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Abstract: An international survey of house dust collected from eleven countries using a modified dilution-to-extinction Key words:
method yielded 7904 isolates. Of these, six strains morphologically resembled the asexual morphs of Aureobasidium 18S

and Hormonema (sexual morphs ?Sydowia), but were phylogenetically distinct. A 28S rDNA phylogeny resolved 28S

strains as a distinct clade in Dothideales with families Aureobasidiaceae and Dothideaceae their closest relatives. BenA
Further analyses based on the ITS rDNA region, 3-tubulin, 28S rDNA, and RNA polymerase |l second largest subunit black yeast

confirmed the distinct status of this clade and divided strains among two consistent subclades. As a result, we Dothidiomycetes

introduce a new genus and two new species as Zalaria alba and Z. obscura, and a new family to accommodate them in ITS
Dothideales. Zalaria is a black yeast-like fungus, grows restrictedly and produces conidiogenous cells with holoblastic RPB2
synchronous or percurrent conidiation. Zalaria microscopically closely resembles Hormonema by having only one to xerotolerant fungi

two loci per conidiogenous cell, but species of our new genus generally has more restricted growth. Comparing the two Zalaria
species, Z. obscura grows faster on lower water activity (a,) media and produces much darker colonies than Z. alba

after 7 d. Their sexual states, if extant, are unknown.
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INTRODUCTION

The average person in industrialized countries spends
approximately 90 % of their time indoors (Hoppe & Martinac
1998). This makes the indoor environment one of the most
important human-fungal interfaces. We are constantly exposed
to fungal spores, fragments, and metabolites and their impact
ranges from human health (Pieckova & Jesenska 1999) as
pathogens (De Hoog et al. 2014, Garber 2001) or allergens
(Aimanianda et al. 2009, Karvala et al. 2011, Tanno et al. 2016)
to food spoilage (Pitt & Hocking 2009, Samson et al. 2010)
or damage to building materials (Flannigan & Miller 2011).
Although indoor environments are not generally recognized
as extreme environments, microclimates such as dishwashers
contain relatively high water activity (a,) coupled with high
temperatures (Zalar et al. 2011), and building materials like
plaster, drywall, and cement have very low a, (Flannigan &
Miller 2011), while plastics like polyvinyl chloride (PVC, used
in construction) offer little in the way of available carbon but
still support oligotrophic fungi (Webb et al. 2000). Studying the
indoor mycobiota is therefore important to better understand
these interactions and how they may affect us.

The black yeast Aureobasidium pullulans (Dothideales) is
recordedfromawide variety of sources, includingenvironments

with significant osmotic stress, such as hypersaline waters
in salterns (Gunde-Cimerman et al. 2000), bathrooms, food,
and feeds (Samson et al. 2010), water-damaged wood
(Andersen et al. 2011), and polythermal glaciers (Zalar et
al. 2008). In surveys of the indoor environment, A. pullulans
is one of the most abundant and widespread fungi reported
(Adams et al. 2013, Amend et al. 2010, Nonneman et al.
2012, Van Nieuwenhuijzen et al. 2016). The morphospecies
exhibits a high degree of phenotypic plasticity (Slepecky &
Starmer 2009) and strains can have significantly different
pigmentation (Yurlova et al. 1995, Zalar et al. 2008). While
this high degree of variation may contribute to its unique
adaptability (Gostincar et al. 2014), it also makes definitive
morphological identification challenging, and the many ITS
variants identified as this species in GenBank are unlikely to
represent one species. Reports of A. pullulans being one of
the most abundant members in fungal communities based
on near-neighbour analyses of next-generation sequencing
(NGS) data may be skewed to some extent.

The class Dothideomycetes is the largest in Ascomycota
and was recently examined and re-defined using multigene
phylogenetics (Hyde et al. 2013, Schoch et al. 2009,
Thambugala et al. 2014). These studies showed the order
Dothideales to be a monophyletic sister to Myriangiales.
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Thambugala et al. (2014) reviewed and re-evaluated the
morphologically-based taxonomy of Dothideales known from
culture, informed by a combined phylogeny of 28S rDNA, 18S
rDNA and ITS. They accepted two families, synonymising
the often-accepted Dothioraceae (e.g. Barr 2001) with
Dothideaceae, as first proposed by Von Arx & Muller (1975),
and introducing Aureobasidiaceae for Aureobasidium and
closely related genera. The polythetic morphological definitions
provided by Thambugala et al. (2014) did not identify unique
diagnostic characters among the sexual or asexual morphs in
either family. Both families include a poorly integrated mixture
of genera known from fungarium specimens with others that
are mostly known from culture. For both families, sexually and
asexually typified genera were keyed out separately. Sexually
typified genera were separated by characters of the stromata,
number of ascospores per ascus, and ascospore characters
such as septation and pigmentation. In Dothideales, the
characters normally used to classify asexual morphs were
clearly phylogenetically uninformative, and mixtures of black
yeast, hyphomycetous, coelomycetous, and intermediate
asexual morphs are scattered over the various clades of
Aureobasidiaceae and Dothideaceae. Both families include a
variety of asexual morphs, including sporodochial hyphomycete
forms usually observed in nature (e.g. Kabatiella, Kabatina),
coelomycete (e.g. Endoconidioma, Neocylindroseptoria,
Rhizosphaera), and black yeast-like forms usually observed
in culture.

