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Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying
pathogenesis remains elusive. In this study, we hypothesize that the presence of the
adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the
hippocampus. Two finite element models of the human head were used to investigate this
hypothesis, one with and one without the temporal horn, and both including a detailed
hippocampal subfield delineation. A fluid-structure interaction coupling approach was
used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal
fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to
account for its fluid behavior. By comparing the response of these two models under
identical loadings, the model that included the temporal horn predicted increased
magnitudes of strain and strain rate in the hippocampus with respect to its counterpart
without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3,
hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These
computational results suggest that the presence of the temporal horn exacerbate the
vulnerability of the hippocampus, highlighting the mechanobiological dependency of the
hippocampus on the temporal horn.

Keywords: hippocampal injury, temporal horn, brain-ventricle interface, fluid-structure interaction, finite element
analysis, traumatic brain injury

INTRODUCTION

Traumatic brain injury (TBI) is a critical public health and socio-economic problem. In the
United States, approximately 5.3 million people are living with a TBI-related disability (Langlois
and Sattin, 2005). At a global level, an estimated 69 million people suffer a TBI each year (Dewan
et al., 2018), with yearly costs reaching 400 billion dollars (Maas et al., 2017). Despite worldwide
efforts to reduce the incidence andmitigate the consequence of TBI, improvement of overall outcome
has not been achieved (Roozenbeek et al., 2013), especially for mild TBI (mTBI), also known as
concussion. Epidemiological data showed that concussion rates in high school sports (Rosenthal
et al., 2014) and themilitary (Cameron et al., 2012) have been rising. The need to improve concussion
outcome is particularly urgent, given that concussion is notoriously underreported, difficult to
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screen, and associated with immediate and persistent deficit to
memory and attention with possible chronic neurodegenerative
consequences (McKee et al., 2015; Meier et al., 2015).

As a crucial structure for long-term, episodic memory
formation and retrieval (Bird and Burgess, 2008), the
hippocampus is often reported to be injured secondary to
physical trauma in humans across different impact severities.
In fatal TBI, post-mortem histopathological examinations
identify the hippocampus as one of the most commonly
injured regions (73%–87%) (Kotapka et al., 1992; Kotapka
et al., 1993; Kotapka et al., 1994; Maxwell et al., 2003). In
mTBI, in vivo human imaging analyses demonstrate that
repetitive concussive impacts or even sub-concussive impacts
(i.e., high-velocity impacts that do not cause concussion) are
associated with abnormal hippocampal atrophy longitudinally
(Parivash et al., 2019) and cross-sectionally (Singh et al., 2014).
The prevalence of hippocampal injury has also been widely noted
in animal experiments (e.g., non-human primates, pigs, rats,
sheep, and rabbits) under diverse modes of mechanical
perturbations, including non-impact acceleration (Gennarelli
et al., 1982; Kotapka et al., 1991), impact acceleration
(Anderson et al., 2003), weight-drops (Kalish and Whalen,
2016), cortical contusion (Baldwin et al., 1997), and fluid
percussion injury (Hicks et al., 1996). The resultant injury
within the hippocampus of experimentally traumatized
animals exhibits a broad spectrum of pathological
manifestations, varying from impaired electrophysiological
activity associated with hippocampal circuitry dysfunction
(Wolf et al., 2017) to profound neuronal apoptosis and
marked gliosis (Smith et al., 1997).

The pathogenetic mechanism of trauma-induced
hippocampal injury has long been attributed to the selective
vulnerability of hippocampal neurons to hypoxemia and
ischemia (Pulsinelli, 1985; Ng et al., 1989), typical
complications of severe TBI insults (Graham et al., 1978;
Graham et al., 1989). For example, a histopathological study
revealed that 27 out of 29 individuals with at least one episode of
clinically recorded hypoxia had hippocampal damage (Kotapka
et al., 1992). However, 14 out of 18 patients without documented
hypoxemia also had hippocampal lesions (Kotapka et al., 1992),
suggesting that hippocampal injury may be independent of
hypoxia. Another candidate mechanism is pathological
neuronal excitation involving glutamate and/or other
excitatory amino acid neurotransmitters, supported by animal
experiments where traumatic insults triggered glutamate
concentrations in the extracellular fluid of the hippocampus
(Faden et al., 1989; Runnerstam et al., 2001). Given that the
hippocampus is dense in receptors for glutamate (Kotapka et al.,
1991; Leranth et al., 1996), redundant extracellular glutamate
could induce neuronal excitotoxicity, and indeed, pre-treatment
of experimentally traumatized animals with glutamate
antagonists attenuates hippocampal lesions (Faden et al.,
1989). However, such antagonists in humans have not proven
beneficial, thus, a neuroexcitotoxic mechanism in human TBI
cannot be considered a sole explanation (Parsons et al., 1999).
Taken together, trauma-induced hippocampal lesions in humans
cannot be fully explained by the current mechanisms.

