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Abstract: A fast and effective determination method of different species of vegetable seeds oil is vital
in the plant oil industry. The near-infrared reflectance spectroscopy (NIRS) method was developed in
this study to analyze the oil and moisture contents of Camellia gauchowensis Chang and C. semiserrata
Chi seeds kernels. Calibration and validation models were established using principal component
analysis (PCA) and partial least squares (PLS) regression methods. In the prediction models of NIRS,
the levels of accuracy obtained were sufficient for C. gauchowensis Chang and C. semiserrata Chi, the
correlation coefficients of which for oil were 0.98 and 0.95, respectively, and those for moisture were
0.92 and 0.89, respectively. The near infrared spectrum of crush seeds kernels was more precise
compared to intact kernels. Based on the calibration models of the two Camellia species, the NIRS
predictive oil contents of C. gauchowensis Chang and C. semiserrata Chi seeds kernels were 48.71 ±
8.94% and 58.37 ± 7.39%, and the NIRS predictive moisture contents were 4.39 ± 1.08% and 3.49 ±
0.71%, respectively. The NIRS technique could determine successfully the oil and moisture contents
of C. gauchowensis Chang and C. semiserrata Chi seeds kernels.

Keywords: near infrared reflectance spectroscopy; Camellia seeds kernel; oil content; moisture content

1. Instruction

Camellia, native to China, one of the most important sources of high-quality edible plant oil, has
been consumed for more than 1000 years in southern China [1] and is widely distributed with more
than 12 million acres in production [2]. Camellia gauchowensis H.T. Chang and Camellia semiserrata C.W.
Chi [3], two common woody species of Camellia indigenous to China, are mainly cultivated in mountain
area. As cooking oil that has high nutritional value for human health, the annual Camellia oil production
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exceeds 150 million kilograms [4,5]. It has 85–92% unsaturated fatty acids [5] including 75–85% oleic
acid that plays important roles in reducing cholesterol and triglycerides in the blood [6,7], and a variety
of other functional components such as vitamin E, phytosterols, squalene, and flavonoids [8].

For the proper utilization of Camellia oils in food and other industries, the quality characteristics
of Camellia seeds, such as the contents of oil, moisture and protein, and the composition of fatty
acids, should be evaluated quickly and reliably by analytical tools at harvest, and during marketing
and processing. Conventional analysis for oil and moisture are time-consuming, laborious, and
require the use of toxic chemicals and expensive equipment [9]. The development of fast and effective
determination methods is necessary, especially when the application needs are considered.

In recent years, there is a growing interest in fast, reliable and environmentally friendly
technologies in both food production and food research [10]. Near-infrared reflectance spectroscopy
(NIRS) technology is a simple and non-destructive method that can measure the quality and
compositional attributes of many substances [11,12]. NIRS has some important advantages, such
as short analysis time, minimal sampling process, and non-destructiveness, with a performance
comparable to chemistry analytical methods [13,14]. NIRS is a spectroscopy method that uses the
near-infrared region (400–2500 nm) of the electromagnetic spectrum [15] that can quantify organic
compounds by the absorption of near-infrared light with the chemical bonds. Reflectance signatures are
collected from sample materials with known nutrient concentrations, and then mathematical models
are developed to estimate nutrient constituents of materials with unknown levels [16]. Automatic data
collection by NIRS allows the assessment of multiple traits in large sets of samples [14] with short
duration and with minimal error [16].

Based on the resolution of the analytical and quality factors from food samples with correlation of
electromagnetic absorption at aforementioned wavelength, NIRS is used routinely in sensory, physical
and chemical analysis of food and agricultural products [17–19]. As reported, it has been widely used
in different crops, such as sesame [20], maize [21], rice [22], soybean [23] and sunflower [24], to predict
oil, moisture, protein, fatty acids, phenols or crude fiber. However, the ability of NIRS for prediction
of Camellia oil and moisture content, especially C. gauchowensis Chang and C. semiserrata chi, has not
been reported.

It is necessary to rapidly determine oil and moisture contents in Camellia seeds, which play a key
role in national production, importation as well as in food processing and breeding programs. Since
analyses based on NIRS do not require labor intensive sample pre-treatment and processing, samples
are measured with simple grinding or as a whole. In this study, we established and calibrated
the quantitative NIRS models by principal component analysis (PCA) and partial least squares
(PLS) for C. gauchowensis Chang and C. semiserrata Chi seeds kernels to quickly determine oil and
moisture contents.

