including insets, point to examples of overlap between ERα
and a second marker. Scale bar: 100 μm [Color figure can be viewed at wileyonlinelibrary.com]
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or Mann–Whitney U tests under the same guidelines described for

the anatomical studies.

3 | RESULTS

Neurochemical characterization of ERα-expressing cells in the spinal cord

dorsal horn.

ERα-immunoreactive cells are concentrated in superficial laminae

(Figure 1a, left panel) of the spinal cord dorsal horn and express the

neuronal marker NeuN (Figure 1a, right panel). Based on the distribu-

tion of PKCγ-expressing excitatory interneurons, which mark inner

lamina II (lamina IIi; Figure 1b), it is apparent that the majority of ERα-

expressing cells are in outer lamina II (lamina IIo), with some cells in

lamina IIi and a few in lamina I and in deeper laminae. Furthermore,

we found no sex differences in either the number or the distribution

pattern of spinal ERα+ cells (Figure 1c).

We previously reported that TR4-Nestin knockout mice exhibit

an extensive loss of excitatory interneurons in laminae I and IIo, and

that this results in insensitivity to mechanical stimuli as well as to cap-

saicin and several pruritogens (Wang et al., 2013). A reevaluation of

the TR4-Nestin mice (Figure 2a; left panel) shows that there is also a

significant loss of ERα+ neurons in the dorsal horn, which suggests

that the majority of ERα+ neurons are excitatory interneurons. Consis-

tent with this conclusion we found that the majority of ERα+ neurons

double label with Td-Tomato in a VGLUT2-Td-Tomato reporter

mouse (Figure 2b), but not with Pax2, a marker of spinal cord inhibi-

tory interneurons (Cheng et al., 2004; Figure 2c).

Interestingly, the few remaining ERα + cells in the TR4-Nestin mice

colocalize with GAD67-GFP, a marker of inhibitory cells (Figure 2a). In

addition, in spinal cord tissue from GAD67-GFP reporter mice

(Tamamaki et al., 2003), we observed that only 16 ± 5.1% of ERα-

expressing cells are also GAD67-GFP+ (n = 1 male, 2 females; Figure 2d),

supporting our conclusion that ERα predominates in excitatory interneu-

rons. Finally, when we injected the Fluorogold retrograde tracer into the

lateral parabrachial nucleus, a region that receives the overwhelming

majority of projection neurons from laminae I and V in the mouse

(Cameron et al., 2015), we never observed Fluorogold labeling in ERα+

cells (Figure 2e), confirming that ERα+ cells are interneurons.

To characterize the subpopulation of ERα + spinal interneurons, we

performed a series of double-immunostaining experiments with known

markers of subpopulations of excitatory interneurons. Calretinin marks a

F IGURE 3 ERα+ interneurons coexpress calretinin and substance P, but not GRP. (a) Approximately 40% of ERα-expressing neurons
immunostain for calretinin, a marker of a subset of excitatory interneurons in lamina II. (b) This figure illustrates that injection of Cre-dependent
EGFP reporter virus into the dorsal horn of Tac1-Cre mice results in considerable coexpression of ERα and GFP, indicating coexpression of ERα
and substance P. (c) In contrast, ERα is not present in interneurons marked in a GRP-EGFP transgenic mouse. Arrows depict examples of overlap
between ERα and a second marker. Scale bar: 100 μm; inset: 20 μm [Color figure can be viewed at wileyonlinelibrary.com]
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large excitatory subpopulation in lamina II, although it also labels a few

cells in lamina I and a few inhibitory interneurons (Gutierrez-Mecinas

et al., 2019; Smith et al., 2015). Double immunostaining with ERα rev-

ealed that 39 ± 2.2% of ERα-expressing cells express calretinin (n = 2

males, 1 female; Figure 3a). We also examined colabeling for substance P,

another marker of dorsal horn excitatory interneurons (Dickie et al.,

2019; Gutierrez-Mecinas et al., 2017; Huang et al., 2019). Here we

colabeled for ERα and GFP in a substance P reporter mouse (Tac1-Cre

injected with a Cre-dependent EGFP reporter virus; Dickie et al., 2019)

and found extensive colocalization of EGFP and ERα (Figure 3b). On the

other hand, although gastrin-releasing peptide (GRP) also marks a subset

of lamina I-II excitatory interneurons (Solorzano et al., 2015), we found

no overlap with ERα in a GRP-EGFP reporter line (Figure 3c). Taken

together, these data indicate that ERα is primarily associated with dis-

tinct subsets of excitatory interneurons.