An alternative line of investigation is biomechanical. Given
that previous modeling work has shown that the presence of fluid
can affect the transmission of mechanical forces within the brain
(Zhou et al., 2020a), one structure that may be associated with the
hippocampal vulnerability is the temporal horn of the lateral
ventricle. The temporal horn is a cavity that forms the roof of the
hippocampus and is filled with cerebrospinal fluid (CSF) and
occasionally choroid plexus (Insausti and Amaral, 2003).
Previous studies found that the volumes of the hippocampus
and temporal horn were inversely correlated in TBI patients (Gale
et al., 1994; Bigler et al., 1997; Bigler et al., 2002). However, the
biomechanical effect of the temporal horn on the hippocampus
remains unknown.

Interrogation of this biomechanical relationship requires
modeling to estimate the myriad variables and forces at play.
As computational surrogates of the human head, finite element
(FE) models have been instrumental in exploring the association
of regional vulnerabilities with potential predisposing factors
during trauma from the biomechanical perspective (Kleiven,
2007; McAllister et al., 2012; Mao et al., 2013; Ji et al., 2015;
Atsumi et al., 2018; Trotta et al., 2020; Zhou et al., 2021a).
Extending the current models to investigate the relationship
between the temporal horn and hippocampus requires that the
FE model possesses an anatomically and mechanically accurate
representation of both structures, and a precise description of the
interface between the fluid-filled temporal horn and neighboring
hippocampus. However, in existing finite element models, the
temporal horn was either wholly substituted as brain parenchyma
(McAllister et al., 2012; Zhou et al., 2016) or simulated as a solid
structure using the Lagrangian approach (Kleiven, 2007; Mao
et al., 2013; Ji et al., 2015; Atsumi et al., 2018; Trotta et al., 2020;
Zhou et al., 2021a). This Lagrangian approach is a dominant
numerical scheme for solid mechanics and is insufficient to
computationally reflect the fact that the temporal horn is filled
with CSF with the potential flow within the ventricular cavity
during the impacts (Souli et al., 2000; Zhou, 2019; Zhou et al.,
2020b). Approaches to date may have missed key and relevant
properties of the temporal horn that have precluded the
determination of its biomechanical relevance.

The aim of the current study was to discern whether the
presence of the temporal horn exacerbates the biomechanical
vulnerability of the hippocampus. To test this hypothesis, two
models with and without a detailed anatomic description of the
temporal horn profiles are established. By comparing the strain-
related responses to identical loadings between the two models,
the biomechanical mechanism for the temporal horn’s role in the
vulnerability of the hippocampus was uncovered.

MATERIALS AND METHODS

In this study, we employed computational modeling to discern
the biomechanical dependency of the hippocampus on the
temporal horn. To achieve that, we utilized a novel, multi-
million element 3D head model (Zhou et al., 2020a) that did
not initially incorporate the temporal horn (no-temporal-horn
(NTH)-model), and further extended this model by adding the
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temporal horn to the lateral ventricle (temporal-horn (TH)-
Model). An arbitrary Lagrangian-Eulerian (ALE) multi-
material formation was used to emulate the fluid behavior of
the intraventricular CSF, with its responses being concatenated
with the brain tissue via a fluid-structure interaction (FSI)
coupling algorithm. This allows computation of strain
(fractional change in unit length), strain rate (strain change
over time), and stress (force per unit area) in the
hippocampus. By comparing the deformation-related responses
estimated by these two models secondary to six concussive/sub-
concussive impacts, the mechanical role that the temporal horn
exerted on the hippocampus was revealed.

Finite Element Modeling of Human Brain
The FE head model without the temporal horn (i.e., the NTH-
Model) used in this study was previously developed at KTH Royal
Institute of Technology in Stockholm, Sweden (Zhou et al.,
2020a). The model includes the scalp, skull, brain,
subarachnoid CSF (i.e., CSF within the subarachnoid space),
meninges (i.e., dura mater and pia mater), falx, tentorium, and
cerebral ventricles (i.e., lateral ventricles without the temporal
horn, and third ventricle) (Figure 1). The whole head model
consists of 4.2 million hexahedral elements and 0.5 million
quadrilateral elements, in which the brain has a total of 2.6
million nodes, and 2.3 million hexahedral elements. The

average brain element size is 0.59 ± 0.26 mm, meeting the
requirement that a human brain model with converged
responses should have an average element size less than
1.8 mm (Zhao and Ji, 2019). Information regarding the
geometry profiles and material modeling of various
intracranial components in the NTH-Model was elaborated in
a previous study (Zhou et al., 2020a) as well as in Supplementary
Appendix SAA.

To investigate the potential effect of the presence of the CSF-
filled temporal horn on the hippocampus, we extended the NTH-
model by adding the fluid-filled temporal horn to the cerebral
ventricle (i.e., from Figure 1C to Figure 1D). This extended
model (i.e., the TH-Model) has the same geometrical features,
material properties, element formulation, and interface
conditions as the NTH-Model, except for the newly added
temporal horn. The volume ratio between the temporal horn
and the brain in the TH-Model was 0.13%, falling within the
range in healthy adults (0.1%–0.3%) (Bigler and Tate, 2001).
Strain response and brain-skull relative motion estimated by the
TH-Model were respectively evaluated by the experiments
presented by Hardy et al. (2007) and Zhou et al. (2019c) in
Supplementary Appendix SAB. Details about the cerebral
ventricle modeling and the brain-ventricle interface of the TH-
Model are elaborated in the following two sections, along with
that in the NTH-Model.

