



# Article Isomadecassoside, a New Ursane-Type Triterpene Glycoside from *Centella asiatica* Leaves, Reduces Nitrite Levels in LPS-Stimulated Macrophages

Giuseppina Chianese <sup>1</sup>, Francesca Masi <sup>1</sup>, Donatella Cicia <sup>1</sup>, Daniele Ciceri <sup>2</sup>, Sabrina Arpini <sup>2</sup>, Mario Falzoni <sup>2</sup>, Ester Pagano <sup>1,3</sup> and Orazio Taglialatela-Scafati <sup>1,\*</sup>

- <sup>1</sup> Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 31, I-80131 Naples, Italy; g.chianese@unina.it (G.C.); francesca.masi@unina.it (F.M.); donatella.cicia@unina.it (D.C.); ester.pagano@unina.it (E.P.)
- <sup>2</sup> INDENA SPA, Via Don Minzoni 6, 20090 Settala, Italy; daniele.ciceri@indena.com (D.C.); sabrina.arpini@indena.com (S.A.); mario.falzoni@indena.com (M.F.)
- <sup>3</sup> Department of Pharmacy, University of Chieti G. D'Annunzio, Via dei Vestini, 66100 Chieti, Italy
- \* Correspondence: scatagli@unina.it; Tel.: +39-081678509

**Abstract:** A madecassoside-rich fraction obtained from the industrial purification of *Centella asiatica* leaves afforded a new triterpene glycoside, named isomadecassoside (**4**), characterized by an ursane-type skeleton and migration of the double bond at  $\Delta^{20(21)}$  in ring E. The structure of isomadecassoside was established by means of HR-ESIMS and detailed analysis of 1D and 2D NMR spectra, which allowed a complete NMR assignment. Studies on isolated J774A.1 macrophages stimulated by LPS revealed that isomadecassoside (**4**) inhibited nitrite production at non-cytotoxic concentrations, thus indicating an anti-inflammatory effect similar to that of madecassoside.

Keywords: Centella asiatica; triterpenoid saponins; phytochemicals; anti-inflammatory activity

# 1. Introduction

*Centella asiatica* (L.) Urban, also known as gotu kola or Indian pennyworth, is a perennial herbaceous plant belonging to the family Apiaceae (Umbelliferae). It is native to the moist areas of tropical or subtropical regions of Southeast Asia such as India, Sri Lanka, China, Indonesia and Malaysia, but it is also diffused in South Africa and Madagascar [1]. *C. asiatica* has been employed since prehistoric times, and its leaves continue to be locally used nowadays as an antimicrobial agent, diuretic and as an anti-inflammatory agent, with special indication for gastric ulcers and syphilitic lesions. Topical preparations of *C. asiatica* are typically indicated to accelerate healing of skin ulcers and wounds, being able to promote the synthesis of collagen, normalize the hyperproliferation of keratinocytes and restore the natural homeostasis of the epidermis [1,2]. Phytochemical studies on this important medicinal plant have reported several biomolecules such as triterpenes (in the free and glycosylated forms) [3] and flavonoids [4], in addition to volatile components of the essential oils [5,6].

The most important bioactive constituents of *C. asiatica* are known as centelloids, pentacyclic triterpenoid ( $C_{30}$ ) saponins predominantly present in leaves and, to a lesser extent, in roots [7]. The structure of the sapogenin moiety can be traced back to two pentacyclic triterpenoid subtypes, the ursane and the oleanane series, that differ by the methyl substitution pattern at C-19 and C-20. The structural diversity within these series is given by the number and position of double bonds and the degree of hydroxylation and glycosylation, although the predominant members of the class are characterized by a Glucose (Glu)-Glucose (Glu)-Rhamnose (Rha) triglycoside esterifying the carboxylic group at C-28 [8]. The nomenclature of the several dozens of *Centella* saponins reported in the



Citation: Chianese, G.; Masi, F.; Cicia, D.; Ciceri, D.; Arpini, S.; Falzoni, M.; Pagano, E.; Taglialatela-Scafati, O. Isomadecassoside, a New Ursane-Type Triterpene Glycoside from *Centella asiatica* Leaves, Reduces Nitrite Levels in LPS-Stimulated Macrophages. *Biomolecules* **2021**, *11*, 494. https://doi.org/10.3390/ biom11040494

Academic Editor: Cédric Rébé

Received: 2 March 2021 Accepted: 22 March 2021 Published: 25 March 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). literature is sometimes confusing and lacks general rules. The most representative centelloids are asiaticoside (1) [9] and its C-6 hydroxylated analogue madecassoside (2) [10,11] (Figure 1), along with their corresponding aglycones asiatic acid and madecassic acid [12].