3.1 | Nociceptive and pruriceptive behavioral
phenotypes after ERα+ interneuron ablation

To assess whether ERα+ interneurons contribute to pain and/or itch

and to what extent the ERα+ interneurons account for the

TR4-Nestin insensitivity phenotype, we ablated the ERα-expressing

neurons in the dorsal horn by local injection of a Cre-dependent

caspase virus (AAV1-flex-taCasp3-TEVp; Yang et al., 2013). Their wil-

dtype littermates served as controls (ERα-WT; Figure 4a). As

expected, we observed clear loss of ERα immunostaining in the dor-

sal horn ipsilateral to the virus injection in the ERα-Cre mice, but not

in the wild type mice (Figure 4b). Importantly, PKCγ immunostaining

was preserved in both the ERα-Cre and ERα-WT mice (Figure 4c).

We cannot conclude that there was absolutely no “off target” abla-

tion of neurons. However, given the incredible diversity of

F IGURE 4 Ablation of ERα-expressing cells in the spinal dorsal horn. (a) To ablate ERα-expressing interneurons ERα-Cre mice received unilateral
injections of a Cre-dependent caspase virus (AAV1-flex-taCasp3-TEVp) into the lumbar dorsal horn. Similarly injected wildtype littermates (ERα-WT)
served as controls. (b) Immunostaining for ERα confirms the ipsilateral ablation of ERα-expressing neurons (top) and preservation of the cells in the
ERα-WT (bottom) mouse. Scale bar: 500 μm; Insets: 100 μm. (c) Preservation of the PKCγ staining pattern in the ipsilateral dorsal horn confirms that
ERα+ cell ablation did not induce nonspecific cell death (top right vs. top left panel). Scale bar: 200 μm. (d) Quantification of ERα+ cell ablation
illustrates the thresholds that were set a priori to determine which behavioral results would be included in subsequent analyses. For ERα-Cre mice,
ablation was considered successful if fewer than 25% ERα+ neurons remained (dashed line). For ERα-WT mice, we excluded any animal that had fewer
than 50% of ERα+ cells remaining (dotted line). Excluded mice are indicated in red [Color figure can be viewed at wileyonlinelibrary.com]
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neurochemical subtypes of spinal cord interneurons, the fact that the

PKCγ immunoreactivity persisted after injection of the caspase virus,

we are confident that the injection did not indiscriminately result in

dorsal horn cell death. Although all mice were examined in the

behavioral studies, to include a mouse in the behavioral analysis, we

a priori established a minimum requirement of cell ablation. Only

mice with < 25% of ERα+ cells remaining in the ipsilateral spinal

dorsal horn, compared to the contralateral, uninjected side in an ERα-

Cre mouse, were included. We also considered an ERα-WT mouse

with less than 50% of ERα+ cells remaining in the ipsilateral dorsal

horn, compared to the contralateral, uninjected side, to have received

nonspecific damage from the injection and excluded that mouse

(Figure 4d). Taken these thresholds into consideration, only 4 of

20 virus-injected mice included in the behavioral analyses exhibited

F IGURE 5 Legend on next page.
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F IGURE 5 Acute pain and itch responsiveness after ablation of spinal ERα+ neurons. (a) Mechanical thresholds (von Frey test) in the ERα-WT
and ERα-Cre ablated mice did not differ. However, sex accounted for a significant source of variation, with female thresholds lower than male
thresholds in both Cre and WT groups (see also Table 2). (b) There is no effect of spinal ERα ablation in the Hargreaves test. (c) Spinal cord ERα
ablation did not alter intraplantar capsaicin-induced licking and biting of the hindpaw. (d) Nocifensive behavior (licking and biting of the hindpaw)
in the first phase of the formalin test was significantly decreased in male mice after ablation of ERα+ cells (ERα-Cre male) compared to control
males (ERα-WT male). Females do not display a significant difference after ablation. (e) In the formalin test, we did not record significant