FIGURE 1 | Finite element models of the human head with and without the temporal horn. (A)Headmodel with the skull open to expose the subarachnoid CSF and
brain. A skull-fixed coordinate system and corresponding axes are illustrated with the origin at the center of gravity of the head. (B) Brain model with fine mesh. (C)
Ventricles (i.e., lateral ventricles without the temporal horn, and third ventricle) in the NTH-model. (D) Ventricles (i.e., lateral ventricles with the temporal horn, and third
ventricle) in the TH-model and hippocampus. (E) Isometric view of deep brain structures, cerebral ventricles, falx, and dura mater (in translucency) in the TH-Model.
(F) Left and right hippocampal formations with subfields. CSF: cerebrospinal fluid; Ventral DC: ventral diencephalon; CA: cornu ammonis; DG: dentate gyrus; HP Tail:
hippocampal tail.
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To facilitate the derivation of deformation-related metrics
in regions of interest (ROIs) from completed simulations, the
brain segmentation was registered to the coordinate system of
the FE head model and then the brain elements were grouped
into different sub-regions according to the spatial
correspondence with the brain segmentation via an
automated procedure implemented by a custom-built
MATLAB script. For both the TH-Model and NTH-Model,
the anatomically classified brain regions included cerebral
cortex, cerebellum, hippocampus with six subfields as
segmented by FreeSurfer 7 (i.e., cornu ammonis (CA) 1,
CA2/3, CA4/dentate gyrus (DG), hippocampus tail (HP
Tail), subiculum, and presubiculum) (Figure 1F), and non-
hippocampal paraventricular regions [i.e., amygdala, ventral
diencephalon (ventral DC), pallidum, putamen, caudate, and
corpus callosum (CC)] (Figure 1E).

Cerebral Ventricle Modeling
To emulate the fluid properties of the intraventricular CSF and
potential CSF flow secondary to exterior loading, the cerebral
ventricles in the TH-Model (Figure 2A) and NTH-Model
(Figure 2B) were simulated using an ALE multi-material
formulation. This formulation advances the solution in time
using a two-step operation, in which the material is antecedently
deformed in a Lagrangian step and subsequently followed by an
advection step with the element variables being remapped (Zhou
et al., 2019b). In the Lagrangian step, the intraventricular CSF
deformation was determined by the equation of state (for
dilatational responses) and constitutive equation (for deviatoric
responses) listed in Table 1, together with associated
formulations and material constants. In the advection step, a
second-order van Leer scheme was selected, excelling in
advection accuracy and numerical stability (Van Leer, 1979).

FIGURE 2 |Brain-ventricle interfaces of the TH-Model (A) and NTH-Model (B). For eachmodel, an isometric view of the brain model, the cerebral ventricle, and void
mesh are shown on the left. Coronal sections at the planes indicated in the left subfigures are shown on the right. For better illustration, only half of the brain is visible. The
cerebral ventricles are shown as blue shaded elements and the void mesh as wireframe elements. ALE: arbitrary Lagrangian-Eulerian.

TABLE 1 | Material constant for the cerebral ventricles in the TH-Model and NTH-Model. P: pressure, C: intercept of vs − vp curves, vs: velocity of a shockwave traveling
through the intermediary material, vp: velocity of the shocked material; S1, S2, and S3: coefficients of the slope of the vs − vp curves, γ0: Gruneisen gamma, a: first order
volume correction to γ0; ρ0: initial density; ρ: instantaneous density; σvij : deviatoric stress; γ: dynamic viscosity; _εij′: deviatoric strain rate; PC: cut-off pressure.

Equation of state ρ0 (kg/m3) C (m/s) S1 S2 S3 a γ0

P � ρ0C
2μ(1+(1−γ2/2)μ−a/2μ2 )

[1−(S1−1)μ−S2μ2/(μ+1)−S3μ3/(μ+1)2 ]; μ � ρ
ρ0
− 1 1000 1482.9 2.10 -0.17 0.01 0 1.2

Constitutive equation γ (Pa.s) PC (MPa)

σvij � γ _εij′ 0.001 −22
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Brain-Ventricle Interface Modeling
To couple the mechanical responses of the ALE-represented
intraventricular CSF with the Lagrangian-represented brain, a
penalty-based FSI coupling scheme (Batterbee et al., 2011; Zhou
et al., 2019a) was implemented to both the TH-Model and NTH-
Model. The implemented coupling scheme delivers tension and
compression in the radial direction and allows relative motion in
the tangential direction.

