
Heliyon 10 (2024) e37327

Available online 2 September 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article

Development and validation of a novel immune‒metabolic-Based
classifier for hepatocellular carcinoma

Wenda Zhang a,1, Xinyi Zhou a,1, Lili Lin b,1, Anqi Lin a,1, Quan Cheng c,d,
Zaoqu Liu e,f, Peng Luo a,*, Jian Zhang a,**

a Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial
Hospital of Sun Yat-sen University, Guangzhou, China
c Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
d National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
e State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics,
Beijing, China
f Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

A R T I C L E I N F O

Keywords:
Hepatocellular carcinoma
Tumor heterogeneity
Immune cells
Metabolism
Immunotherapy
Prognosis

A B S T R A C T

The heterogeneity of immune cells and metabolic pathways in hepatocellular carcinoma (HCC)
patients has not been fully elucidated, leading to diverse clinical outcomes. Accurately dis-
tinguishing different HCC subtypes and recommending appropriate treatments is are highly
important. In this study, we conducted a comprehensive analysis of 28 immune cells and 85
metabolic pathways in the TCGA-LIHC and GSE14520 datasets. Metabolism-related first principal
component (MRPC1) and cytotoxic T lymphocyte (CTL) infiltration were used to assess the
metabolic and immune infiltration levels of HCC patients, respectively. These two quantifiable
indicators were then used to construct an immune‒metabolic classifier, which categorized HCC
patients into three distinct groups. The potential biological mechanisms were explored through
multiomics analysis, revealing that group S1 exhibited high metabolic activity and a high level of
immune infiltration, that group S2 presented a low level of immune infiltration, and that group S3
presented low metabolic activity. This new immune‒metabolic classifier was well validated in a
pancancer cohort of 9296 patients. The efficacy of multiple treatment approaches was assessed in
relation to different immune‒metabolic groups, indicating that group S1 patients may benefit
from immunotherapy, that group S2 patients are suitable for transcatheter arterial chemo-
embolization (TACE), and that group S3 patients are appropriate candidates for tyrosine kinase
inhibitors. In conclusion, this immune‒metabolic classifier is anticipated to address the differ-
ences in treatment efficacy among HCC patients due to the heterogeneity of the tumor micro-
environment, and to help refine the individualized treatment choices for clinical patients.
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1. Introduction

Hepatocellular carcinoma (HCC) accounts for approximately 90 % of liver malignancies and ranks fourth among the causes of
cancer-related deaths [1]. Among the main treatments for HCC patients, transcatheter arterial chemoembolization (TACE) plays an
important role, and the development of targeted therapy and immunotherapy has led to promising benefits in the treatment of HCC [2,
3]. However, tumor heterogeneity is a significant characteristic of HCC [4]. Owing to the heterogeneity of immune cells and metabolic
pathways in HCC patients, it is difficult to accurately distinguish patients who respond to targeted therapy or immunotherapy [5,6]. As
of August 2022, the 5-year survival rate for patients with cancer of the liver and intrahepatic bile ducts was only 20.8 % [7].

Determining the appropriate stratification and effective classification of molecular subtypes can help in the development of
individualized treatment strategies and improve the clinical efficacy of treatment for HCC patients [8]. Researchers have used different
molecular features to define different HCC subtypes by means of CpG sites [9], protein expression profiles [10], and multiomics data
[11], among other methods. However, these HCC classification models, which were developed by unsupervised or machine learning,
lack interpretability, which increases the uncertainty of the models in clinical practice. Therefore, it is necessary to find suitable
quantitative indicators, and establish an interpretable classifier for clinical practice.

Immune cells are involved in the immune response, immune escape, cancer infiltration and metastasis [12]. For example, activated
DCs present antigens to activate T cells [13], and Treg cells play a prominent immunosuppressive role in blocking the anticancer
immune response [14]. Cytotoxic T lymphocyte (CTL) are capable of secreting cytokines and killing tumor cells, which is a key role of
defense in antitumor immunity [15]. Moreover, metabolic reprogramming is one of the hallmarks of human cancer [16]. Immune cells
and metabolic pathways play diverse and important roles in the development of HCC. Therefore, researchers are attempting to
establish metabolic or immune types through different metabolic pathways or immune cell compositions in HCC patients [17,18].
However, just as the immune cell-activating energy supply switches from oxidative phosphorylation to aerobic glycolysis, glutamine
deficiency inhibits macrophage and T-cell functions [19,20], immune cells and metabolic pathways do not exist independently of each
other. The degree of immune cell infiltration and activation of metabolic pathways are important components of heterogeneity in the
tumor microenvironment (TME) of HCC patients [21,22]. Therefore, combining immune cell infiltration and metabolic pathway
activity to develop an “immune‒metabolic classifier”will be an important direction for establishing novel molecular subtypes of HCC.
However, how to accurately quantifying and combining immune cells and metabolic pathways is one of the current difficulties.