Black yeasts have a confused taxonomic history that may
eventually be clarified with the single name classification
system, but presently remains difficult to navigate. Black
yeasts are a phylogenetically diverse morphogroup of
asexual morphs, mostly in Dothideales or Chaetothyriales,
which produce dark, slimy colonies and at least some
budding yeast-like cells in culture. Many species have one
or more hyphal asexual morphs in addition to the yeast-like
forms. This pleiomorphy complicates their identification and
taxonomic interpretation (De Hoog & Hermanides-Nijhof
1977). Two of the most frequently reported black yeast genera
are Aureobasidium (Aureobasidiaceae) and Hormonema
(Dothideaceae). Aureobasidium was associated with several
sexually typified genera in Dothideales, and although no sexual
morph is definitively known for the most frequently reported
species A. pullulans, an ascospore-derived strain identified
as Columnosphaeria fagi (CBS 171.93), has identical ITS and
RPB2 sequences to the clade including the ex-type culture of
A. pullulans. The similar asexually typified genus Hormonema,
(H. dematioides type), generally considered the asexual morph
of Sydowia polyspora, is also frequently reported. A single
name solution for this clade is not yet proposed and we use the
name Hormonema for comparisons of asexual morphotypes.
Despite the differences in associated sexual morphs,
Aureobasidium and Hormonema are difficult to distinguish
morphologically when grown in culture. For example, neither
Hermanides-Nijhof (1977) nor De Hoog & Yurlova (1994)
could find morphological differences among asexual morphs
in cultures of the sexually typified genera Pringsheimia,
Dothidea, Dothiora or Sydowia, all of which they attributed
to Hormonema. Aureobasidium and Hormonema were
considered distinct in the dual nomenclature era, because of
the different sexual morphs. Hermanides-Nijhof (1977) defined

Aureobasidium by the production of synchronous blastoconidia
from undifferentiated, hyaline cells, whereas Hormonema was
said to produce conidia in basipetal succession from hyaline
or dark hyphae. Wang & Zabel (1990) suggested that at least
some conidiogenous cells of H. dematioides were phialidic or
percurrent. In a later review, Aureobasidium was distinguished
based on its conidiogenous cells having multiple loci
(synchronous conidiogenesis), in contrast to one or two loci
in Hormonema (De Hoog & Yurlova 1994). These characters
are difficult to detect, and are best observed along hyphae at
the growing margin of the colony. Colonies of both morphs
often begin as palely pigmented growths, which become
slimy and almost black as the colonies mature. The different
patterns and apparent plasticity of conidiogenesis, including
yeast-like cells, young blastospores, swollen blastospores,
chlamydospores, and septation and constrictions of hyphae
confound interpretations of homologous characters (Guterman
& Shabtai 1996, Zalar et al. 2008).

During our survey of fungi isolated from house dust
using a dilution-to-extinction approach, many isolates
morphologically resembled Aureobasidium and Hormonema,
but six were phylogenetically distinct. Here we introduce these
as two new species, in a new genus and family in Dothideales.
We present a 28S rDNA (nuclear large ribosomal subunit)
phylogeny of Dothidiomycetes to determine the strains’
phylogenetic position and subsequently present phylogenies
of Dothideales based on BenA (B-tubulin), ITS rDNA, 28S
rDNA, 18S rDNA (nuclear small ribosomal subunit), and RPB2
(RNA polymerase Il second largest subunit), to determine the
relationships within the order. Strains were characterized
morphologically and compared to morphologically similar
species and genera. This work follows previous reports of
new taxa of indoor fungi discovered by dilution-to-extinction,
including species of Rasamsonia (Tanney & Seifert 2013),
Aspergillus, Penicilium and Talaromyces (Visagie et al.
2014, 2017, Sklenar et al. 2017), Wallemia (Jancic et al.
2015, Nguyen et al. 2015), Spiromastix, Pseudospiromastix,
Sigleria (Hirooka et al. 2016), and Myrmecridium (Crous et
al. 2016).

MATERIALS AND METHODS

Isolations

Settled house dust was collected from twelve countries
(Australia, Canada, Federated States of Micronesia,
Indonesia, Mexico, The Netherlands, New Zealand,
South Africa, Thailand, the United Kingdom, Uruguay,
and USA) using sterilized Duststream® collectors (Indoor
Biotechnologies, Charlottesville, VA) attached to vacuum
cleaners. Isolations were made from malt extract agar (MEA)
and MEA with 20 % sucrose using a dilution-to-extinction
method modified from Collado et al. (2007) as described
in Visagie et al. (2014). More recent isolations targeting
xerophilic fungi from Canadian and Hawaiian house dust
were made as described in Visagie et al. (2017).