Owing to the requirement of implementing the penalty-based
coupling scheme, any locations to which the fluid may potentially
flow during the simulations are required to be meshed.
Considering that the intraventricular CSF might flow to
regions that were originally occupied by deep brain structures
(due to deformation of the brain itself and the relative motion
between the brain and cerebral ventricles during the simulation),
additional meshes were generated in these regions, referred to as
the “void mesh” in Figure 2A and Figure 2B, and initially
overlapped with part of the brain elements. The void mesh
was emulated with the ALE multi-material element approach,
with material properties identical to that of the intraventricular
CSF (Table 1) along with an extra void definition. Such a void
definition ensured that no fluid was distributed within the void
mesh under its initial configuration. The motion of the ALE
elements followed the mass-weighted velocity in the ALE mesh
(Hallquist, 2007).

Loading Conditions
Estimation of hippocampal response was obtained from the TH-
Model and NTH-Model by simulating six representative football
head impacts (Table 2 and Supplementary Appendix SAB). At
Stanford University, instrumented mouthguards have been
developed to measure six-degree-of-freedom head kinematics
during in-game head impacts to athletes (Liu et al., 2020; Cecchi
et al., 2021). Using these instrumented mouthguards, over 500 head
impacts in football have been video confirmed (Hernandez et al.,
2015). In the current study, two concussive impacts, one with the
athlete suffering alteration of consciousness (Case 1) and the other
with the player having a milder but self-reported concussion (Case
2), and two sub-concussive impacts (Case 4 and Case 5) were
simulated. In addition, a helmet-to-helmet collision involving two
players was simulated with the struck player (Case 3) having a
concussion and the striking player not (Case 6). Video recordings of
the game were analyzed, through which the initial head kinematics
were determined and further guided the laboratory reconstruction to

obtain the dynamic kinematics of this collision (Pellman et al., 2003;
Sanchez et al., 2019). All simulations were solved by the massively
parallel processing version of LS-DYNA R11 double precision with
128 processors.

Data Analysis
For each computational simulation, the strains and strain rates in the
six hippocampal subfields, the whole hippocampus, and six non-
hippocampal periventricular regions were extracted from the TH-
Model and NTH-Model, resulting in a total of 13 region-wise
comparisons for each injury metric. This was motivated by the
findings that hippocampal cell death was significantly affected by the
strain (Cater et al., 2006) and hippocampal functional impairment
was dependent on both strain and strain rate (Kang and Morrison,
2015) in in vitro TBI models on organotypic hippocampal slice
cultures from rat. At each timestep, the element-wise strain and
strain rate values were calculated as the first principal value of the
Green-Lagrange strain tensor and the first principal value of rate of
deformation tensor (Holzapfel, 2000). The element-wise strain and
strain rate peaks were then identified as the maximum value of the
strain and strain rate values across all timesteps. For each ROI, the
element-wise strain and strain rate peaks of all affiliated elements
were analyzed. To eliminate potential numerical artifacts (Panzer
et al., 2012; Zhou et al., 2021b), the 95th percentile values of element-
wise strain peaks and element-wise strain rate peaks were
respectively regarded as the strain peak and strain rate peak of
the given region. A total of 13 ROIs, including six hippocampal
subfields, the whole hippocampus, and six non-hippocampal
paraventricular regions were considered in the current study. To
quantify the variation in the responses per the inclusion of temporal
horn, percentage differences in region-wise strain and strain rate
peaks were computed for all ROIs in each loading case, with the
value from the NTH-Model as reference. Similar postprocessing
procedures have been implemented in previous studies (Gabler et al.,
2018; Hajiaghamemar et al., 2020; Wu et al., 2021) to extract the
regional-wise strain/strain rate peaks.

In total, six impacts were simulated by the TH-Model and NTH-
Model, respectively. To statistically ascertain the influence of
temporal horn on the deformation-related responses across the
six impacts, the strain and strain rate peaks of all six impacts
estimated by the TH-Model and NTH-Model were analyzed with
a Wilcoxon matched-pairs signed-rank test (N = 6), using an
uncorrected significance threshold of p < 0.05. This test was
respectively implemented to all the 13 ROIs. Due to the small

TABLE 2 | Peaks of translational acceleration and rotational acceleration and injury severity of the six cases considered in this study. The X, Y, and Z axes are the same as
those in the skull-fixed coordinate system in Figure 1A. Note that Cases 1–2 and Cases 4–5 are on-field impacts measured by the mouthguard (Hernandez et al., 2015),
while Case 3 and Case 6 are laboratory-reconstructed impacts (Pellman et al., 2003; Sanchez et al., 2019).

Case ID Peak translational acceleration (g) Peak rotational acceleration (krad/s2) Injury severity

X Y Z Magnitude X Y Z Magnitude

Case 1 −40.6 100.4 −63.4 106.1 12.89 −3.06 −3.24 12.95 Concussion
Case 2 −61.1 −57.8 −45.8 84.2 4.21 5.14 −1.84 6.19 Concussion
Case 3 −31.9 133.4 41.6 134.0 4.65 1.20 −6.81 7.50 Concussion
Case 4 −49.3 −47.2 −32.3 71.9 2.44 −4.36 −7.26 7.75 Sub-concussion
Case 5 7.3 18.1 11.4 20.4 4.12 0.59 1.05 4.14 Sub-concussion
Case 6 −21.5 −59.4 57.8 78.8 −5.82 −1.66 −2.44 6.24 Sub-concussion

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 7543445

Zhou et al. Biomechanics of Hippocampal Injury

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


sample size, multiple comparisons correction was not performed in
the current study.