In this study, we aimed to identify quantifiable indicators of immune cells and metabolic pathways, with the goal of establishing a
novel immune‒metabolic classifier for predicting molecular subtypes in HCC patients. This classifier was developed through a sys-
tematic analysis of 85 metabolic pathways and 28 immune cell types [23,24]. The validity of the classifier will be assessed via
multiomics analysis to explore the underlying biological mechanisms. Furthermore, we investigated the potential beneficial treatment
options for HCC patients across different immune‒metabolic subtypes, aiming to provide guidance for personalized treatment stra-
tegies. In summary, this immune‒metabolic classifier is anticipated to address the differences in treatment efficacy among HCC pa-
tients due to the heterogeneity of the TME and to help refine the individualized treatment choices for clinical patients.

2. Materials and methods

This study adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) guidelines. The primary endpoint was overall survival (OS). The study protocol was approved by the ethics committee of
Zhujiang Hospital. The data used in this study were obtained from publicly available datasets, and the requirement for informed
consent was waived.

2.1. Patients and datasets

Bulk RNA-sequencing (RNA-seq) data from 10,779 patients including 834 HCC patients, 9296 pancancer patients and 649 patients
with a history of immunotherapy, were included in this study. The patients included in the study had detailed survival information or
treatment information. In addition, single-cell RNA sequencing (scRNA-seq) data from ten HCC tissues were extracted from the
GSE149614 dataset. The detail HCC patient information is provided in Appendix Table S1. GEO datasets were obtained from GEO
(http://www.ncbi.nlm.nih.gov/geo/). TCGA datasets were obtained from the UCSC Xena browser (GDC hub: https://gdc.xenahubs.
net). IMvigor210 and PRJEB23709 were obtained from published literature [25,26]. All the data were collected from March 25 to
May 27, 2022. Basic patient information is provided in Appendix Table S2.

2.2. Data preprocessing

For the bulk RNA-seq data, the FPKM values were transformed into TPM values. For the microarray data, the normal-
izeBetweenArrays function in the limma R package was used to normalize the data.

For the scRNA-seq data, the Seurat R package (v 4.0.0) [27] was used for quality control of individual cells, data normalization,
unsupervised clustering, and visualization. The selection criteria were described in previous studies [28] and low-quality cells (<200
genes/cell or >8000 genes/cell and >20 % of mitochondrial genes) were removed. The top 2000 variable features were identified for
each sample, and integration was achieved via canonical correlation analysis (CCA) algorithms. Principal component analysis (PCA)
was used to reduce the dimensionality, and the top 50 principal components were selected for UMAP.

For the methylation data, the ChAMP R package (v2.24.0) [29] was used for quality control and analysis. The champ.filter function
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was used to filter out low-quality probes and to remove samples with NA values. The function of CHAM.DMP was used to detect
differentially methylated genes with the criteria of |log2FC|>0.4 and adjusted P < 0.05 [30].

For the somatic mutation data, the oncoplot function in the maftools R package (v2.20.0) [31] was used to identify and visualize the
frequently mutated genes.

2.3. Clustering for immune cells and metabolic pathways

The GSVA R package (v1.42.0) [32] was utilized for the quantification of immune cells and metabolic pathways in the TCGA-LIHC
and GSE14520 datasets. The ConsensusClusterPlus R package (v1.58.0) [33] was used to identify molecular subtypes of HCC on the
basis of the activity of immune cells and metabolic pathways. At each iteration 80 % of the samples were divided into subsamples and
each subsample was divided into up to k (maximum K = 6) groups basis of the on the Euclidean distance via the k-means algorithm.
This process was repeated 1000 times. The optimal number of clusters was determined by cumulative distribution function (CDF)
curves, proportion of ambiguous clustering (PAC) scores and Nbclust testing, which should have the lowest PAC score and be sup-
ported by the highest number of criteria. The same clustering analysis was performed on the TCGA-LIHC and GSE14520 datasets to
ensure the stability of the clustering results.

2.4. scRNA-seq data analysis

The FindCluster function (resolution = 0.5) was employed to identify cell clusters. Cell-specific markers were used to identify cell
types, and these markers were obtained from a previous study [21] and the CellMarker database [34]. The AUCell package (v1.16.0)
[35] in R was used to estimate the gene set activity of each cell, and these gene sets were generated with the Molecular Signatures
Database (MSigDB) of the Broad Institute [36]. The CellChat R package (v1.6.1) [37] was used to identify the patterns of cell‒cell
communication.

2.5. Identifying the quantifiable indicators of metabolic pathways

The DESeq2 R package [38] was used to identify (DEGs) with the criteria of |log2foldchange|> 2 and P< 0.05. Metabolism-related
differential genes (MRDEGs) were defined as the intersection of DEGs and metabolic genes. metabolism-related first principal
component (MRPC1) was defined as the first principal component of the MRDEGs, and was used to assess the activity of metabolic
pathways.