Living strains of new species are deposited in the Canadian
Collection of Fungal Cultures (DAOMC, Ottawa, Canada), the
Westerdijk Fungal Biodiversity Institute (CBS, Utrecht, The
Netherlands) and dried specimens are accessioned in the
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Table 1. (Continued).

Species

Isolator®

Date collected
21 Aug. 2007

Collector?

Isolation medium  Origin

MEA

Strain number

E. Whitfield & K. Mwange

Health Canada

Canada, Saskatchewan, Regina

SLOAN 352 =

DAOMC 250848
7330009.33-5

Zalaria alba

E. Whitfield & K. Mwange

A. Amend 31 Mar. 2005

USA, California, Berkeley

20%S-MEA

DAOMC 250851 = SLOAN 7266

AA02US-340

Zalaria obscurum

E. Whitfield & K. Mwange

31 Mar. 2005

USA, California, Berkeley A. Amend

SLOAN 7674 = 20%S-MEA

DAOMC 250852
AA02US-351

Zalaria obscurum

E. Whitfield & K. Mwange

21 Aug. 2007

Health Canada

Canada, Saskatchewan, Regina

n.a.

= SLOAN 7244 =

DAOMC 250849
7330009.34-884

Zalaria obscurum

E. Whitfield & K. Mwange

21 Aug. 2007

Health Canada

Canada, Saskatchewan, Regina

n.a.

= SLOAN 7246 =

DAOMC 250850

7330009.34-921
2 Collector of house dust sample; ® isolator of strain using the modified dilution to exctinction method.

Zalaria obscurum

Canadian National Mycological Herbarium (DAOM, Ottawa, Canada). Strains
used in this study are summarized in Table 1.

Morphology

The strains considered here were suspected to be xerophilic and were thus
characterized from colonies grown on a wide range of media, including
MEA, potato-dextrose agar (PDA; Oxoid CM139), oatmeal agar (OA),
dichloran 18 % glycerol agar (DG18; Hocking & Pitt 1980), starch-nitrate
agar (SNA; Dodman & Reinke 1982), malt extract yeast extract with 50
% glucose agar (MY50G), malt extract yeast extract 10 % glucose 12 %
NaCl agar (MY10-12; Pitt & Hocking 2009), and MEA with the addition of
5-24 % NaCl (MEA5NaCl, MEA1ONaCl, MEA15NaCIl, MEA24NacCl). The
malt extract used for media was always BD Bacto™ (Mississauga, ON).
Plates were incubated for 7 and 14 d in the dark at 25 °C. Additional MEA
plates were incubated at 10 and 30 °C. Colour names and codes used in
descriptions refer to Kornerup & Wanscher (1967). Microscope preparations
were made from colonies grown on MEA and DG18, using lactic acid as
mounting fluid. An Olympus BX50 compound microscope attached with an
InfinityX camera powered by Infinity Analyze v. 6.5.1 software (Lumenera,
Ottawa, ON) was used for microscopic observations, capturing images and
making measurements. Photographic plates were prepared in Affinity Photo
v. 1.5.2 (https://affinity.serif.com).

DNA extraction, sequencing, and analysis

DNA was extracted from 7-10-day-old cultures grown on Blakeslee’s malt
extract agar (MEA; (Blakeslee 1915)) using the UltraClean™ Microbial DNA
isolation Kit (MoBio Laboratories, Solano Beach, CA) with extracts stored at
-20 °C. Loci were amplified using the following primer pairs: 28S rDNA with
LROR & LR5 (Vilgalys & Hester 1990); ITS with VO9G/LS266 (Gerrits van den
Ende & De Hoog 1999, Masclaux et al. 1995); RPB2 with fRPB2-5F/ fRPB2-
7cR (Liu et al. 1999); 18S rDNA with NS1/NS4 (White et al. 1990); and BenA
with T10/Bt2b (Glass & Donaldson 1995, O’Donnell & Cigelnik 1997). An
annealing temperature of 55 °C was used for all reactions. PCR amplification
was performed in 10 pL volume reactions, containing 0.5 pL template DNA, 1
pL Titanium Taq buffer (Takara Bio USA, Mountain View, CA), 0.5 yL (2 mM)
dNTP’s, 0.04 pL (3.2 mM) of each primer, 0.1 pL Titanium Taqg polymerase
(Takara Bio USA), and 7.82 uL MilliQ water.