RESULTS

Strain and Strain Rate in the Hippocampus
and Adjacent Structures
We first aimed at elucidating the changes in strain and strain rate
distribution due to the presence of the temporal horn. Cross-
sections of whole-brain strain and strain rate maps are presented

in Figure 3. Almost identical strain and strain rate patterns were
predicted by these two models, with the exception of strains over/
approaching 0.2 (Figures 3A,B) and strain rates over/
approaching 30 s−1 (Figures 3C,D) around the temporal horn
that was exclusively predicted by the TH-Model in all simulated
loading cases.

Close-up views of hippocampal strain and strain rate contours
are presented in Figure 4, in which the hippocampal results are
shown in Figure 4A,B and the anatomical classification of
hippocampal subfields is shown in Figure 4E. This is
particularly evident in CA1, CA2/3, and CA4/DG. Similarly, a

FIGURE 3 | Comparison of the maximum principal strain (A,B) and strain rate (C,D) distribution between the TH-model and NTH-model for three concussive and
three sub-concussive impacts (Cases 1–3 and 4–6 respectively). The temporal horn and adjacent tissue are highlighted by black dashed ellipses.
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more widespread distribution of strain rate approaching or over
30 s−1 was predicted by the TH-Model than the NTH-Model
(Figures 4C,D) in CA1, CA2/3, and HP Tail. This visual
observation is quantitatively confirmed in Supplementary
Appendix SAD, in which larger volume ratios of strain over
0.2 and strain rate over 30 s−1 in the hippocampal subfields and
the whole hippocampal level were predicted by the TH-Model
with respect to the NTH-Model.

Figure 5 shows a quantitative depiction of the findings in
Figure 4 with special focus on the peaking values: the addition of
the temporal horn elevated the 95th percentile maximum

principal strain for almost all subfields and the whole
hippocampus under all loading cases with the largest elevation
(111.0%) noted in CA2/3 in Case 5 (Figures 5A,B). Similarly, the
95th percentile maximum strain rate was increased per the
addition of the temporal horn for almost all hippocampal
subfields and the whole hippocampus, with the largest increase
(168.0%) in HP Tail in Case 2 (Figures 5C,D). Any decrements in
strain or strain rate were less than 5%.

We next aimed at identifying the anatomical regions most
affected by the presence of the temporal horn. Using a Wilcoxon
matched-pairs signed-rank tests on the region-wise strain and

FIGURE 4 |Comparison of strain distribution (A,B) and strain rate distribution (C,D) in the hippocampi between the TH-model and NTH-model of three concussive
impacts (Cases 1–3) and three sub-concussive impacts (Cases 4–6). Subfigure (E) illustrates the hippocampal subfields. CA: cornu ammonis; DG: dentate gyrus; HP
Tail: hippocampal tail.
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FIGURE 5 |Comparison of the 95th percentile maximum principle strain and strain rate in the hippocampal subfields and the whole hippocampus between the TH-
Model and NTH-model of three concussive impacts (Cases 1–3) and three sub-concussive impacts (Cases 4–6). (A) Comparison of strain in the hippocampal subfields
of three concussive impacts. (B) Comparison of strain in the hippocampal subfields of three sub-concussive impacts. (C) Comparison of strain rate in the hippocampal
subfields of three concussive impacts. (D)Comparison of strain rate in the hippocampal subfields of three sub-concussive impacts. Percentages in strain difference
and strain rate difference are calculated with the results of the NTH-Model as the baseline. CA: cornu ammonis; DG: dentate gyrus; HP Tail: hippocampal tail.
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strain rate, we found considerable increases in strain (median
value of percent strain difference >5%) on all six hippocampal
subfields and the whole hippocampus at significant levels (p <
0.05) (Table 3A). For the strain rate, considerable increases
(median value of percent strain rate difference >5%) were
noted in all subfields except for the presubiculum.

Among the non-hippocampal regions, both strain and strain
rate were elevated in the TH-Model in the amygdala, which is
along the anterosuperior border of the temporal horn, and to a
lesser extent in the nearby ventral DC (Supplementary Appendix
SAE, Table 3B). For the remaining more-distant regions,
percentage differences in strain and strain rate were constantly
less than 5% across the simulated loading cases.