2.6. Internal mechanism exploration

The metabolic pathways and immune-related signatures were used to assess the immune‒metabolic landscape in the different
groups; the related signatures are shown in Appendix Table S3. The clusterProfiler R package (v4.0.5) [39] was utilized for enrichment
analysis and visualization, including Kyoto Encyclopedia of Genes Genomes (KEGG), Gene Ontology (GO) and and gene set enrichment
analysis (GSEA). Pathways were considered significantly different when the P value and false discovery rate were less than 0.05.
Coexpressed module eigengenes were identified via the WGCNA R package [40]. The random forest algorithm was used to rank the
importance of signatures and was implemented through the randomForest R package (v4.7-1.1). The level of CTL infiltration was
calculated on the basis of the average expression of PRF1 and GZMA.

2.7. Construction of a novel immune‒metabolic classifier

A novel immune‒metabolic classifier was constructed with the optimal cutoff values for MRPC1 and CTL infiltration in the TCGA-
LIHC cohort, which were used to predict the three immune‒metabolic groups, designated as S1, S2 and S3. The immune‒metabolic
classifier first distinguished patients into the S3 group and the combined S1/S2 groups on the basis of the optimal cutoff value of
MRPC1, and then the S1/S2 group was distinguished into the independent S1 and S2 groups on the basis of the optimal cutoff value of
CTL infiltration. The GSE14520 dataset was used as a parallel verification cohort to ensure the stability of the analysis. Three other
HCC datasets, IMvigor210 and a pancancer cohort containing 32 tumor types were also used to test the stability of the classifier. To
avoid the potential batch effects, the immune‒metabolic classifiers was used individually for each tumor type in the pancancer cohort,
and their prediction results were then combined. The surv_cutpoint function of the survminer R package (v0.4.9) was used to establish
the optimal cutoff value for continuous variables (if survival data were missing from the dataset, the median value was taken as the
cutoff value). To assess the classifier prediction performance, the confusionMatrix function of the caret R package (v6.0-94) was
applied to evaluate its accuracy, sensitivity, recall, and F1 score for each group, which was subsequently weighted with the percentage
of patients in each group to calculate the weighted sensitivity, weighted recall, and weighted F1 score.

2.8. Clinical treatment evaluation

The pRRophetic R package (v0.5) [41] is based on the Genomics of Drug Sensitivity in Cancer (GDSC) database [42] and was used
to evaluate the half-maximal inhibitory concentration (IC50) of each group of therapeutic agents to screen for potential therapeutic
agents.
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2.9. Constructing a novel immunotherapy predictor

Weighted gene coexpression network analysis (WGCNA) and gene enrichment analysis were employed to identify of immune-
related module eigengenes in the TCGA-LIHC cohort. The S1 signature represents the intersection of DEGs with immune-related
module eigengenes and was further applied to construct the S1 score via the single sample gene set enrichment analysis (ssGSEA)
algorithm. TCGA-LIHC, GSE14520, and a pancancer cohort containing 32 tumor types were used to assess the prognostic performance
of the S1 score. Seven immunotherapy cohorts were used to assess the benefit of immunotherapy in different S1 score groups.

2.10. Statistical analysis

All the statistical analyses and visualizations were performed via R (version 4.1.2). Differences in OS and progression-free survival
(PFS) between different subgroups were evaluated via survival curves. Hazard ratios (HRs) and 95 % confidence intervals (CIs) were
assessed via univariate Cox proportional hazards regression models. The Pearson coefficient was used to measure the correlation

Fig. 1. Identification of two immune‒metabolic clusters of HCC with different clinical outcomes. (A) The proportion of ambiguous clustering (PAC)
score, a low PAC value indicates a flat middle segment, allowing conjecture of the optimal k (k = 2) by the lowest PAC value. Number of the criteria
for the recommended number of clusters were identified via the NbClust package. (B, C) Kaplan‒Meier curves of overall survival and progression-
free survival based on the C1 and C2 clusters in the TCGA-LIHC and GSE14520 cohorts, respectively. (D) The immune and metabolic patterns of the
two clusters. (E) The random forest method was used to rank the importance of 16 hallmark pathways. The more important the hallmark pathway is,
the greater the mean decrease in the Gini coefficient is. (F) Overlap of DEGs and metabolic genes. (G) ROC curves showing the ability of MRPC1 to
predict two clusters of HCC. DEGs, differentially expressed genes; MRPC1, metabolism-related first principal component; ROC, receiver operating
characteristic.
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between two continuous variables, the chi-square test was used to compare two categorical variables, and the Shapiro‒Wilk normality
test was used to check the normality of the distribution of variables. For normally distributed variables, unpaired Student’s t tests were
used to compare two groups; one-way analysis of variance (ANOVA) was used for more than two groups. For nonnormally distributed
variables, the Wilcoxon rank-sum test was used to compare two groups; the Kruskal‒Wallis test was used for more than two groups.
Differential expression analysis was performed via the DESeq2 package in R to identify DEGs. A multivariate Cox regression model was
applied to identify independent prognostic factors. Finally, receiver operating characteristic (ROC) curves were constructed to eval-
uate the sensitivity and specificity of the selected features.