Sequencing reactions were set up using the BigDye™ Terminator v.
3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA) and the
same primer pairs used for PCR amplification, with additional sequence
reactions set up for 28S rDNA with primers LR3/LR3R (Vilgalys & Hester
1990). Sequence contigs were assembled in Geneious v. 8.1.8 (BioMatters,
Auckland, NZ) and are deposited in GenBank (KX579092-KX579121,
KY654326, KY659498, KY659500-KY659528). Accession humbers are also
displayed on phylogenetic trees. BLAST searches were performed using
NCBI to determine closest sequence matches and whether our species were
detected in previous studies.

Phylogenetic analyses

The phylogenetic position of our strains within Dothideomycetes was
determined using a 28S rDNA phylogeny compared to reference
sequences obtained from Schoch et al. (2009) and Hyde et al. (2013).
Secondly, phylogenies of BenA, ITS, 28S rDNA, RPB2 and 18S rDNA
were used to determine the relationships among our strains within the new
genus, and the relationship of the genus and family with close relatives in
Dothideales and Myriangiales. Newly generated sequences obtained from
dust isolates belonging to Aureobasidium, Hortaea, Rhizosphaera, and
Sydowia are also included in the phylogenies. Reference sequences for
comparisons were obtained from GenBank and accession numbers are
included on trees.
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@ Acrospermales
Botryosphaeriales

98

Capnodiales

Mytilinidiales | Gloniaceae

———————=="] Phaeotrichales

Kirschteiniotheliaceae

_|—<

Venturiales clade 2

—=—"_] Asterinales
- Jahnulales
2] Lichenoconium

Schismatomma decolorans DUKE47570 (AY548815)

0.2

—————— ] Tubeufiales | Venturiales clade 1

Catinella olivacea UAMH10679 (EF622212)

Zalariaceae

Dothideaceae

Aureobasideaceae

insertae sedis

Elsinoaceae

Myriangiales Dothideales

Myriangiaceae

o ———————— ] Pleosporales

Hysteriales | Strigulales
Micropeltis zingiberacicola IFRDCC2264 (JQ036227)
Neomicrothyrium siamense IFRDCC2194 (JQ036228)

————_| Natipusillales
Microthyrium microscopicum CBS115976 (GU301846)

—————"" | Monoblastiales
f———— ] Trypetheliales | Lichenotheliaceae

Fig.1. Phylogenetic tree of Dothideomycetes based on 28S rDNA showing the distinct nature of the new family Zalariaceae within Dothideales.
Schismatomma decolorans was selected as outgroup. Bootstrap support values higher than 80 % are indicated above branches (* indicates

100 % bootstrap support). House dust isolates are shown in bold text.

Antarctica and from habitats including house dust, cork
samples, grapes, a hospital incubator, sediment, soil, wood,
and woodpecker excavations. Our Zalaria isolates were
obtained from house dust collected in the USA (CA) and
Canada (Regina, SK).

Morphology

Strains were characterized morphologically on several
agar media and shared several characters with species of
Aureobasidium and Hormonema. As noted in the Introduction,
the only way to reliably distinguish between these groups
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Fig. 2. Phylogenies based on 28S rDNA and ITS showing the relationship of Zalaria (green text and branches) with other closely related
genera from families Dothideaceae (orange branches), Aureobasidiaceae (blue branches) and order Myriangiales (maroon branches). Bootstrap
support values or Bayesian posterior probabilities higher than 79 % or 0.94 are indicated above thickened branches (* indicates 100 % or 1.00;
— indicates lack of support). House dust isolates from this study are indicated by bold text. GenBank accession numbers are provided between

brackets.
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——— Dothiora agapanthi CPC20600 (KU728617)
Rhizosphaera oudemansii CBS427.82 (EU747279)

%70‘99/90 Rhizosphaera oudemansii CBS226.83 (EU747278)
Rhi

pora CBS467.82 (EU747280)
Rhizosphaera pseudotsugae CBS101222 (EU747281)
Rhizosphaera pini DAOMC251499 (KY659498)
Phaeocryptopus nudus CBS268.37 (EU747283)
Rhizosphaera pini CBS206.79 (EU747282)
*I~ Rhizosphaera kalkhoffii CBS280.38 (EU747273)
Rhizosphaera kalkhoffii CBS114656 (EU747274)
Aureobasidium pullulans CBS584.75 (FJ157869)
Aureobasidium pullulans CBS100280 (FJ157864)
Aureobasidium pullulans CBS701.76 (FJ157865)
Aureobasidium pullulans CBS146.30 (FJ157871)
Al idil i i CBS342.66 (FJ157872)
Aureobasidium lini CBS125.21 (FJ157873)
CBS388.92 (FJ157874)

Aureobasidium melanogenum CBS123.37 (FJ157852)

0.95/-

*/96.