differences following ERα cell ablation between the ablated and control groups, males exhibited reduced licking and biting during the interphase
compared to females (see also Table 2). (f) Similarly, although there was no statistical significant differences between the ablated and control
groups during the second phase of the formalin test, genotype (Cre vs. WT) was a significant source of variation, with ablated mice having lower
licking and biting times compared to WT mice (see Table 2). (g) Licking and biting in response to chloroquine injected into the thigh/calf are
significantly decreased in ERα-Cre ablated females, compared to ERα-WT females. ERα ablation did not have a significant effect in males. (h) In
contrast, licking and biting in response to histamine injected into the thigh/calf was reduced by spinal ERα ablation in both male and female mice.
Data are presented as mean ± SEM, with *p < .05 and **p < .01

TABLE 2 Nociceptive behavior in mice after ablation of spinal ERα + neurons

Behavioral test

Erα-
WT male

Erα-
Cre male

Erα-WT

female

Erα-Cre
female

Sex male vs.

female

Genotype Erα-WT

vs. Erα-Cre Interaction

Mechanical (g) (von Frey) 1.13 ± 0.16

(N = 14)

1.10 ± 0.11

(N = 14)

0.71 ± 0.08

(N = 11)

0.71 ± 0.18

(N = 11)

F(1,46) = 8.921

p = .004

F(1,46) = 0.397

p = .532

F(1,46) = 0.513

p = 0.478

Sidak's multiple comparisons

test

M: WT vs. Cre p = .998

F: WT vs. Cre p = .607

Thermal (s) (Hargreaves) 9.24 ± 1.37

(N = 7)

9.43 ± 0.54

(N = 11)

9.33 ± 0.74

(N = 7)

10.2 ± 0.96

(N = 6)

F(1,27) = 0.228

p = .637

F(1,27) = 0.348

p = .560

F(1,27) = 0.145

p = 0.706

Sidak's multiple comparisons

test

M: WT vs. Cre p = .984

F: WT vs. Cre p = .775

Capsaicin (s) 38.12 ± 7.39

(N = 6)

25.43 ± 3.63

(N = 12)

21.48 ± 2.81

(N = 7)

21.54 ± 3.63

(N = 7)

F(1,28) = 3.865

p = .059

F(1,28) = 1.723

p = .200

F(1,28) = 1.396

p = .247

Sidak's multiple comparisons

test

M: WT vs. Cre p = .151

F: WT vs. Cre p = .995

Formalin phase I (s) 79.55 ± 8.43

(N = 6)

42.40 ± 2.98

(N = 11)

71.03 ± 8.22

(N = 7)

50.17 ± 15.6

(N = 7)

F(1,27) = 0.0017

p = .967

F(1,27) = 10.38

p = .003

F(1,27) = 0.818

p = .374

Sidak's multiple comparisons

test

M: WT vs. Cre p = .012

F: WT vs. Cre p = .229

Formalin interphase (s) 1.29 ± 0.54

(N = 6)

3.08 ± 0.79

(N = 11)

14.83 ± 5.95

(N = 7)

7.19 ± 4.67

(N = 7)

F(1,27) = 5.226

p = .030

F(1,27) = 0.229

p = .636

F(1,27) = 4.310

p = .047

Sidak's multiple comparisons

test

M: WT vs. Cre p = .446

F: WT vs. Cre p = .171

Formalin phase II (s) 186.5

± 31.13

(N = 6)

128.2

± 39.37

(N = 11)

211.9 ± 36.15

(N = 7)

106.7 ± 43.6

(N = 7)