3. Results

3.1. Identification of two immune‒metabolic clusters with different clinical outcomes

To explore the differences in the prognosis of HCC patients due to the immune cell and metabolic pathway heterogeneity, 28
infiltrating immune cells and 85 metabolic pathway activities were assessed in the TCGA-LIHC cohort. The HCC patients were divided
into two clusters (C1 and C2) via consensus clustering (Fig. 1A). Compared with cluster C2, cluster C1 had a significantly greater
survival benefit than cluster C2 (OS: HR = 1.70; 95 % CI, 1.17–2.47; P = 0.0057; PFS: HR = 1.73; 95 % CI, 1.18–2.52; P = 0.0046)
(Fig. 1B). These findings were verified in HCC patients from the GSE14520 cohort (OS: HR = 2.28; 95 % CI, 1.49–3.49; P = 0.0001;
PFS: HR = 1.62; 95 % CI, 1.13–2.33; P = 0.0084) (Fig. 1C).

The differences between the two clusters were related mainly to metabolic pathway activities (Fig. 1D– Appendix Fig. S2A). GSEA
revealed 16 significant pathways, the bile acid pathway being the most important metabolic pathway that with the highest Mean-
DecreaseGini value (Fig. 2H; Appendix Fig. S2B, C). High bile acid pathway activity was associated with improved OS
(Appendix Fig. S2D), and cluster C2 expressed a low level of SIRT5, which degrades primary bile acids (Appendix Fig. S2E). These
findings support the classification of HCC patients into C1 and C2.

To investigate the effects of different metabolic patterns on the interactions of various cell types in the TME, differential expression
analysis was performed for the two clusters in the TCGA-LIHC and GSE14520 cohorts. A total of 134 MRDEGs were obtained and
enriched in nine metabolic pathways. Among these pathways, eight of which were highly activated in cluster C1
(Fig. 1F–Appendix Fig. S3A, B). These MRDEGs were subsequently used for principal component analysis and the first principal
component was taken as MRPC1. MRPC1 was subsequently used as a quantifiable index to distinguish the C1 and C2 clusters from the
TCGA-LIHC and GSE14520 cohort, with ROC values of 0.93 and 0.82, respectively (Fig. 1G).

Furthermore, the changes in the TME of HCC patients at different metabolic levels were investigated by using the scRNA-seq data of
HCC patients. Nine major cell types were defined by cell-specific marker expression (Fig. 2A, B, D; Appendix Fig. S3C), and 10 HCC
single-cell samples were categorized into high- and low-MRPC1 groups according to the median value of MRPC1 (Fig. 2C). The high-
MRPC1 group was considered the C1 cluster, whereas the low-MRPC1 group was considered the C2 cluster. The communication in-
tensity and number of ligand‒receptor pairs between various cell types were greater in the C1 clusters than in the C2 clusters (Fig. 2E).
Pathways, including TNF, MHC-I, and MHC-II, exhibited a prominent changes in information flow in the C1 cluster, whereas the
NOTCH, EPHA, and EPHB pathways exhibited prominent changes in information flow in the C2 cluster (Fig. 2H). Metabolic pathways
play important roles in dendritic cell (DC) differentiation, function, and proliferation, and the communication mode between DCs and
other cell types differed between the C1 and C2 clusters (Fig. 2I). The pathway related to antigen presentation was more highly
activated in the C1 cluster (Fig. 2F and G).

3.2. Identification of three immune‒metabolic groups with different molecular characteristics

Moreover, there were significant differences in immune cell infiltration between the two clusters. Notably, a large fluctuation in
immune cell infiltration was observed in cluster C1 (Fig. 3A), and CTL infiltration was used as a quantifiable index to represent 28
immune cells because a significant positive correlation between CTL infiltration and infiltration of 28 immune cell types was observed
(Fig. 3B). Cluster C1 was further divided into two subgroups according to CTL infiltration levels. The high-CTL infiltration subgroup
had significantly better survival benefits than the low-CTL infiltration subgroup did (TCGA-LIHC: HR = 2.07, 95 % CI: 1.23–3.38, P =

0.0036; GSE14520: HR = 1.93, 95 % CI: 1.04–3.56, P = 0.0368) (Fig. 3C). The high-CTL infiltration subgroup was subsequently
referred to as group S1 and the low-CTL infiltration subgroup was group S2; C2 was considered group S3. Among the three groups,
group S1 had the longest OS (Fig. 3D).