Aureobasidium melanogenum CBS105.22 (FJ157858)
0.99/- Aur idi ibiae CBS147.97 (FJ157863)
P idil iale CBS123387 (FJ157878)
! Aureobasidium subglaciale CBS123388 (FJ157877)
Al idit i 1se NRRL58539 (EU719407)

Zalaria obscura DAOMC250850 (KX579116)
-/94f Zalaria obscura DAOMC250849 (KX579118)
'™ Zalaria obscura DAOMC250851 (KX579119)
Zalaria obscura DAOMC250852 (KX579120)
X Zalaria alba DAOMC250847 (KX579117)
Zalaria alba DAOMC250848 (KX579121)
Phaeocryptopus gaeumannii CBS244.38 (EU747284)

0.08

Fig. 3. Phylogenies based on 18S rDNA, RPB2 and BenA showing the relationship of Zalaria (green text and branches) with other closely
related genera from families Dothideaceae (orange branches), Aureobasidiaceae (blue branches) and order Myriangiales (maroon branches).
Bootstrap support values or Bayesian posterior probabilities higher than 79 % or 0.94 are indicated above thickened branches (* indicates 100
% or 1.00; — indicates lack of support). House dust isolates from this study are indicated by bold text. GenBank accession numbers are provided
between brackets.
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are the 1-2 conidiogenous loci per cell in Hormonema (and
asexual morphs of many other Dothideaceae species), and
up to 14 loci in Aureobasidium (De Hoog & Yurlova 1994,
Yurlova et al. 1999). The new genus is more similar in this
regard to Hormonema, with only 1-2 loci per conidiogenous
cell. In general, growth of Zalaria species is more restricted
than in any of these other genera.

Three types of conidiogenesis were observed in the
Zalaria strains. Their yeast forms are very common, especially
in younger colonies when cells reproduce by budding. After
prolonged incubation, these yeast cells are often covered
by melanized hyphal growth; microscopic observations
suggest that hyphae from germinating yeast cells eventually
give rise to this dark melanized growth (Figs 4C-D, 5C-D).
With age, these hyphae may develop into dark brown, thick-
walled chlamydospores (Figs 4E, |, 5E, 1). Further, intercalary
conidiogenous cells develop mostly at margins of young
colonies.

The strains resolved as distinct clades observed in the
phylogenies were also distinct morphologically, with Z. alba
compared to Z. obscura growing more restrictedly on most
media. Zalaria obscura is also capable of growth at low a
media such as MEA-10%-NaCl, MY-1012 and MY50G,
with Z. alba not growing on these media. Generally, Z. alba
colonies are also more yeast-like and take up to 3 wk to
darken, whereas Z. obscura colonies darken in 7 d and are
often covered by a leathery layer within 14 d. This character
was originally used for distinguishing the two varieties of
A. pullulans var. pullulans and var. melanogenum, later
recognized as two distinct species (Gostin€ar et al 2014).
Based on both phylogenetic and morphological results
we introduce a new family, genus and two new species to
accommodate our unique black yeast-like fungi.

Morphological examinations confirmed sequence-based
identifications of the remaining house dust isolates (Figs
6—7). Aureobasidium strains produced the typical conidiog-
enous cells with multiple loci (Fig. 6A-G), while only 1-2
conidiogenous loci were observed in strains identified as
Sydowia polyspora (Fig. 6H-K). Hortaea werneckii was com-
mon in Hawaiian dust samples and was only isolated from
the halophilic MY10-12 medium. The typical pigmented hy-
phae, yeast-like growth, sympodial and percurrent conidio-
genesis were observed in newly isolated strains (Fig. 7A—E).
The strain identified as Rhizosphaera pini produced colonies
with pycnidium-like structures and a Hormonema-like morph
producing very large conidia, all characteristic of that species
(Fig. 7F-1).

Taxonomy

Zalariaceae Visagie, Z. Humphries & Seifert, fam. nov.
MycoBank MB821627

Type genus: Zalaria Visagie et al. 2017.

Diagnosis: Distinguished from other families classified in
Dothideales and Myriangiales based on a short unique 28S
rDNA sequence flanked by two conserved regions. The
section defining Zalariaceae in our alignment (Treebase 1D
19764) are found between nucleotide positions 39 to 62 and

L

is indicated in bold text (5'-AGCTCAAATTTGAAATCTGGCC-
CTTTC-AGGGTCCGAGTTGTAATTTGTAGAGG-3).

Zalaria Visagie, Z. Humphries & Seifert, gen. nov.
MycoBank MB821628

Etymology: Named in honour of Polona Zalar, mycologist at
the University of Ljubljana, Slovenia, in recognition of her
studies on extremophilic fungi, including her 2008 study that
included strains from Norwegian arctic regions that belong to
this genus.

Diagnosis: Differs from Aureobasidium by blastic conidiogen-
esis occurring from one to two loci per conidiogenous cell.
Morphologically Zalaria is indistinguishable from Hormonema
(often reported as asexual morphs of Sydowia), leaving DNA
sequences the only diagnostic character (see Diagnosis for
family Zalariaceae above).