2. Materials and Methods

2.1. Materials

Each of 110 samples (200 g per sample) of Camellia gauchowensis Chang and Camellia semiserrata
Chi seeds was obtained from the seed resource bank of Guangdong Academy of Forestry (Guangzhou,
China). To guarantee the reliability and applicability of the models, samples were selected from
different regions in Guangdong province such as Gaozhou, Huizhou, Yangjiang, Lianping, and
Zhaoqing to ensure a wide range of reference values. When Camellia ripened from green to dark
brown with the full maturity of peel split and seeds exposed, the seeds were collected and naturally
air-dried. The inner shells of seeds were peeled off by tool knocking and manual peeling to get the
Camellia kernels. The intact Camellia kernels were selected and preserved in a ventilated and dry place
at room temperature. The period from the beginning of seed collection to the end of measurement was
six months.
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2.2. Soxhlet Extraction and Oven Drying

Traditional chemical measurements for oil and moisture were Soxhlet extraction [7] and oven
drying [25], respectively. All kernels were powdered by a laboratory grinder and screened by 40-mesh.
In the oil determination, samples were weighed as W0 (g), and then extracted at 80 ◦C for 6 h by
Soxhlet extractor with 180 mL petroleum ether. The residues were dried at 60 ◦C in a vacuum oven to
the constant weight as W1 (g). The oil content was calculated as C1 = W1/W0 × 100%. In the moisture
measurement, the samples were weighted as M0 (g), and then dried at 105 ◦C in vacuum oven over
24 h until the weight was constant as M1. The moisture content was expressed as C2 = M1/M0 × 100%.

2.3. Sample Pretreatment

The Camellia seeds kernels were openly placed in an air-conditioned thermostat room at 20 ± 2 ◦C
for two weeks to keep their moisture content under 10%. The kernels were loaded into a small
round plastic cup (75 mm diameter and 100 mm height). It was ensured that all tested samples were
representative and filled the sample tray uniformly. One batch of specimen was directly used for
spectroscopic analysis and one batch of comminution was used for spectral decomposition.

2.4. Spectra Measurements

2.4.1. Near Infrared Spectroscopy

A DA7200 NIRS analyzer (Perten Instruments AB, Huddinge, Sweden) equipped with
simultaneous detection of two beams of halogen and mercury lamp was used for spectral measurement.
Fixed holographic grating partial light and indium arsenic diode array detection technology with
electric refrigeration constant temperature, full spectrum was simultaneously scanned. Spectral data
were acquired in the 950–1650 nm range with 5 nm resolution at the collection data of 100 times per
second. Simplicity software was integrated as a device manager.

2.4.2. Spectral Feature Data Acquisition

The NIRS instrument was turned on to preheat for 1 h. Before the spectrum collection,
RE-SULT-Integration software was used to compile spectrum acquisition program. The working
parameters of the instrument were set as the measuring wavelength range from 950 to 1650 nm
at 30 subsequent scanning times. The sampling mode was transmittance and the data acquisition
was absorbance.

After writing the collection program, the processed samples were placed on the spectrometer
sample tray in turn to be scanned. The near infrared spectra of samples were collected by the cup
light probe. To reduce the error caused by inhomogeneous loading, each tested sample was loaded in
duplicate and scanned in triplicate for each loading to obtain the spectrum from different angles, and
average data were taken. All spectral characteristics were collected and recorded.

2.4.3. Calibration and Validation Model Construction

The average spectra of each sample were collected for smoothing pretreatment by Unscrambler
classifier chemometrics software package (CAMO, Trondheim, Norway). After correlating the reference
analytical methods, the best calibration model was gained from several mathematical models. In this
study, principal component analysis (PCA) [26] and partial least squares (PLS) [27] methods were
finally used to construct calibration and validation models. The correlation coefficient of calibration
(Rc), the standard error of calibration (SEC), standard error of prediction (SEP), offset, bias, slop, and
the residual predictive value (RPD) were used to test the accuracy of the calibration models. Rc was
gained from the calibration process that can be modeled linearly [7,28]. SEC and SEP were to evaluate
the predictive ability of the calibration model [7,28,29]. Offset, bias, slop, and RPD were used to
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determine precision of the calibration [10,28]. The ratio of standard deviation (SD) and SEP was named
RPD [30].