To further explore the underlying molecular mechanisms involved, differences in the TME among the three groups were evaluated.
Different immune‒metabolic patterns among the three groups was depicted, which revealed that group S1 exhibited high metabolic
activity and a high level of immune infiltration, that group S2 presented a low level of immune infiltration, and that group S3 presented
low metabolic activity (Fig. 4A and B). We further observed that tumor tissues were less methylated than normal tissues were. Among
three groups, group S3 was the most highly methylated and had the highest percentage of hypermethylated genes (Fig. 4C–E). The
hypermethylated genes in group S3 were highly enriched in multiple metabolism-related pathways (Fig. 4D). Somatic mutation
analysis revealed that group S3 had the highest percentage of TP53mutations and that group S2 had the highest percentage of CTNNB1
mutations (Fig. 4F). In addition, different module eigengenes were found in the three immune‒metabolic groups and presented
different functions. WGCNA analysis revealed that the yellow module, which correlates positively with groups S1 and S2, primarily
enriches immune-related pathways; the blue module, correlating with groups S1 and S3, is mainly enriched in metabolism-related
pathways; while the brown and turquoise modules, both correlated with group S3, are primarily enriched in proliferation- and
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oncogene-related pathways, respectively (Fig. 5A and B, Appendix Fig. S4 A). Moreover, Group S1 had greater interferon pathway
activity and higher chemokine and chemokine receptor expression than did group S2 (Fig. 5B–D, Appendix Fig. S4B-D). Taken
together, these three immune‒metabolic groups have different survival benefits and molecular characteristics.

3.3. An immune‒metabolic-based classifier was established and validated in multiple cancer patients

Metabolic pathways are closely related to immune cells in the TME (Fig. 6A). A classifier was generated on the basis of the cutoff
values for MRPC1 and CTL infiltration, and the classification efficacy of the classifier was evaluated (TCGA-LIHC: accuracy: 0.90,
weighted F1: 0.90, weighted sensitivity: 0.93, weighted recall: 0.90; GSE14520: accuracy: 0.75, weighted F1: 0.75, weighted sensi-
tivity: 0.83, weighted recall: 0.75) (Fig. 6B–E). The patients in group S1 had significantly longer OS than those in the other two groups
did (Fig. 6C). Moreover, HCC patients were divided into different clinical subgroups according to age, sex, AFP, and stage. Survival
analysis revealed that patients in group S1 tended to have the best survival prognosis among the different clinical subgroups, sug-
gesting that the classifier is partially independent of existing clinical characteristics (Fig. 6F). The classifier was applied to the pan-
cancer cohort. Among the tumor types, group S1 patients had the highest OS, and the proportions of patients in the three immune‒
metabolic groups were highly consistent (Fig. 6D–G; Appendix Fig. S5).

3.4. HCC patients in the three immune‒metabolic groups are suitable for different therapeutic interventions

To determine the appropriate treatment strategy for the three immune‒metabolic groups, we evaluated the survival benefit and
response rate across treatments. compared with the other two groups, group S1 patients had the best survival benefits and highest
response rates to immunotherapy(Fig. 7A). These findings were validated in patients treated with the PD-1 inhibitor from IMvigor210
(Fig. 7B). Submap analysis also revealed that group S1 patients benefitted more from immunotherapy (Fig. 7C). Patients in groups S1
and S2 benefitted from TACE, but patients in group S3 were more likely to benefit from sorafenib (Fig. 7D). Patients in group S3 were
more sensitive to sorafenib, nilotinib, and bosutinib according to the assessment of drug sensitivity by the IC50 (Fig. 7E).

3.5. The S1 score can serve as a prognostic biomarker and predict immunotherapy efficacy

To further accurately distinguish which patients are suitable for immunotherapy, a prognostic model, named the S1 score, based on
thirty S1 signature genes was established (Fig. 8A), and patients with HCC were divided into high-S1 score and low-S1 score groups.
The high-S1 score group had longer OS than the low-S1 score group did (TCGA-LIHC: HR = 2.00, 95 % CI: 1.40–2.85, P = 0.0001;
GSE14520: HR= 1.97, 95 % CI: 1.27–3.05, P= 0.0025) (Fig. 8B and C). In addition, multivariate Cox regression analysis revealed that
the S1 score was an independent prognostic factor (Fig. 8D), and the predictive efficacy of the S1 score was well validated across
multiple tumors in the pancancer cohort (Fig. 8E).