Type species: Zalaria obscura Visagie et al. 2017

Description: Sexual morph unknown. Colonies often covered
in slimy masses of conidia or yeast-like cells, becoming
dark and often leathery with time, occasionally with sparse
aerial mycelium; cream-colored, red-brown, olive-brown,
dark brown, or black; margins entire or fimbriate. Hyphae
transversely and longitudinally septate, hyaline and thin-
walled when young, frequently becoming melanized and
thick-walled with age, may develop into chlamydospores.
Conidiogenous cells undifferentiated, intercalary, terminal
uncommon, cylindrical, with blastic conidiogenesis occurring
from one to two loci per cell. Chlamydospores dark brown,
smooth to lightly rough-walled, globose to ellipsoidal, septate.
Conidia often yeast-like, hyaline, aseptate, smooth-walled,
ellipsoidal to lemon-shaped, variable in size, indistinct hilum,
budding common, polar, bipolar and multilateral.

Zalaria alba Visagie, Z. Humphries & Seifert, sp. nov.
MycoBank MB821629

(Fig. 4)

Etymology: Latin, alba, meaning white, in reference to colony
appearance after 7 d of growth.

Diagnosis: Differs from Z. obscura in the inability to grow
at lowered a,. Colonies remain yellowish to orange-white
until it darkens after about 3 wk. Conidia appearing more
slender than Z. obscura. ITS barcode: KX579093. Alternative
identification markers: 28S rDNA: KX579099, RPB2:
KX579105, 18S rDNA: KX579111, BenA: KX579117.

Type: Canada: Saskatchewan: Regina, isol. ex house dust,
12 Mar. 2007, E. Whitfield & K. Mwange (DAOM 734001 —
holotype; DAOMC 250847 — ex-type culture).

Description: Colony diameters (mm after 7 d (14 d at 25 °C)):
MEA 5-6 (8-9); MEAS °C microcolonies, 10 °C microcolonies,
30 °C 2-5, 35 °C 1-2, 40 °C microcolonies; MEA-5 %-NaCl
no growth, MEA-10 %-NaCl no growth, MEA-15 %-NaCl no
growth, MEA-24 %-NaCl no growth; OA 6-7 (11-14), PDA
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Fig. 4. Morphological characters of Zalaria alba (DAOMC 250847 in A—C, E, F; DAOMC 250848 in D, G-K). A. Colonies on MEA after 2 wk. B.

Close-up colony on MEA after 4 wk. C. Germinating conidia. D. Germinating conidia with age. E. Melanized hyphae developing into arthrospores
and chlamydospores. F-H. Intercalary conidiogenous cells. I. Chlamydospores. J-K. Conidia with some yeast-like budding occurring. Bars =
10 pm.
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7-8 (10-11), DG18 3—-4 (5-7), MY1012 no growth, MY50G
no growth, SNA 3-5 (7-8).

Cultural characters: Colonies on MEA at 25 °C after 7 d
yeast-like, smooth and slimy, obverse yellowish white to
orange white (4A2-5A2), reverse greenish grey to pale
orange (1B2-5A3), generally becoming dark within 3 wk, with
dark areas sometimes present after 7 d, olive-yellow to dark
brown (3D6-7F5), some aerial mycelium developing after
longer incubation.

Microscopic characters: Young somatic hyphae at colony
periphery mostly hyaline, smooth, thin-walled, branched,
transversely septate, 1.5-5 pm diam; older hyphae
towards colony centre melanized, dark brown, smooth to
lightly roughened, thick-walled, branched, transversely
and longi-septate, 2—-6.5 um diam, often developing into
chlamydospores. Conidiogenous cells undifferentiated,
intercalary, rarely terminal, mostly on hyaline hyphae,
producing conidia percurrently from short lateral denticles
not exceeding 2 pm long. Chlamydospores dark brown,
smooth to lightly rough-walled, globose to ellipsoidal, septate
to aseptate, one-septate spores sometimes constricted at
septum, 5.5-10 x 3-7.5 um (X =8 £ 0.99 ym; 5.5+ 0.71 pm).
Conidia often yeast-like, hyaline, aseptate, smooth walled,
ellipsoidal to lemon-shaped, variable in size, 2.5-10 x 1.5-5
pm (X = 5.5+ 1.53 pm, 3 £ 0.73 pym), with an indistinct hilum,
budding common, polar, bipolar and multilateral.

Notes: Growth on media with lowered a , distinguishes between
the two Zalaria species. Zalaria alba does not grow on MEA-5
%-NaCl, MY10-12 or MY50G after 14 d. In contrast, Z. obscura
produces at least microcolonies on these media. Colony size
varies significantly after 14 d on MEA at 25 °C, with Z. alba
colonies (8-9 mm) more restricted than those of Z. obscura
(12—14 mm). Also, Z. obscura colonies darken much faster than
those of Z. alba. Microscopically these species are very similar.
In general, however, spores of Z. alba seem more slender.

Additional material examined: Canada: Saskatchewan: Regina, isol.
Ex house dust, 21 Aug. 2007, E. Whitfield & K. Mwange (DAOMC
250848 — culture).