Stress in Hippocampus and Temporal Horn
We then went on to explain the biomechanical reason for the
hippocampal vulnerability. To ascertain the alteration of stress
transmission associated Figures 6A,B with the temporal horn,
Figures 6A,B illustrates the maximum shear stress (i.e., a force
triggering critical tissue deformation) endured by the temporal
horn and hippocampus in the TH-Model and their counterparts
in the NTH-Model, respectively. A much larger magnitude of
shear stress in the hippocampus was noted in the TH-Model
compared to the NTH-Model across all the cases (Figure 6A).
Conversely, the maximum shear stresses were less than 100 Pa in
the temporal horn in the TH-Model, and over 1,000 Pa in the
temporal horn substitute in the NTH-Model (Figure 6B). In
addition, the distribution of shear stress within the hippocampus
and temporal horn for one representative case (Case 2) are
illustrated in Figures 6C,D, in which a wider distribution of
shear stress over 1,000 Pa in the hippocampus was noted in the
TH-Model compared to the NTH-Model. It is thus indicated that
an altered stress transmission associated with the temporal horn
causes elevations in strain and strain rate.

DISCUSSION

The current study attempted to elucidate why the hippocampus is
so commonly affected by brain trauma. We used two FE models:
one with and the other without the temporal horn, and
incorporated an anatomically accurate description of temporal
horn, a mechanically realistic representation of intraventricular
CSF as fluid elements, and a fluid-structure interaction coupling
approach for the brain-ventricle interface. The presence of the
temporal horn not only extended the distribution of high strains
and strain rates in the surrounding area, but also increased their
magnitude in the hippocampus, particularly in the subfields of
CA1, CA2/3, HP Tail, subiculum, and presubiculum. Other
adjacent regions including the amygdala and ventral DC
showed similarly increased strain and strain rate with the
presence of the temporal horn, but distant regions (e.g.,
corpus callosum) did not. These computational findings
suggest that the presence of the temporal horn likely
exacerbates the biomechanical vulnerability of the
hippocampus following head impacts.

This biomechanical finding correlates well with the prevalence
of hippocampal trauma in humans data and animal
biomechanical models. Several postmortem neuropathological
studies (Kotapka et al., 1992; Kotapka et al., 1993; Kotapka
et al., 1994; Maxwell et al., 2003) have detected overt neuronal
damage/loss in the hippocampus of TBI victims with high
incidence rates up to 73%–87% (although the exact loadings
endured were lacking). Animal models employing custom-built
pneumatic devices that deliver impulsive angular accelerations,
similar to the loading mode in the current study, have shown
hippocampal lesions in non-human primates (Gennarelli et al.,
1982; Kotapka et al., 1991), which have a similar hippocampal
morphology and spatial relationship to the temporal horn
(Insausti and Amaral, 2003; Amaral et al., 2007). A version of

TABLE 3 | Wilcoxon matched-pairs signed-rank test on the region-wise strain and strain rate in the hippocampal subfields and whole hippocampus (A) and non-
hippocampal regions (B) (N = 6). Percentages in strain difference and strain rate difference between the TH-Model and NTH-model were calculated across all simulations
and presented in the form of median and two quartile values with Q1 as 25th percentile value and Q3 as 75th percentile value. Note that N equals to the number of impacts
simulated by each model. CA: cornu ammonis; DG: dentate gyrus; HP Tail: hippocampal tail; Ventral DC: ventral diencephalon; CC: corpus callosum.

A Regions Percentage in strain
difference [median (Q1,

Q3)] (%)

p Percentage in strain rate
difference [median (Q1,

Q3)] (%)

p

CA1 44.6 (33.6, 53.0) 0.028 92.3 (69.3, 98.5) 0.028
CA2/3 64.6 (62.7, 104.3) 0.028 97.9 (81.0, 121.0) 0.028
CA4/DG 11.7 (3.2, 21.8) 0.046 23.7 (17.2, 67.6) 0.028
HP Tail 33.9 (18.6, 54.3) 0.046 35.5 (12.5, 67.6) 0.046
Subiculum 6.9 (5.5, 11.2) 0.046 65.3 (61.6, 89.7) 0.028
Presubiculum 19.9 (11.6, 28.0) 0.028 2.7 (1.9, 3.7) 0.046
Hippocampus 29.5 (25.3, 33.2) 0.028 57.5 (34.7, 91.9) 0.028

B Regions Percentage in strain difference
[median (Q1, Q3)] (%)

p Percentage in strain rate
difference [median (Q1, Q3)] (%)

p

Amygdala 33.8 (17.1, 39.3) 0.028 50.9 (40.4, 56.1) 0.028
Ventral DC 8.2 (4.6, 12.2) 0.028 9.35 (3.7, 13.1) 0.028
Pallidum −1.7 (−4.2, 2.1) 0.249 −0.6 (−4.2, 4.4) 0.753
Putamen −1.4 (−2.3, 2.8) 0.249 2.2 (−0.4, 4.7) 0.173
Caudate 1.5 (0.7, 5.5) 0.917 0.1 (−2.5, 0.9) 0.463
CC 0.7 (0.0, 1.3) 0.249 2.5 (−0.4, 3.6) 0.116
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the device modified to deliver impulsive loading caused selective
hippocampal damage to porcine brains (Smith et al., 1997)
[which again have a similar relationship between the
hippocampus and temporal horn to humans (Félix et al.,
1999)]. Thus, animal models with similar morphological
relationships between the temporal horn and hippocampus
support a biomechanical link between the two.