F(1,27) = 0.0055

p = .941

F(1,27) = 7.772

p = .0096

F(1,27) = 0.043

p = .837

Sidak's multiple comparisons

test

M: WT vs. Cre p = .139

F: WT vs. Cre p = .095

Erα-WT Erα-Cre
Two-tailed unpaired t test
or Mann–Whitney U test

CFA mechanical (g) 0.024 ± 0.01

N = 3 males and 3 females

0.055 ± 0.04

N = 1 male and 3 females

t(8) = 0.9811

p = .3553

CFA thermal (s) 6.38 ± 1.52

N = 3 males and 4 females

4.59 ± 0.53

N = 1 male and 3 females

U = 12

p = .7879

Note: Data are presented as mean ± SEM; number of animals in each group (and sex, if applicable) is reported for each behavioral test. Units of measure for

the von Frey data are threshold in grams (g) and the Hargreaves data are withdrawal latency in seconds (s). All other data are reported as duration of licking

and biting in seconds (s). Where appropriate, we used two-way ANOVA to compare effects of sex (male vs. female), genotype (ERα-WT vs. ERα-Cre; i.e.,
control vs. ablation), and their interaction. For the CFA behavioral test where the number of mice was not sufficient to analyze across the four groups, we

pooled results from both sexes and performed a t test (or Mann–Whitney U test if groups were not normally distributed) to compare ERα-WT versus ERα-
Cre (control vs. ablation).
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less than 90% ablation of ERα-expressing dorsal horn neurons

(Figure 4d).

Three weeks after virus injection, the mice underwent a battery

of nociceptive and pruriceptive behavioral tests (Figure 5 and Table 2).

Surprisingly, we found few statistically significant differences between

ablated (ERα-Cre) and control (ERα-WT) mice. Although we confirmed

the presence of baseline differences in mechanical (von Frey) thresh-

olds of male and female mice (Mogil et al., 2006), after ERα neuron

ablation we found no differences in mechanical thresholds (Figure 5a),

in the Hargreaves test of thermal (heat) threshold (Figure 5b) or in

capsaicin-induced nocifensive behaviors (Figure 5c). ERα-ablated

males, but not females, did show significantly reduced nocifensive

behaviors in the first phase of the formalin test (Figure 5d), which is a

test of acute chemical pain. There was no difference in the interphase,

a period of reduced behavior that precedes the second phase

(Figure 5e). On the other hand, neither male nor female ERα-ablated

mice differed from wild type controls in nocifensive behavior during

the second phase, which in some respects is a model of postoperative

pain (Figure 5f). With respect to responsiveness to pruritogens, we

found that female, but not male ERα-ablated mice were less respon-

sive to chloroquine (Figure 5g). Surprisingly, however, both male

and female ERα-ablated mice were less responsive to histamine

(Figures 5h).

Lastly, in models of neuropathic (Figure 6a,b) and inflammatory

(Figure 6c,d) persistent pain, we found no significant differences after

ERα+ neuronal ablation. Note that in the CFA; Figure 6c-d) model of

chronic inflammatory pain, the number of mice with successful ERα+

cell ablation was insufficient for analysis by two-way ANOVA. For this

reason, we pooled male and female mice with successful ablation

numbers and only compared by genotype. Using this approach

(Table 2), there were no significant differences between groups in any

of the tests or models examined.

4 | DISCUSSION

In this study, we characterized a subpopulation of excitatory interneu-

rons in the superficial spinal cord dorsal horn that express ERα sub-

type of estrogen receptor. Many of these neurons coexpress the

nociceptive neuropeptide substance P, VGLUT2, and calretinin. After

ERα+ neuronal ablation in adult mice, we observed sexually dimorphic

deficits in the response to the chemical algogen, formalin, as well as

reduced responses to the pruritogens, histamine, and chloroquine.

Other nociceptive-related behaviors in both naïve and tissue and

nerve injury conditions were largely unaffected. Although we cannot

exclude the possibility that the few ERα spinal neurons that survived

the ablation procedure contributed to residual function, our results

argue strongly that ERα marks a subpopulation of excitatory interneu-

rons that are specifically involved in chemically evoked persistent pain

and pruritogen-induced itch.