Zalaria obscura Visagie, Z. Humphries & Seifert, sp.
nov.
MycoBank MB821630

(Fig. 5)

Etymology: Latin obscura, dark, in reference to colony
appearance after 7 d of growth.

Diagnosis: Differs from Z. alba in the ability to grow at lowered
a,. Colonies dark brown to black after about 7 d. Conidia
appearing less slender than Z. alba. ITS barcode: KX579094.
Alternative identification markers: 28S rDNA: KX579100,
RPB2: KX579106, 18S rDNA: KX579112, BenA: KX579118

Type: Canada: Saskatchewan: Regina, isol. ex house dust,
21 Aug. 2007, E. Whitfield & K. Mwange (DAOM 734002 —
holotype; DAOMC 250849 — ex-type culture).

Description: Colony diameters (mm after 7 d, (14 d) at 25
°C)): MEA 25 °C 7-10 (12-14); MEA 5 °C microcolonies,
10 °C microcolonies, 30 °C 3-9, 35 °C 3-8, 40 °C 1-2 mm;
MEA-5 %-NaCl 2—4 (3-5), MEA-10 %-NaCl microcolonies,
MEA-15 %-NaCl no growth, MEA-24 %-NaCl no growth; OA
7-8 (15-16), PDA 7-9 (10-14), DG18 3-5 (6-8), MY1012 no
growth, sometimes microcolonies after prolonged incubation,
MY50G no growth (microcolonies), SNA 4-5 (8-9).

Cultural characteristics: Colonies on MEA at 25 °C after 7 d
yeast-like, smooth and slimy, obverse dark brown (7F5) to
black with some yellowish white to orange-white (4A2-5A2),
olive-yellow (3D6), and olive (1E5) areas, surface leathery
after 14 d; some aerial mycelium developing after prolonged
incubation.

Microscopic characters: Young somatic hyphae at colony
periphery mostly hyaline, smooth, thin-walled, branched,
transversely septate, 1.5-4.5 pm diam; older hyphae
towards colony centre melanized, dark brown, smooth to
lightly roughened, thick-walled, branched, transversely
and longi-septate, 2-11 pm diam, often developing into
chlamydospores. Conidiogenous cells undifferentiated,
intercalary, rarely terminal, mostly on hyaline hyphae,
producing conidia percurrently from short lateral denticles
not exceeding 2 um long. Chlamydospores dark brown,
smooth to lightly rough walled, globose to ellipsoidal, septate
to aseptate, one-septate spores sometimes constricted at
septum, 5-17 pm x 3.5-8 ym (X =8 £ 2.11 ym; 6 + 0.89 pym).
Conidia often yeast-like, hyaline, aseptate, smooth-walled,
ellipsoidal to lemon-shaped, variable in size, 2.5-10 x 1.5—
55um (x =5+ 1.4 ym; 3.5 £ 0.77 ym), with an indistinct
hilum, budding common, polar, bipolar and multilateral.

Notes: See notes under Z. alba.

Additional material examined: Canada: Saskatchewan: Regina, isol.
exhouse dust, 21 Aug. 2007, E. Whitfield & K. Mwange (DAOMC
250850). — USA: California: Berkeley, isol. ex house dust, 31 Mar.
2005, A. Amend, E. Whitfield & K. Mwange (DAOMC 250851,
250852).