Our computational results predicted an altered stress
transmission associated with the temporal horn, providing an
explanation for the elevations in strain and strain rate in the TH-
Model. As illustrated in Figure 6B, the shear stress endured by the
temporal horn in the TH-Model was less than 100 Pa, which
realistically reflected the low shear resistance nature of CSF.
Comparatively, the shear stress experienced by the substitute
of the temporal horn (i.e., brain parenchyma) in the NTH-Model
was over 1,000 Pa, providing an unrealistic interaction with the
neighboring tissue. These regions adjacent to the temporal horn
(such as the hippocampus, amygdala, and ventral DC, as are the
ROIs in the current study) were easier to deform when associated
with the addition of the temporal horn in the TH-Model,

consequently exacerbating the strain and strain rate in these
ROIs. This explanation was further verified in Figure 6A, where
the shear stress endured by the hippocampus was larger in the
TH-Model, consistent with an amplified force exerted on the
hippocampus with the addition of the temporal horn.

Two previous computational studies simulated football head
impacts, consistently reporting an increased susceptibility of the
hippocampus to injury (Viano et al., 2005; Zhao et al., 2017).
However, the ventricular elements in these two models and other
ones (Kleiven, 2007; Mao et al., 2013; Atsumi et al., 2018; Trotta
et al., 2020) were manually picked with reference to the brain
atlas, lacking mesh conformity of the anatomic ventricle profile.
Our work used a novel FE model of the brain that involves orders
of magnitude more elements than used in typical models (e.g.,
millions instead of thousands), enabling a realistic depiction of
the geometrical features of the temporal horn. Intraventricular
CSF elements in existing head models (Viano et al., 2005;
Kimpara et al., 2006; Takhounts et al., 2008; Mao et al., 2013;
Ho et al., 2017; Zhao et al., 2017; Zhou et al., 2019a; Li et al., 2020)
are predominantly represented by Lagrangian elements, with the

FIGURE 6 | Maximum shear stresses in the hippocampus (A) and temporal horn/its substitute (B) predicted by the TH-Model and NTH-Model in six cases; (C)
Contours of maximum shear stress in the CSF within the temporal horn in the TH-Model and its substitute in the NTH-Model; (D) Contours of maximum shear stress
endured by the hippocampi in the TH-Model and NTH-Model. Note that, in the NTH-Model, the temporal horn is modeled as brain, not fluid.
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mesh following the material deformation without material
advection, neglecting the potential fluid flow during the
impact. Here, we leveraged a fluid element formulation
(i.e., ALE multi-material formulation) for the cerebral
ventricle, emulating the fluid properties of intraventricular
CSF and potential fluid flow following external stimuli. To
couple the mechanical responses of the ALE-represented
ventricular CSF elements with the Lagrangian-represented
brain elements, a penalty-based coupling was implemented.
Such a coupling algorithm permits relative motion in the
tangential direction and delivers tension and compression in
the radial direction, circumventing severe element distortion at
the interfacial boundary. The FSI approach excels in not only
realistically representing the fluid behavior of the CSF but also
maintaining numerical stability without causing severe element
distortion, supporting its validity for the current application.
Nevertheless, it is worth clarifying that our data suggest that
omitting the temporal horn, as is the case in most existing head
models, may still be acceptable for these studies that focus on
regions far from the temporal horn (e.g., corpus callosum,
caudate, putamen, pallidum).

Hippocampal cell death tolerance criteria were presented by
Cater et al. (2006) by relating three independent variables
(i.e., strain in the range of 0.05–0.5, hippocampal subfields,
time post-injury) to resultant cell death under in vitro
conditions via mathematical equations, which were valid
within the strain rate regime of 0.1–50 s−1. Similarly, another
in vitro study reported tolerance criteria for hippocampal
function impairment in the form of mathematical
formulations between input mechanical stimuli (i.e., strain up
to 0.44 and strain rate up to 30 s−1) and output
electrophysiological alterations (Kang and Morrison, 2015). In
the current study, the hippocampal responses predicted by the
TH-Model peaking from 0.29 to 0.50 for strain and from 53.9 s−1

to 93.6 s−1 for strain rate in the six simulated impacts. The range
of FE-derived strains and strain rates reached the criteria of
electrophysiological impairment and cell death as
aforementioned. However, it should be noted that certain
disparities existed between the data ranges of the current
computational results and the loading regimes from which
these two hippocampus-related tolerance criteria were fitted.
Moreover, the cultured hippocampal slices in Cater et al.
(2006) and Kang and Morrison (2015) were obtained from the
rat brain. Extrapolation of the tolerance criteria derived from the
animal brain under in vitro conditions to the human brain under
in vivo conditions requires further verification (Seok et al., 2013).