4.1 | Sex differences regulated by ERα-expressing
interneurons

Our finding that spinal ERα+ cells are primarily interneurons in lamina

II agrees with a previous report (Amandusson et al., 1995). In addition,

F IGURE 6 Lack of effect of spinal ERα+ neuron ablation in
models of persistent pain. (a, b) One and 7 days after spared nerve
injury (SNI), mechanical thresholds were tested in male (a) and female
(b) ERα-Cre mice and in their WT littermate controls. There was no
significant difference between groups at either time point. (c, d) Three
days after intraplantar injection of Complete Freund's Adjuvant,
thresholds were tested in ERα-Cre mice and WT littermate controls.
Males and females were pooled due to low numbers. There was no
significant difference between groups in mechanical allodynia (c) or
thermal hyperalgesia (d). Data are presented as mean ± SEM
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as reported by Vanderhorst Veronique et al. (2005), we observed

comparable patterns and numbers of ERα expression in male and

female mice. Although formalin appears to activate a male-specific cir-

cuit that involves ERα+ interneurons, we suggest that instances of

behavioral sexual dimorphism that we observed after ERα neuronal

ablation likely reflect inputs to and outputs of these cells.

That there are sexual dimorphisms in nonreproductive signaling

and behavior is well established—many drugs, including opioids, have

different potencies in men and women and many drugs have been

withdrawn due to an increase in adverse effects in women (Klein

et al., 2015). Of course, such observations highlight the importance of

performing experiments in both sexes. Unfortunately, due to concerns

over fluctuating hormone levels in females during the estrous cycle,

most studies are done exclusively in male subjects (Hughes, 2007).

We did not control for estrous cycle differences in the present study,

as a meta-analysis of behavioral results in male and female mice sug-

gests that this may not be critical (Mogil & Chanda, 2005). In fact,

these authors reasoned that it is not necessary to control for the

estrous cycle in female rodents because there are equally relevant

fluctuations in male rodents, for example, changes in the dominance

hierarchy. We recognize, however, that varying levels of estrogen dur-

ing different estrous cycle stage may differentially affect the activity

of ERα-expressing spinal cord neurons in the female mice. For exam-

ple, high levels of estrogen not only enhance temporomandibular joint

(TMJ)-evoked activity in superficial laminae (Okamoto, Thompson,

Katagiri, & Bereiter, 2013) but also reduce morphine-induced inhibi-

tion of these TMJ neurons (Okamoto, Tashiro, Hirata, & Bereiter,

2005; Tashiro, Okamoto, & Bereiter, 2008). Interestingly, the elevated

sensitivity in von Frey mechanical threshold testing in females, com-

pared to males, is consistent with reports by other groups (Mogil

et al., 2006), and underscores the need to test subjects of both sexes,

but whether it is essential to control for estrous status remains

unclear.

4.2 | Contribution of spinal ERα+ interneurons
to nociceptive processing

We determined that the ERα-expressing neurons are a subset of the

population of spinal excitatory interneurons that are eliminated in the

TR4-Nestin knockout mouse (Wang et al., 2013), which shows an

almost complete loss of the response to von Frey filament mechanical

stimulation, capsaicin, formalin, chloroquine, and histamine. This mouse

line also displays diminished or no mechanical allodynia following CFA

or sciatic nerve injury (SNI). In the ERα+-cell-ablated mice, we detected

similar defects, but in only two of the behaviors: the formalin test and

pruritogen-induced licking and biting. We conclude that ERα-

expressing interneurons contribute to a select portion of the

TR4-Nestin knockout phenotype, one that is mainly chemical. That

conclusion is consistent with the report that formalin injection induces

Fos expression in ERα-interneurons (Amandusson & Blomqvist, 2010).

It is likely that other populations of interneurons lost in TR4 mutant

mice underlie the remaining behavioral abnormalities.