Furthermore, the S1 score performed well in predicting the efficacy of immunotherapy. The high-S1 score group had significantly
longer OS than the low-S1 score group did (PRJEB23709: HR= 3.82, 95% CI: 1.96–7.46, P= 0.0001; IMvigor210: HR= 1.43, 95% CI:
1.09–1.88, P= 0.0102; GSE91061-Pre: HR= 3.03, 95 % CI: 1.23–7.43, P= 0.0153; GSE91061-On: HR= 2.42, 95 % CI: 1.15–5.10, P=
0.0206; GSE140901: HR= 1.66, 95 % CI: 0.65–4.21, P= 0.2910; GSE106128: HR= 5.02, 95 % CI: 1.20–21.02, P= 0.0273) (Fig. 8F–I;
Appendix Fig. S6A, B). The prediction efficiency of the S1 score for immunotherapy was also assessed (area under the curve (AUC):
IMVigor210, 0.54; GSE35640, 0.72; GSE140901, 0.58; GSE91061-Pre, 0.65; GSE91061-On, 0.76; PRJEB23709, 0.81; GSE106128,
0.63) (Appendix Fig. S7C). Taken together, the results emphasize that patients in the high-S1 score group had better clinical outcomes
and higher immunotherapy response rates for multiple types of tumors.

4. Discussion

Despite the excellent performance of targeted therapy [43,44] and immunotherapy in HCC [45], the heterogeneity of immune cells
and metabolic pathways in HCC has largely been unexplored and has led to different clinical outcomes. In this study, the quantifiable
indicators MRPC1 and CTL were identified, which used to develop a new immune‒metabolic classifier. This new immune‒metabolic
classifier divides HCC patients into three groups and was well validated in the pancancer cohort. The associations of different im-
mune‒metabolic groups with the efficacy of multiple treatment approaches were assessed, group S1 patients may benefit from
immunotherapy, group S2 patients are suitable for TACE, and group S3 patients are appropriate candidates for tyrosine kinase in-
hibitors. Furthermore, the S1 score, a prognostic model for predicting immunotherapy efficacy in pancancer patients, was established
on the basis of thirty signature genes of group S1. These results could offer insights into the development of individualized treatment
strategies for HCC patients and provide valuable references for the selection of clinical therapeutic strategies.

Fig. 2. Comparison of cell‒cell communication between the C1 and C2 clusters (A) Nine major cell types in HCC tissues. (B) Proportion of diverse
cell types in the two clusters. (C) Distribution of MRPC1 and eight metabolic pathways (D) Expression of representative markers across diverse cell
types. (E) The number and strength of ligand–receptor pairs between the C1 and C2 clusters. (F) Differential expression analysis at the pathway level
between the C1 and C2 clusters. (G) Activity of 25 antigen presentation-related pathways in the two clusters. (H) All significant signaling pathways
are ranked according to the difference in overall information flow between the C1 and C2 clusters. (I) Communication probability of ligand–receptor
pairs of DCs and other cell types. DC, Dendritic cell; HSC, Hematopoietic stem cell; MRPC1, Metabolism-related first principal component.
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Fig. 3. The C1 cluster was further classified into two groups via CTL infiltration (A) Infiltration of 28 immune cells across two clusters. (B) Cor-
relations between CTL and 28 immune cells. (C) Kaplan‒Meier curves of OS based on the high- and low-CTL infiltration groups in the TCGA-LIHC
and GSE14520 cohorts. (D) Kaplan‒Meier curves of OS based on the three immune‒metabolic groups in the TCGA-LIHC and GSE14520 cohorts.
CTL, cytotoxic T lymphocyte. OS, overall survival; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Fig. 4. Landscape of immune‒metabolic patterns, methylation alterations and somatic mutations (A, B) Immune and metabolic patterns of the three
immune‒metabolic groups. (C) Levels of promoter methylation in the three immune‒metabolic groups and adjacent normal samples in the TCGA-
LIHC cohort. (D) Pathway enrichment analysis of three immune‒metabolic groups of hypermethylated genes. (E) The proportion of differentially
methylated CpG sites was determined using adjacent normal samples as a reference. (F) Mutation frequency of the top 20 FMGs among the three
immune‒metabolic groups. FMGs; FMGs, Frequently mutated genes. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Fig. 5. Identification of three immune‒metabolic groups with different molecular characteristics (A) Association of three immune‒metabolic
groups, PFS, DFS and OS with MEs in the TCGA-LIHC cohort. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
four MEs in the TCGA-LIHC cohort. (C) Distribution of the six hallmark pathways between the S1 and S2 groups. (D) Gene set enrichment analysis
showing DEGs between S1 and S2 groups evaluated in the context of hallmark gene sets. (E) Distribution of chemokines and chemokine receptors
between the S1 and S2 groups. DFS, disease-free survival; MEs, module eigengenes; OS,overall survival; PFS, progression-free survival.
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Fig. 6. An immune‒metabolic classifier was established and validated in multiple cancer patients (A) Correlations between CTL infiltration, MRPC1
expression, the activity of eight metabolic pathways and the infiltration of 28 immune cells in the TCGA-LIHC cohort. (B) CTL and MRPC1 dis-
tributions and their expression among the three immune‒metabolic groups in the TCGA-LIHC cohort. (C, D) Kaplan‒Meier curves of OS in the three
immune‒metabolic groups. (E) Performance of the immune‒metabolic classifier in predicting three immune‒metabolic groups. (F) Patients in
group S1 tended to have the best survival prognosis among the different clinical subgroups. S1 was used as a reference. (G) Patients in group S1
tended to have the best survival prognosis among patients with various tumor types. S1 was used as a reference. CTL, cytotoxic T lymphocyte;
MRPC1, metabolism-related first principal component; OS, overall survival.
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The metabolic microenvironment is complicatedly linked to immune cell function, proliferation, and differentiation [46,47].
Tumor cells and immune cells strongly compete for metabolism [46]. On the one hand, with highly active metabolic pathways, tumor
cells can easily develop deficiencies in oxygen and critical nutrients and generate lactic acid. Lactic acid accumulation leads to acidosis,
thus hindering immune cell function, proliferation and differentiation [48,49]. On the other hand, the inadequate supply of energy and
critical nutrients to immune cells may also be an important cause of immune dysfunction and immune escape in cancer patients. For
example, the function, maturation and differentiation of immune cells in DCs also require the involvement of metabolic pathways such
as glycolysis, the tricarboxylic acid cycle, and correspondingmetabolic intermediates [48]. When the corresponding energy supply and
nutrients are lacking, DC antigen-presenting ability is reduced, limiting T-cell function. Owing to the important role of metabolic