 $\mathsf{R}_1 = \alpha\text{-}\mathsf{L}\text{-}\mathsf{Rha}\text{-}(1\text{-}4)\text{-}O\text{-}\beta\text{-}\mathsf{D}\text{-}\mathsf{Glu}\text{-}(1\text{-}6)\text{-}O\text{-}\beta\text{-}\mathsf{D}\text{-}\mathsf{Glu}\text{-}$ 

| 1 R <sub>2</sub> =CH <sub>3</sub> | R <sub>3</sub> =H | $R_4=H$            | Asiaticoside  |
|-----------------------------------|-------------------|--------------------|---------------|
| 2 R <sub>2</sub> =CH <sub>3</sub> | R <sub>3</sub> =H | R <sub>4</sub> =OH | Madecassoside |
| 3 R <sub>2</sub> =H               | $R_3 = CH_3$      | $R_4 = OH$         | Terminoloside |

Figure 1. The main triterpene saponins isolated from *C. asiatica*.

Due to its medicinal properties, exploited in several phytotherapeutic formulations on the market, interest in *C. asiatica* has increased over the years, and there have been significant results on the identification and chemical characterization of centelloids, as well as the determination of their biological profile in the pure form. In particular, asiaticoside (1) (at 20–80  $\mu$ M) has been studied for its wound healing activity in normal as well as in diabetic rats, unveiling stimulating effects on collagen synthesis and promotion of fibroblast proliferation after a 10-day treatment [13]. The aglycone asiatic acid was found to exert a promising effect on SK-MEL-2 human melanoma cells with IC<sub>50</sub> = 40  $\mu$ M, due to the antiproliferative activity and induction of cell cycle arrest. In addition, asiatic acid has been also correlated to the cardiovascular protective effect of *C. asiatica* [14]. Madecassoside (2) and madecassic acid have shown anti-inflammatory activity since they can inhibit the production of lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) [15].

In the frame of our research project aimed at the detailed phytochemical characterization of medicinal plants used as dietary supplements, herein we describe the results of the analysis of a madecassoside-rich fraction obtained from *C. asiatica* leaves. This analysis led to the isolation of the new triterpenoid glycoside isomadecassoside (4) (Figure 2), along with the known madecassoside (2) [10,11] and terminoloside (also known as asiaticoside B, 3) [11]. The anti-inflammatory activity of the isolated saponins 2–4, measured by suppression of nitrite production in LPS-induced J774A.1 macrophage cells, is also reported.



Figure 2. The chemical structure of the new isomadecassoside (4).

#### 2. Materials and Methods

#### 2.1. General Experimental Procedures

Optical rotations (CH<sub>3</sub>OH) were measured at 589 nm on a P2000 Jasco (Dunmow, UK) polarimeter. Low and HR-ESIMS experiments were performed on a LTQ-Orbitrap mass spectrometer equipped with an ESI interface and Excalibur data system.  $^{1}$ H (700 MHz) and <sup>13</sup>C (175 MHz) NMR spectra were measured on a Bruker Avance 700 spectrometer (Bruker<sup>®</sup>, Billerica, MA, USA). Chemical shifts are referenced to the residual solvent signal (CD<sub>3</sub>OD:  $\delta_{\rm H}$  3.31,  $\delta_{\rm C}$  49.0). Homonuclear <sup>1</sup>H connectivities were determined by COSY (COrrelation SpectroscopY) experiments. Through-space  ${}^{1}H$  connectivities were evidenced using a NOESY (Nuclear Overhauser Enhancement SpectroscopY) experiment with a mixing time of 300 ms. One-bond heteronuclear <sup>1</sup>H-<sup>13</sup>C connectivities was determined by the HSQC (Heteronuclear Single Quantum Correlation) experiment: two- and three-bond  ${}^{1}H{-}^{13}C$ connectivities by gradient-HMBC (Heteronuclear Multiple Bond Correlation) experiments optimized for a <sup>2,3</sup> J of 8 Hz. RP-HPLC-UV-vis separations were performed on a Shimadzu instrument, pump LC-10AD, equipped with an SPD-10A Detector, using Synergi 4u Polar-RP 80A (Phenomenex, Torrance, CA, USA)  $250 \times 4.60$  mm column and a Rheodyne<sup>®</sup> injector. Thin-layer chromatography (TLC) was performed on plates coated with silica gel 60 F254 Merck, 0.25 mm. Chemicals and solvents were from Merck Life Science S.r.l. (Milan, Italy) and were used without any further purification unless stated otherwise.