DISCUSSION

In this paper, we describe a novel lineage comprising six
black yeast-like strains isolated from house dust collected
in Canada and the USA as a new genus of Dothideales,
Zalaria. Mature agar colonies become dark and leathery, but
are covered with slimy masses of conidia or yeast-like cells.
The conidiogenous cells are undifferentiated and usually
intercalary, with blastic conidiogenesis occurring on 1-2 loci
per cell, giving rise to aseptate, smooth-walled, ellipsoidal
to lemon-shaped conidia, that commonly bud in a polar,
bipolar or multilateral pattern; dark brown, rough-walled
chlamydospores are often seen. Strains were resolved at
the species level into two clades, described as Z. alba and
Z. obscura, with strains of the latter growing faster and with
colonies darkening within 7 d. No sexual morph is known for
either species.
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Fig. 5. Morphological characters of Zalaria obscura (DAOMC 250849 in A, B, D, F, G, J, K; DAOMC 250852 in C, H, I; DAOMC 250850 in E).
A. Colonies on MEA after 2 wk. B. Close-up colony on MEA after 4 wk. C. Germinating conidia. D. Germinating conidia with age. E. Melanized
hyphae developing into chlamydospores. F-H. Intercalary conidiogenous cells. I. Chlamydospores. J-K. Conidia with some yeast-like budding
occurring. Bars = 10 ym.
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Fig. 6. A—C. Aureobasidium pullulans (KAS 5840). A. Melanized hyphae/chlamydospores. B. Conidiogenous cells with multiple loci. C. Conidia.
D-G. Aureobasidium melanogenum (KAS 1951). D. Dark brown conidia. E-F. Conidiogenous cells with multiple loci. G. Conidia. H-K. Sydowia
polyspora (DAOMC 251471). H. Melanized hyphae/chlamydospores. I1-J. Hormonema-like conidiogenous cells with 1-2 loci. K. Conidia. Bars
=10 ym except Aand H = 50 ym.
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Fig. 7. A-E. Hortaea werneckii (DAOMC 251499). A. Yeast-like cells with sympodial producing daughter cells. B—C. Yeast-like cell with
annellations. D—E. Conidiogenous apparatus. F-I. Rhizosphaera pini (DAOMC 251499). F—H. Hormonema-like conidiogenous cells. I. Conidia.
Bars =10 ym.
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Because of the black yeast asexual morphology, Zalaria is
difficult to distinguish from Aureobasidium and Hormonema.
Conidiogenesis has been used to differentiate the latter
two genera, but does not consistently provide accurate
identification unless combined with growth rates and
physiological characters such as carbohydrate assimilation
(De Hoog & Yurlova 1994, Loncaric et al. 2009, Yurlova et
al. 1996). The most reliable morphological character for
distinguishing these genera is the number of loci present on
conidiogenous cells. Species of Zalaria and Hormonema have
only 1-2 loci per cell, whereas Aureobasidium has up to 14
(De Hoog &Yurlova 1994, Yurlova et al. 1999). Distinguishing
Zalaria and Hormonema based only on conidiogenesis,
however, is nearly impossible. Sexual morph characters are
used to distinguish Dothidea, Pringsheimia and Sydowia
(Thambugala et al. 2014) with similar asexual morphs, but no
sexual morph has been observed in Zalaria.

Although the two species described here can be confidently
interpreted as representing a new genus, our decision to
propose a new family Zalariaceae is less satisfying. Our
phylogenetic analyses (Figs 1-3) consistently resolved Zalaria
strains as distinct from Aureobasidiaceae and Dothideaceae.
Working within the framework and concepts adopted for the
order (Thambugala et al. 2014), we could either synonymise
all current families or introduce a new family; we chose the
latter approach. Our proposal of a new family on primarily
phylogenetic grounds, in the absence of presumably more
informative characters of so-far unknown sexual morphs,
perpetuates but does not add to the vagueness of phenotypic
characters underlying the phylogeny. However, we hope
that increased sampling, especially of sexually reproducing
species across Dothideomycetes, of unsequenced but
known and unknown taxa, will reveal morphological or other
phenotypic characters that are predictive of phylogeny,
resulting in stable family and genus concepts in Dothideales.

BLAST results with Zalaria strains (Table 2) recovered 11
sequences that we consider belong to Zalaria, but that were
originally identified as Aureobasidium sp. or A. pullulans.
These strains or clones originated from the USA, China,
Thailand, Greece, The Netherlands, Portugal, Spain, and
Antarctica. Strains placed by Zalar et al. (2008) in their group
5 are identified here as Z. obscura and originate from the
Norwegian arctic region. Furthermore, a BLAST search of
454 pyrosequencing data generated during our house dust
project (Amend et al. 2010), revealed 21 sequences belonging
to Zalaria in dust collected from Australia, Canada, New
Zealand, South Africa, and the USA. Zalaria seems to have a
truly worldwide distribution, and occurs on many substrates,
from wood, soil, dust, sediments, cork, and subglacial ice.
Understanding its ecology will be very challenging. Zalar et al.
(2008) suggested that, given the highly selective conditions
of the environment, their then new group 5 might be restricted
to areas like Kongsfjorden in Norway. Arctic environments
possess low a, because ice formation removes most of the
available water, while a is lowered further as solute ions are
expelled during the freezing process (Gunde-Cimerman et
al. 2003). This lack of available water is a dominating factor
in microbial life in arctic regions (Gunde-Cimerman et al.
2003) and favours the growth of xerotolerant and xerophilic
fungi. Given the extreme environment of a polythermal

L

glacier, it could be hard to imagine how an organism so
specifically adapted could out-compete other life-forms in
more hospitable climates. However, arctic fungal species
seem to have very effective dispersal strategies over long
distances (Geml 2011). Combined with Zalaria’s phenotypic
plasticity, melanisation and the halotolerance of Z. obscura
(similar to that in Aureobasidium), these species may be
capable of widespread dispersal and also survive in or on
many substrates.

Before our study, the only way to identify and communicate
information on strains, clones or Zalaria OTU’s was by means
of UNITE’s species hypotheses (Kdljalg et al. 2013), i.e.
based on 0 % threshold, SH377734.07FU represents Zalaria
alba and SH377739.07FU represents Z. obscurum. With
formal names now available to these species hypotheses,
communicating information about these fungi and studying
the extent of their distribution, habitats and possible ecological
roles will be much easier.
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