Fig. 7. HCC patients in the three immune‒metabolic groups are suitable for different therapeutic interventions (A–B) Kaplan‒Meier curves of OS
based on the three immune‒metabolic groups. Objective response rate stratified by three immune‒metabolic groups. (C) Group S1 was the most
sensitive to anti-PD1 therapy (Bonferroni, P = 0.011). (D) Heatmap showing the expression of MRPC1 and CTL infiltration. Bar plot showing the
treatment response ratio among the three immune‒metabolic groups. (E) Distribution of half-maximal inhibitory concentration (IC50) values
among the three immune‒metabolic groups. CR, complete response; CTL, cytotoxic T lymphocyte; CTLA4, cytotoxic T lymphocyte-associated
protein 4; MRPC1, metabolism-related first principal component; OS, overall survival; PD, progressive disease; PR, partial response; SD, stable
disease; NR, no response; PD1, programmed cell death protein 1; R, response. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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pathways in TME, this study defines a quantifiable indicator, MRPC1, to accurately measure its status, which is the first key result of
this study.

As we mentioned above, the energy and nutrient supplies of immune cells are essential factors in the response of immune cells to
immunotherapy [50]. In this study, we found that the survival of patients in group S1 improved the most, which was largely due to its
highly activated energy metabolism pathway, which can provide sufficient energy and nutrients for immune cells. Although patients in
group S3 exhibited a greater degree of immune cell infiltration than patients in group S2 did, the energy supply in group S3 was
inadequate, which may be one of the reasons why these patients had worse OS than did those in group S2. The multiomics data suggest
that the hypermethylated genes in group S3 are enriched in multiple metabolism-related pathways, which may contribute to the low
metabolic activity of these patients. In addition, it has been reported that reduced SIRT5 expression can cause the accumulation of
primary bile acid, which may further promote M2 macrophage polarization and suppress the activity of immune cells [51]. Consistent
with these findings, the metabolic microenvironment of group S3 may have inhibited immune cell function because patients in group
S3 presented lower SIRT5 expression than did those in the other two groups. The different immune‒metabolic statuses presented by
these three groups are also the reason for the transformation of HCC patients from two clusters to three subtypes in this study.

Patients given the same treatment may exhibit substantial differences in efficacy because of the different molecular characteristics
of different HCC subtypes [52]. TACE is a first-line topical therapy for patients with intermediate or advanced HCC, and is increasingly
being administered in combination with other therapies, including sorafenib and immunotherapy [53,54]. Our study revealed that
patients in groups S1 and S2 were likely to benefit from TACE therapy. Patients in group S1 also benefit from immunotherapy. Patients
with “immune hot” tumors are more likely to benefit from immunotherapy [55]. Consistent with this, patients in group S1 exhibited an
“immune hot” tumor subtype with abundant immune cell infiltration and sufficient energy and nutrients. Patients in group S1 also had
a strong antigen-presenting capacity to support immune cell function. PDL1 and CTLA4 can inhibit the function of T cells, the main
participants in antitumor activity, and are targets of immunotherapy [56]. Similarly, we found that patients in group S1 had a high
degree of immune cell infiltration and high immune checkpoint expression, and the characteristic genes of group S1 patients were
enriched in several immune-related pathways. Therefore, we further established the S1 score on the basis of 30 characteristic genes in
the group S1, and the patients in the high-S1 score group had better clinical outcomes and higher immunotherapy response rates.