#### 2.2. Extraction and Isolation

Centella asiatica leaves (300 kg, Madagascar origin, purchased by Indena) were poured in a percolator and extracted with 90% ethanol, at 70 °C, carrying out 5 extractions (about 27 V). The leachates were combined (dry residue about 90 kg), concentrated and adjusted with water and acetone to obtain a 50% dry residue and a 50% acetone solution, which was extracted with hexane (5  $\times$  50 L) to separate the pentacyclic triterpene acids. The hydroacetonic layer, containing mainly the glycosides, was concentrated to obtain a soft mass of about 140 kg (dry residue about 70 kg), which was extracted with butanol (about 260 L). The butanol layers were combined (dry residue about 45 kg), concentrated and adjusted with water and methanol to have a 30% dry residue and a 60% methanolic suspension, which was solubilized by refluxing. The solution was cooled to 25 °C, and asiaticoside was crystallized under stirring for 24 h. The suspension was filtered to separate asiaticoside, and the mother liquors (madecassoside and terminoloside rich fraction, dry residue about 15 kg) were concentrated and adjusted with water and acetone to have a 40% dry residue, 22% acetone solution. This solution was loaded onto a reverse phase C18 Zeoprep column (500 kg). The elution was performed with water/acetone 78:22, collecting fractions of 200 kg each (flow rate 100 kg/h, column head pressure: 2.5–3 bar). The obtained fractions were combined as follows: head fractions up to the appearance of madecassoside, heart fractions (sum of madecassoside and terminoloside) and tails

fraction. The head fractions were combined and concentrated to dryness, yielding 2.5 kg of an intermediate solid product. A part of this product (400 g) was dissolved in methanol at reflux (3200 mL). The solution was cooled to 25 °C and crystallized under stirring for two days. The suspension was filtered, washed with methanol and dried under vacuum for 18 h to yield a white solid product (170 g). A small part of this fraction (50 mg) was subjected to repeated chromatographic purifications by analytical HPLC-UV on a Polar-RP 80A 250 × 4.60 mm column. The mobile phase was a mixture of acetonitrile and water with 50 ppm (v/v) of formic acid added to both solvents with the following elution gradient: 0–5 min = H<sub>2</sub>O:CH<sub>3</sub>CN 85:15 isocratic; 6–22 min = from H<sub>2</sub>O:CH<sub>3</sub>CN 85:15 to H<sub>2</sub>O:CH<sub>3</sub>CN 70:30; 22–27 min = H<sub>2</sub>O:CH<sub>3</sub>CN 70:30 isocratic. Other parameters included injected volume 20 µL; flow rate 1.0 mL/min; UV detection  $\lambda$  200 nm. Isomadecassoside (**4**, RT 24.5 min, 2.1 mg), asiaticoside B/terminoloside (**3**, RT 25.1 min, 3.8 mg) and madecassoside (**2**, RT

## 2.3. Biological Assays

25.5 min, 25.9 mg) were obtained in pure states.

#### 2.3.1. Cell Culture

J774A.1 macrophages (ATCC, from LGC Standards, Milan, Italy) were used for in vitro experiments. Cells were routinely maintained at 37 °C in a humidified incubator with 5%  $CO_2$  and were cultured in Dulbecco's modified Eagle's medium (DMEM, Lonza Group) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin and 100  $\mu$ g/L streptomycin, 2 mM L-glutamine, 20 mM Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid) and 1 mM sodium pyruvate. The medium was changed every 48 h in conformity with the manufacturer's protocols, and cell viability was evaluated by trypan blue exclusion.