While the presence of the CSF-filled temporal horn may be a
contributing factor for the hippocampal vulnerability,
additional mechanisms, such as the selective vulnerability of
hippocampal neurons to hypoxemia and ischemia (Pulsinelli,
1985; Ng et al., 1989) and pathological neuronal excitation
involving glutamate and other excitatory amino acid
neurotransmitters (Faden et al., 1989; Bullock et al., 1990),
may play important roles in human hippocampal injury. We
suggest that the adverse effects of the temporal horn during the
primary impact, the superimposed hypoxia/ischemia and
neuroexcitotoxicity secondary to the impact, as well as other

potential unknown mechanisms, collectively contribute to the
hippocampal vulnerability.

Limitations and Future Work
Although the current study yielded some new insights into the
biomechanical dependency of the hippocampus on the temporal
horn, certain limitations exist which require further investigation.
First, only six representative sports-related inertial impacts were
simulated in the current study with the severities at concussive and
sub-concussive levels. A systematic investigation that covers more
impact-related variables (e.g., impact duration, impact directions,
rotational velocity) with their magnitudes spanning over the regimes
measured from the realistic impacts is planned for future work to
identify the critical scenarios that the temporal horn exhibited a
more pronounced effect on the hippocampus. Moreover, caution
should be exercised when extrapolating the current findings
obtained from concussive and sub-concussive impacts to extra
injury scenarios (e.g., fatal brain injury, penetrating head injury).

Another aspect of limitation was that multiple comparison
correction were not conducted. In the statistical analysis, 26
comparisons were respectively performed based on the strain and
strain rate results from 13 ROIs, each of which results from six impact
simulations predicted by the TH-Model andNTH-Model were paired
and analyzed using a significance threshold of 0.05. Given that we did
not performmultiple comparison correction, there might be a chance
up to 74% that at least one of the comparisons indicating a statistically
significance may not be the case in fact.

Thirdly, due to the computational challenges, the brain-skull
interfaces in both models in the current study were simulated by
approximating the subarachnoid CSF as a Lagrangian-represented
structure. Given that the ROIs in the current study are all located at
central brain regions, the influence exerted by the brain-skull
influence on the deep brain structures was expected to be limited
(Kleiven and Hardy, 2002). Per the benefits of using ALE elements
for the cerebral ventricles, the impact-induced fluid flow was
considered, but not quantified in the current study. A detailed
examination of flow patterns of CSF remains to be appropriately
quantified in the future (Lang and Wu, 2021).

Fourthly, to incorporate explicit representations of the
hippocampal subfields in the FE models, Freesurfer was used to
segment the MRI with a resolution of 1 × 1 × 1mm3 to take
advantage of the isotropic high-resolution atlas and incorporate this
detailed isotropic segmentation into the FE model. Such a software
choice was for the consistency purpose, since the brain profile used
for the development of FE model was obtained from Freesurfer.
However, it should be highlighted there are many different
segmentation methods for hippocampal subfields, presenting
certain variances in specific subfield delineation (Yushkevich
et al., 2015; Wisse et al., 2021). Thus, caution should be exercised
when using Freesurfer for hippocampal subfield segmentation
(Wisse et al., 2014). In fact, there appear no approaches with
guaranteed utility and validity to segment hippocampal subfield
from isotropic 1mm3 MRI (Wisse et al., 2021), as is the case for the
subfield delineation in the FE model. This segment-induced error
inevitably compromised the accuracy of hippocampal subfield
representations in the FE model, which is a limitation of the
current study. Nevertheless, compared with the studies in which
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the hippocampus was treated as a single medium (Takhounts et al.,
2008; Mao et al., 2013; Miller et al., 2016; Atsumi et al., 2018; Zhou
et al., 2020a; Li et al., 2020; Trotta et al., 2020), the current workmade
the first step to differentiate the hippocampal substructures in the FE
model of the human brain. Future work is planned to further refine
the model towards an anatomically more authentic hippocampal
subfield representation.

Lastly, due to the lack of neuroimaging data of these players with
their head impacts being simulated, it is hardly possible to ascertain
whether hippocampal injury indeed occurred in these six simulated
impacts. At Stanford, ongoing effort is dedicated to deploy
instrumented mouthguards to football players, obtaining real-time
measurements of the impacts sustained by these players (Camarillo
et al., 2013; Hernandez et al., 2015; Domel et al., 2021; Liu et al., 2020).
This information is complemented bymedical imaging of the football
players pre- and post-impact (Parivash et al., 2019; Mills et al., 2020).
Findings in the currentworkwill be further testified by correlating on-
field football impacts, to computationally predicted hippocampal
deformation, to image-based evidence of hippocampal injury.

CONCLUSION

This study investigated the biomechanical mechanism of
hippocampal injury associated with the presence of the temporal
horn by leveraging twomodels, with andwithout the inclusion of the
temporal horn. The results showed that the temporal horn has a
significant biomechanical effect in the surrounding area and induces
increased magnitudes of the strain and strain rate in the
hippocampus throughout its subfields, identifying the temporal
horn as a contributing factor to the hippocampal vulnerability.
This study suggests that proper modeling of the temporal horn
be considered when developing mechanical tolerance and designing
protective strategies specifically for the hippocampus.
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