Additionally, patients in group S2 had the highest percentage of CTNNB1 mutations, which is consistent with the finding that
CTNNB1 mutations predispose patients toward immunotherapy resistance [57]. Patients in group S3 had the highest percentage of
TP53 mutations, which is consistent with the finding that TP53 mutations are associated with immune escape and poor prognosis [58].
These features might be components of the potential mechanisms for the poor benefits of immunotherapy in patients in groups S2 and
S3. The signature genes of patients in group S3 were enriched in multiple oncogenic pathways, which suggested that these patients
were more likely to benefit from treatment with oncogenic pathway inhibitors. In this study, we found that patients in group S3 were
sensitive to sorafenib, and these findings were confirmed via the PRRophetic algorithm.

Despite the heterogeneity of cancers in terms of multiomics data, such as transcriptomics, proteomics and genomics data, certain
important immune cells and metabolic pathways play the same role in different types of cancer. For example, CTLs can play an
essential role in killing tumor cells in different types of cancer, and the bile acid metabolic pathway is key as a signaling molecule in
regulating metabolic and immune dynamic homeostasis in various organs throughout the body. Immune cells and metabolic pathways
have crucial functions in different types of tumors. Hence, the new immune‒metabolic classifier and S1 score could be used for many
other types of tumors.

This study has several limitations. First, HCC datasets included in this study lack sufficient clinical information, which may cause
bias in patient selection and lack of comprehensive validation for the classifier. Senond, in vitro and in vivo experiments are needed to
reveal the molecular basis of the immune‒metabolic classifier and the effectiveness of putative drugs for the treatment of HCC. Third,
many targeted therapy drugs, including lenvatinib [59] and regorafenib [60], have been applied in HCC treatment and have achieved
good efficacy. Rigafenib has also been reported to exert immunomodulatory effects and to synergize withimmune checkpoint in-
hibitors [61]. Although we suggest that patients in group S3 are likely to benefit from treatment with oncogenic pathway inhibitors, it
is still unknown whether group S3 patients can benefit from those drugs or not because of the data accessibility issues. Additionally,
these two predictive models still need to be validated with large samples, and multicenter datasets and a validation dataset is being
collected.

5. Conclusion

This study established a new immune‒metabolic classifier and analyzed the differences in clinical outcomes, metabolic pathways,
immune landscapes, and treatment responses among patients in three immune‒metabolic groups. The immune‒metabolic classifier
has precise and robust efficacy prediction and can provide individualized treatment strategies for HCC patients, including TACE,
targeted therapy and immunotherapy. The S1 score can serve as a prognostic biomarker for immunotherapy in pancancer patients.
These two predictive models may serve as a reference for the individualized treatment choices for clinical patients, and are worth
recommending.

Fig. 8. The S1 score is a prognostic biomarker and predicts immunotherapy efficacy (A) Distribution of S1 signature gene among the three im-
mune‒metabolic groups. (B, C, F-I) Kaplan‒Meier curves of OS based on high- and low-S1 scrore groups. (D) Multivariate Cox regression analysis of
OS in the TCGA-LIHC cohort. (E) Prognostic performance of the S1 score across cancers. OS, overall survival.
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Physiol. Rev. 100 (2020) 1–102.

[20] J.A. Hoogerland, B. Staels, D. Dombrowicz, immune‒metabolic interactions in homeostasis and the progression to NASH, Trends Endocrinol. Metab. 33 (2022)
690–709.

[21] D. Chen, Y. Zhang, W. Wang, et al., Identification and characterization of robust hepatocellular carcinoma prognostic subtypes based on an integrative
metabolite-protein interaction network, Adv. Sci. 8 (2021) e2100311.

[22] X. Lei, Y. Lei, J.-K. Li, et al., Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy, Cancer Lett. 470 (2020)
126–133.

[23] Z. Xiao, Z. Dai, J.W. Locasale, Metabolic landscape of the tumor microenvironment at single cell resolution, Nat. Commun. 10 (2019) 3763.
[24] Q. Jia, W. Wu, Y. Wang, et al., Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer, Nat. Commun. 9 (2018)

5361.
[25] S. Mariathasan, S.J. Turley, D. Nickles, et al., TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells, Nature 554 (2018)

544–548.
[26] T.N. Gide, C. Quek, A.M. Menzies, et al., Wilmott, distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4

combined therapy, Cancer Cell 35 (2019) 238–255.e6.
[27] T. Stuart, A. Butler, P. Hoffman, et al., Comprehensive integration of single-cell data, Cell 177 (2019) 1888–1902.e21.
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