#### 2.3.2. Nitrite Measurement and Pharmacological Treatment In Vitro

The anti-inflammatory effect of madecassoside (2), terminoloside (3) or isomadecassoside (4) was evaluated by measuring nitrite, stable metabolites of nitrite oxide (NO), in macrophages medium via a colorimetric assay, as previously described [16]. J774A.1 macrophages were seeded in 24-well plates ( $2.5 \times 10^5$  cells per well) and incubated with the triterpene glycosides (2–50 µM) 30 min before LPS stimulation (1 µg/mL) for 24 h. Then, the cell supernatant was collected and incubated with 100 µL of Griess reagent (0.2% naphthylethylenediamine dihydrochloride and 2% sulphanilamide in 5% phosphoric acid) at room temperature for 10 min to allow the formation of a colored azo dye. The absorbance was read at 550 nm on a Thermo Scientific Multiskan GO instrument. Serial-diluted sodium nitrite (Sigma-Aldrich) was used to generate a standard curve. The data were expressed as µM of nitrite (n = 4 independent experiments including 3 replicates for each treatment).

## 2.3.3. Cell Viability

The effect of madecassoside, terminoloside or isomadecassoside on cell viability was evaluated by measuring the incorporation of neutral red (NR), a weak cationic dye, in lysosomes (NR assay) [17].

# 3. Results and Discussion

#### 3.1. Structural Elucidation of Isomadecassoside

A fraction obtained from *C. asiatica* leaves enriched in triterpenoid glycosides of the madecassoside series was subjected to reverse phase HPLC purification affording the new isomadecassoside (4), together with the known madecassoside (2) and terminoloside (asiaticoside B, 3). The known compounds were readily identified by comparison of their physical and spectral data with those reported in the literature [10,11].

Compound 4 was isolated as a white amorphous solid with  $[\alpha]^{22}D$ —7.05 (*c* 12, CH<sub>3</sub>OH) and molecular formula C<sub>48</sub>H<sub>78</sub>O<sub>20</sub> (HR-ESIMS found *m*/*z* 997.4978 [M + Na]<sup>+</sup>; C<sub>48</sub>H<sub>78</sub>O<sub>20</sub>Na requires 997.4984), the same as madecassoside.

The <sup>1</sup>H NMR spectrum of 4 (Table 1) showed typical resonances of a triterpene glycoside including signals of one methyl doublet ( $\delta_{\rm H}$  1.04) and five methyl singlets, four

\_

of which resonated upfield ( $\delta_{\rm H}$  1.32, 1.29, 1.05, 1.00) and one at relatively low field ( $\delta_{\rm H}$  1.65). An additional methyl doublet at  $\delta_{\rm H}$  1.28 could be likely ascribable to a rhamnose sugar unit. In addition, the <sup>1</sup>H NMR spectrum included a series of multiplets located between  $\delta_{\rm H}$  0.87 and 2.50, all belonging to the aglycone moiety, signals of oxymethines and oxymethylenes located between  $\delta_{\rm H}$  3.20 and 4.86, and two methines resonating as doublets at  $\delta_{\rm H}$  5.26 and 5.39.

Table 1.  $^{1}$ H (700 MHz) and  $^{13}$ C (175 MHz) NMR data of compound 4 in CD<sub>3</sub>OD.