Previous studies reported that molecularly defined populations of

dorsal horn interneurons mediate distinct modalities of pain and itch

(Braz, Solorzano, Wang, & Basbaum, 2014). To date, four largely non-

overlapping neurochemical markers of adult excitatory interneurons

have been described: substance P, neurokinin B, neurotensin, and

gastrin-releasing peptide (Gutierrez-Mecinas et al., 2016; Gutierrez-

Mecinas et al., 2017). With the exception of gastrin-releasing peptide,

which is implicated in itch (Sun & Chen, 2007), it is not known

whether specific pain or itch modalities, are associated with a particu-

lar excitatory interneuron subpopulation. We found that many, but

not all, ERα+ cells, especially those in lamina IIo, express substance P

and/or calretinin, but not GRP. As substance P-expressing neurons

respond to a variety of algesic and pruritic stimuli (Gutierrez-Mecinas

et al., 2017), it appears that the ERα-expressing neurons form a divi-

sion within the substance P+ cells, one that is more specifically

responsive to formalin and pruritogens.

Our demonstration of significant expression of substance P in the

ERα interneurons is consistent with a recent analysis of the behavioral

consequences of ablating dorsal horn Tac1-Cre-expressing interneu-

rons (Huang et al., 2019). These authors reported that baseline reflex-

ive responses to acute mechanical or thermal stimuli did not differ in

the ablated and control mice, but that scratching-evoked behaviors

were significantly reduced in response to exogenous pruritogens.

Interestingly, however, that report described a dramatic reduction of

prolonged stimulus (e.g., burn injury)-induced nocifensive behaviors

and aversion, which the authors interpreted as a form of coping

behavior. In light of our finding of sexually dimorphic behaviors in sev-

eral chemically evoked pain and itch-associated behaviors, it will be of

interest to determine whether these coping behaviors are also sexu-

ally dimorphic. Finally, and as the majority of ERα-expressing interneu-

rons are excitatory, they presumably release glutamate. As substance

P can potentiate glutamate-induced currents in spinal dorsal horn

neurons (Randi�c, He�cimovi�c, & Ryu, 1990), it is conceivable that gluta-

mate is co-released by ERα-expressing interneurons, allowing sub-

stance P to enhance the activity of glutamate and thereby strengthen

synaptic connections and contribute to sensitization of dorsal horn

neurons (Malmberg & Yaksh, 1992).

4.3 | Estrogenic action on spinal ERα+ neurons

In a recent report, we identified a population of inhibitory dorsal

horn interneurons that express aromatase, the enzyme that catalyzes

conversion of androgens (e.g., testosterone) to estrogens (Tran et al.,

2017). The aromatase-expressing interneurons are concentrated in

laminae I and V, placing them in close proximity to the ERα-expressing

interneurons, and of course, in regions intimately involved in the

processing of pain and itch messages. Conceivably, activation of the

aromatase interneurons concurrently inhibits the ERα-expressing

excitatory interneurons, providing an acute antinociceptive action, but

via an estrogenic action, could provoke much longer term, possibly

pro-nociceptive, effects via downstream signaling pathways (Heldring

et al., 2007). In fact, spinally synthesized estrogen has pro-nociceptive
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effects. For example, in male Japanese quails, inhibition of local estro-

gen synthesis reduced responses to a noxious thermal stimulus

(Evrard & Balthazart, 2004), while in male rats, inhibition of synthesis

lowered pain scores in the formalin test (Zhang, Lü, Zhao, & Zhang,

2012). These results are consistent with the phenotypes that we

observed after ERα+ cell ablation and suggest that by selectively

knocking out ERα while preserving the neuron, future studies could

more specifically address the contribution of estrogen to the activity

of ERα-expressing interneurons.

4.4 | Conclusion

ERα is expressed by a subset of dorsal horn excitatory interneurons,

many of which coexpress substance P. As our knowledge of noci-

ceptive and pruriceptive circuitry develops, it has become increas-

ingly clear that molecularly distinct categories of excitatory and

inhibitory interneurons in the spinal cord define cell populations that

convey different modalities of pain and itch. Functionally, the ERα-

expressing interneurons facilitate nociception, notably ongoing pain

in the formalin model of postoperative pain, and pruritoception

involving both histamine-dependent and independent pathways. In

addition to their involvement in acute chemonociception, the ERα-

expressing interneurons likely corelease substance P and glutamate

to modulate the central sensitization that precipitates chronic pain

states. Selective deletion of ERα from these interneurons, without

affecting the rather extensive primary afferent, sensory neuron

expression of the receptor, should provide answers to those

questions.
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