| Pos.                                          | $\delta_{ m H}$ , Mult., J in Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\delta_{\mathrm{C}}$ , Type |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1a                                            | 2.00, dd, 12.5, 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.9, CH <sub>2</sub>        |
| 1b                                            | 0.87, dd, 12.5, 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| 2                                             | 3.76, ddd, 11.5, 8.1, 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.6, CH                     |
| 3                                             | 3.30 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.7, CH                     |
| 4                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.7, C                      |
| 5                                             | 1.23 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.9, CH                     |
| 6                                             | 4.37, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.5, CH                     |
| 7a                                            | 1.65 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.0, CH <sub>2</sub>        |
| 7b                                            | 1.61 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , <u> </u>                   |
| 8                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.0, C                      |
| 9                                             | 1.50 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.0, CH                     |
| 10                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.7. C                      |
| 11a                                           | 1.51 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.7. CH <sub>2</sub>        |
| 11b                                           | 1.47 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                            |
| 12a                                           | 1.80 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.5. CH <sub>2</sub>        |
| 12b                                           | 1.21 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2010) 0112                   |
| 13                                            | 2.50. ddd. 13.3. 12.3. 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.7. CH                     |
| 14                                            | <b>1</b> (0), <b>1</b> (1), <b>1</b> (0), <b>1</b> (0) | 42. C                        |
| 15a                                           | 1 59 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $30.2 \text{ CH}_2$          |
| 15b                                           | 1.15 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| 16a                                           | 2.06 dt 12.6.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 337 CH2                      |
| 16b                                           | 1 45 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| 17                                            | 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.4 C                       |
| 18                                            | 1 28 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.4 CH                      |
| 19                                            | 2 17 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.3 CH                      |
| 20                                            | 2.17,7 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 144 0 C                      |
| 21                                            | 526 d 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1180 CH                      |
| 222                                           | 2.28  dd 15.2 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.3 CH                      |
| 22h                                           | 1 85 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| 23a                                           | 3 58 d 11 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65.5 CH                      |
| 23h                                           | 345 d 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| 200                                           | 1.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 147 CH2                      |
| 25                                            | 1 32 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 197 CH <sub>2</sub>          |
| 26                                            | 1 29 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 2 CH <sub>2</sub>         |
| 27                                            | 1.00 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.2 CH <sub>2</sub>         |
| 28                                            | 1.00/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1764 C                       |
| 29                                            | 104 d 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.6 CH <sub>2</sub>         |
| 30                                            | 1.65 bs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.9 CH <sub>2</sub>         |
| $\Omega$ - $\beta$ - $\Omega$ - $Glc$ (first) | 1.00,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (continued)                  |
| 1'                                            | 539 d 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95.0 CH                      |
| 2'                                            | 3 31 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73.9 CH                      |
| 2'                                            | 3.41 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.9 CH                      |
| <u>4</u> ′                                    | 363 dd 95 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71.8 CH                      |
|                                               | 3 52 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 794 CH                       |
| 63'                                           | 4.09 dd 12.0 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.2 CH                      |
| ua<br>6h <sup>1</sup>                         | 4.07, uu, 12.0, 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0_{2,2}, C1_{1_{2}}$        |
| 00                                            | 3.00, uu, 12.0, 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |

| Pos.                       | $\delta_{ m H}$ , Mult., J in Hz | $\delta_{ m C}$ , Туре |
|----------------------------|----------------------------------|------------------------|
| O- $\beta$ -D-Glc (second) |                                  |                        |
| 1''                        | 4.42, d, 8.0                     | 104.2, CH              |
| 2''                        | 3.24, t, 8.3                     | 75.3, CH               |
| 3''                        | 3.47 <sup>a</sup>                | 76.4, CH               |
| 4''                        | 3.54 <sup>a</sup>                | 79.4, CH               |
| 5''                        | 3.35 <sup>a</sup>                | 76.5, CH               |
| 6a''                       | 3.84 <sup>a</sup>                | 61.8, CH <sub>2</sub>  |
| 6b''                       | 3.67, dd, 12.3, 4.7              |                        |
| O-α-L-Rha                  |                                  |                        |
| 1'''                       | 4.86 <sup>a</sup>                | 102.5, CH              |
| 2'''                       | 3.84 <sup>a</sup>                | 72.1 <i>,</i> CH       |
| 3'''                       | 3.31 <sup>a</sup>                | 73.2, CH               |
| 4'''                       | 3.42 <sup>a</sup>                | 73.4, CH               |
| 5'''                       | 3.96, m                          | 70.4, CH               |
| 6'''                       | 1.28, d, 6.1                     | 17.5, CH <sub>3</sub>  |

Table 1. Cont.

<sup>a</sup> Overlapped with other signals.

All the proton signals were associated to those of the directly linked carbon atoms through the correlations of the 2D NMR HSQC spectrum, which revealed the presence of only one olefinic proton ( $\delta_{\rm H}$  5.26,  $\delta_{\rm C}$  118.0) in the structure of **4**. A careful inspection of 2D NMR COSY, HSQC and HMBC spectra (Figure 3, see Supplementary Materials) allowed the identification of the aglycone moiety of **4** as an ursane-type triterpene including three oxymethine protons ( $\delta_{\rm H}$  4.37, 3.76, 3.30), one isolated oxymethylene ( $\delta_{\rm H}$  3.58, 3.45) and an ester carbonyl at C-28 ( $\delta_{\rm C}$  176.4). In particular, the five spin systems identified from the COSY spectrum, and highlighted in red in Figure **3**, were connected through a network of key HMBC correlations (Figure **3**). In particular, correlations from H<sub>3</sub>-24, H<sub>3</sub>-25, H<sub>3</sub>-26 and H<sub>3</sub>-27 (in black in Figure **3**) were instrumental to build up the architecture of rings A-D, that proved to parallel the structure of madecassoside, with the single exception of a saturated C-12/C-13 bond.



Figure 3. COSY (in red bold) and key  $H \rightarrow C HMBC$  (black/blue arrows) correlations detected for 4.

As for ring E, the HMBC cross-peaks (in blue in Figure 3) of H<sub>3</sub>-30 ( $\delta_{\rm H}$  1.65, s) with C-19 and the *sp*<sup>2</sup> C-20 ( $\delta_{\rm C}$  144) and C-21, and those of H<sub>3</sub>-29 ( $\delta_{\rm H}$  1.04, d, 8.0) with C-18, C-19 and C-20 ( $\delta_{\rm C}$  144), were diagnostic for the presence of a trisubstituted double bond at  $\Delta^{20,21}$ . Moreover, the key HMBC correlations of H<sub>2</sub>-22 with C-18 ( $\delta_{\rm C}$  49.4) and C-28 ( $\delta_{\rm C}$  176.4) placed the ester carbonyl at C-28 and confirmed the planar structure of the aglycone of **4** as an ursene triterpenoid, sharing the same carbon framework of madecassoside but showing a different double bond location.

The almost complete superimposition of  ${}^{1}\text{H}/{}^{13}\text{C}$  NMR signals and  $J_{\text{H-H}}$  coupling constants of **4** with those of madecassoside, supported by analysis of 2D NMR NOESY cross-peaks, strongly indicated that the two compounds shared the relative configuration of the common stereogenic centers, including the three oxymethines at C-2, C-3 and C-6. Moreover, the NOESY cross-peaks of H<sub>3</sub>-29 with H<sub>3</sub>-25 and H<sub>3</sub>-26 were indicative of the

 $\beta$ -orientation of CH<sub>3</sub>-29, while the correlation H-13/H<sub>3</sub>-26 indicated the *trans* junction of C/D rings.

The <sup>1</sup>H and <sup>13</sup>C NMR resonances of three anomeric methines at  $\delta_{\rm H}$  5.35,  $\delta_{\rm C}$  95.0;  $\delta_{\rm H}$  4.42,  $\delta_{\rm C}$  104.2 and  $\delta_{\rm H}$  4.86,  $\delta_{\rm C}$  102.5, coupled through the HSQC spectrum, revealed the presence of three sugar moieties. The comprehensive and comparative analysis of the  $J_{\rm H-H}$  coupling constant values and the detailed <sup>1</sup>H- and <sup>13</sup>C-NMR assignments based on the 2D NMR COSY, HSQC and HMBC spectra indicated that 4 shared with madecassoside the same sugar portion, including two  $\beta$ -glucopyranoses and one  $\alpha$ -rhamnopyranose units linked as  $\alpha$ -L-Rha-(1-4)-O- $\beta$ -D-Glc-(1-6)-O- $\beta$ -D-Glc. The HMBC cross-peak H-1'/C-28 supported the connection of the sugar and aglycone moieties through an ester linkage, thus establishing the structure of the new saponin isomadecassoside (4) as the O- $\alpha$ -L-rhamnopyranosyl-(1-4)-O- $\beta$ -D-glucopyranosyl-(1-6)-O- $\beta$ -D-glucopyranosyl ester of  $2\alpha$ ,3 $\beta$ ,6 $\beta$ ,23-tetrahydroxyurs-20-en-28-oic acid.

The single *C. asiatica* saponin related to isomadecassoside is isoasiaticoside, reported in 2007 by Yu at al. [18] and belonging to the same urs-20-ene subtype, although its structure is dehydroxylated at position C-6. Thus, to the best of our knowledge, compound **4** is a triglycoside of the unprecedented pentacyclic triterpenoid  $2\alpha$ , $3\beta$ , $6\beta$ ,23-tetrahydroxyurs-20-ene-28-oic acid, for which we propose the trivial name isomadecassic acid.

# 3.2. Biological Activity

Won et al. reported an anti-inflammatory effect for madecassoside on LPS-stimulated RAW 264.7 murine macrophage cells with inhibition of NO production [15]. To compare the anti-inflammatory potency of the new saponin isomadecassoside (4) with the known madecassoside (2) and terminoloside (3), these three compounds were tested for their ability to reduce nitrite levels in LPS-stimulated macrophages J774A.1. LPS (1  $\mu$ g/mL) treatment for 24 h caused a significant increase in nitrite levels (Figure 4), while a pre-treatment (30 min before LPS) with madecassoside (Figure 4A), terminoloside (Figure 4B) or isomadecassoside (Figure 4C) reduced LPS-induced nitrite production. At 50  $\mu$ M, isomadecassoside (4) proved to be slightly but significantly more potent than its two analogues (19% reduction for isomadecassoside in place of 11% for madecassoside and terminoloside). At the higher concentration tested (i.e., 50  $\mu$ M), compounds 2–4 did not affect cell vitality after 24 h exposure, thus excluding the possibility that the effect of the three compounds on nitrite production could be due to a non-specific cytotoxic effect in macrophages (data not shown).



Figure 4. Cont.



**Figure 4.** Inhibitory effect of madecassoside (**A**), terminoloside (**B**) and isomadecassoside (**C**) on nitrite levels in the cell medium of J774A.1 macrophages stimulated with lipopolysaccharide (LPS, 1 µg/mL) for 24 h. The compounds were added to the cell media 30 min before LPS stimulus. Results are expressed as mean  $\pm$  SEM of four independent experiments (in quadruplicate). \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001 and \*\*\*\* p < 0.0001.

## 4. Conclusions

In conclusion, our study revealed that, in addition to the oleanane analogue terminoloside, the madecassoside fraction of the *C. asiatica* extract also contains significant amounts of the new saponin isomadecassoside (**4**). This compound is a triglycoside ester of an unprecedented ursane acid, namely  $2\alpha$ , $3\beta$ , $6\beta$ ,23-tetrahydroxyurs-20-en-28-oic acid (isomadecassic acid). Since isomadecassoside (**4**) shares the same molecular formula and a closely similar chromatographic behavior with madecassoside (**2**) and terminoloside (**3**), it had been overlooked in the dozens of phytochemical analyses on *C. asiatica* carried out to date. Thus, our work indicates that the madecassoside chromatographic peak is a trio and not a duet (madecassoside/terminoloside), as believed.

From the pharmacological point of view, the nitrite reduction potential seems almost uniform within this trio of compounds, with isomadecassoside showing a similar (if not better) activity than madecassoside.

**Supplementary Materials:** The following are available online at https://www.mdpi.com/2218-273X/11/4/494/s1, Figure S1: <sup>1</sup>H NMR spectrum of isomadecassoside; Figure S2: 2D NMR HSQC spectrum of isomadecassoside; Figure S3: 2D NMR HMBC spectrum of isomadecassoside; Figure S4: 2D NMR COSY spectrum of isomadecassoside; Figure S5: 2D NMR NOESY spectrum of isomadecassoside.

Author Contributions: Conceptualization, O.T.-S.; methodology, O.T.-S., E.P., D.C. (Daniele Ciceri); investigation, G.C.; F.M., D.C. (Daniele Ciceri). E.P., D.C. (Donatella Cicia), S.A., M.F.; data curation, G.C., E.P.; writing—original draft preparation, G.C.; writing—review and editing, O.T.-S.; project administration, O.T.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: O.T.-S. thanks INDENA SpA for the financial support.

Conflicts of Interest: The authors declare no conflict of interest.

## References

- 1. Chandrika, U.G.; Kumara, P.A.P. Gotu Kola (Centella asiatica). Adv. Food Nutr. Res. 2015, 76, 125–157. [CrossRef]
- 2. Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E. Chemical, pharmacological and clinical profile of the East Asian medical plant *Centella asiatica*. *Phytomedicine* **2000**, *7*, 427–448. [CrossRef]
- 3. James, J.T.; Dubery, I.A. Pentacyclic Triterpenoids from the Medicinal Herb, *Centella asiatica* (L.) Urban. *Molecules* **2009**, *14*, 3922–3941. [CrossRef]
- 4. Satake, T.; Kamiya, K.; An, Y.; Taka, T.O.; Yamamoto, J. The Anti-thrombotic Active Constituents from *Centella asiatica*. *Biol. Pharm. Bull.* **2007**, *30*, 935–940. [CrossRef]
- 5. Siddiqui, B.S.; Aslam, H.; Ali, S.T.; Khan, S.; Begum, S. Chemical constituents of *Centella asiatica*. J. Asian Nat. Prod. Res. 2007, 9, 407–414. [CrossRef]
- Oyedeji, O.A.; Afolayan, A.J. Chemical composition and antibacterial activity of the essential oil of *Centella asiatica* growing in South Africa. *Pharm. Biol.* 2005, 43, 249–252. [CrossRef]
- 7. Das, A.J. Review on Nutritional, Medicinal and Pharmacological Properties of *Centella asiatica* (Indian pennywort). *J. Biol. Act. Prod. Nat.* **2011**, *1*, 216–228. [CrossRef]
- 8. Azerad, R. Chemical structures, production and enzymatic transformations of sapogenins and saponins from *Centella asiatica* (L.) Urban. *Fitoterapia* **2016**, *114*, 168–187. [CrossRef]
- 9. Matsuda, H.; Morikawa, T.; Ueda, H.; Yoshikawa, M. Medicinal Foodstuffs. XXVII. Saponin Constituents of Gotu Kola (2): Structures of New Ursane- and Oleanane-Type Triterpene Oligoglycosides, Centellasaponins B, C, and D, from *Centella asiatica* Cultivated in Sri Lanka. *Chem. Pharm. Bull.* **2001**, *49*, 1368–1371. [CrossRef]
- 10. Luo, S.; Jin, H. Isolation and identification of madecassosside in Centella asiatica. Zhongcaoyao 1981, 12, 5-6.
- 11. Sahu, N.P.; Roy, S.K.; Mahato, S.B. Spectroscopic determination of structures of triterpenoid trisaccharides from *Centella asiatica*. *Phytochemistry* **1989**, *28*, 2852–2854. [CrossRef]
- 12. Singh, B.; Rastogi, R. A reinvestigation of the triterpenes of Centella asiatica. Phytochemistry 1969, 8, 917–921. [CrossRef]
- 13. Shukla, A.; Rasik, A.; Jain, G.; Shankar, R.; Kulshrestha, D.; Dhawan, B. In vitro and in vivo wound healing activity of asiaticoside isolated from *Centella asiatica*. *J. Ethnopharmacol.* **1999**, *65*, 1–11. [CrossRef]
- 14. Razali, N.N.M.; Ng, C.T.; Fong, L.Y. Cardiovascular Protective Effects of *Centella asiatica* and Its Triterpenes: A Review. *Planta Med.* **2019**, *85*, 1203–1215. [CrossRef]
- Won, J.-H.; Shin, J.-S.; Park, H.-J.; Jung, H.-J.; Koh, D.-J.; Jo, B.-G.; Lee, J.-Y.; Yun, K.; Lee, K.-T. Anti-inflammatory Effects of Madecassic Acid via the Suppression of NF-κB Pathway in LPS-Induced RAW 264.7 Macrophage Cells. *Planta Med.* 2009, 76, 251–257. [CrossRef]
- Goldansaz, S.M.; Festa, C.; Pagano, E.; De Marino, S.; Finamore, C.; Parisi, O.A.; Borrelli, F.; Sonboli, A.; D'Auria, M.V. Phytochemical and Biological Studies of Nepeta asterotricha Rech. f. (Lamiaceae): Isolation of Nepetamoside. *Molecules* 2019, 24, 1684. [CrossRef]
- 17. Zhang, S.-Z.; Lipsky, M.; Trump, B.; Hsu, I.-C. Neutral red (NR) assay for cell viability and xenobiotic-induced cytotoxicity in primary cultures of human and rat hepatocytes. *Cell Biol. Toxicol.* **1990**, *6*, 219–234. [CrossRef]
- 18. Yu, Q.L.; Duan, H.Q.; Gao, W.Y.; Takaishi, Y. A new triterpene and a saponin from *Centella asiatica*. *Chin. Chem. Lett.* **2007**, *18*, 62–64. [CrossRef]