3. Results and Discussion

3.1. Comparison of Camellia Seeds Spectrograms between Non-Destruction and Comminution

NIRS is one kind of electromagnetic waves between visible and infrared light region, and its
wavelength range is 400–2500 nm [15]. Different substances have different absorption and strength of
electromagnetic waves [7]. The overall spectra of Camellia seeds kernels in different treatment showed
strong absorption bands related with oil and water content. The absorption at around 1200 nm (C–H) is
related with oil [26] and at 1450 nm (O–H) with moisture [31]. The raw NIR spectra of non-destruction
and comminution of Camellia samples are shown in Figure 1. Compared with Figure 1A, the crushed
kernels showed relatively wide range of absorbance over the entire NIR spectra in Figure 1B with
a sharper upward and downward slopes in absorbance around 1200 and 1450 nm, respectively.
The near-infrared reflectance spectrogram (NIRS) of Camellia seeds kernels could be used for the
quantitative analysis and the selection of suitable sample types. In addition, the NIRS accuracy was
higher when the Camellia seeds kernels were comminuted. As a result, crushed samples would be used
for further analysis of oil and moisture content of Camellia gauchowensis Chang and C. semiserrata Chi
seeds kernels, respectively.
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Figure 1. Near infrared spectrogram comparison of Camellia gauchowensis Chang seeds kernels between:
(A) non-destruction; and (B) comminution. 110 C. gauchowensis Chang samples represeneted 110 color
lines, the same as C. semiserrata Chi seeds kernels (Figure not shown).

3.2. NIRS Analysis of Camellia Seeds Kernels

The light absorption causes vibration and oscillation between atoms to make the change of light
energy [30]. Therefore, the diverse spectrums in NIRS area indicated the differences in the moisture
content, and the oil chemical composition and content for both Camellia gauchowensis Chang and
C. semiserrata Chi seeds kernels.

3.2.1. NIRS Analysis of Camellia Oil

The calibration models had good accuracy for the detection of C. gauchowensis Chang and
C. semiserrata Chi kernels oil (Tables 1 and 2). Some spectral variables, including irrelevant information
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and unreliable prediction, were removed by suitable algorithms [32] from all 110 samples by principal
component analysis (PCA), in which the effective quantities of tested samples reached 106 for
C. gauchowensis Chang and 104 for C. semiserrata Chi, respectively.

Table 1 exhibits the calibration statistics for oil content of C. gauchowensis Chang and C. semiserrata
Chi kernels. For the 106 C. gauchowensis Chang samples, the maximal oil content was 68.43%,
the minimum 23.85%, mean ± standard deviation (SD) 48.71 ± 8.94%, and coefficient of variation
(CV) 0.18. For the 104 C. semiserrata Chi kernels, the maximum, minimum, mean ± SD, and CV of oil
content were 71.08%, 31.71%, 58.37 ± 7.39%, and 0.13, respectively. The difference between Mean and
Max (Min) was obvious, which meant the model could predict the validation set of samples well [7].

Table 1. Calibration and validation statics in NIRS models for the estimation of oil and moisture
contents of C. gauchowensis Chang and C. semiserrata Chi kernels used in sets (n = 110).

Indicators Seeds Kernels Number Statistics Max 1/% Min 2/% Mean ± SD 3/% CV 4

Oil
Camellia gauchowensis Chang 106

Calibration set 68.43 23.85 48.71 ± 8.94 0.18
Validation set 56.82 22.16 45.32 ± 7.57 0.17

C. semiserrata Chi 104
Calibration set 71.08 31.71 58.37 ± 7.39 0.13
Validation set 70.00 51.71 62.73 ± 4.38 0.07

Moisture
C. gauchowensis Chang 106

Calibration set 9.02 2.40 4.39 ± 1.08 0.25
Validation set 9.00 2.74 4.62 ± 0.84 0.18

C. semiserrata Chi 104
Calibration set 6.37 2.32 3.49 ± 0.71 0.20
Validation set 5.14 0.71 3.19 ± 0.84 0.26

Note: 1 Max, Maximum; 2 Min, Minimum; 3 SD, standard deviation; 4 CV, coefficient of variation.

Table 2. Calibration and validation model parameters of oil and moisture contents by NIRS.

Indicators Seeds Kernels Rc 1 SEC 2 SEP 3 Offset Bias Slop RPD 4

Oil
Camellia gauchowensis Chang 0.98 1.57 1.73 1.59 1.99 × 10−6 0.97 5.94

C. semiserrata Chi 0.95 1.72 1.92 5.26 1.26 × 10−6 0.91 4.92

Moisture
C. gauchowensis Chang 0.92 0.26 0.29 0.61 2.21 × 10−7 0.86 4.22

C. semiserrata Chi 0.89 0.27 0.30 0.70 4.87 × 10−8 0.80 2.77

Note: 1 Rc, Correlation coefficients of calibration; 2 SEC, Standard error of calibration; 3 SEP, Standard error of
prediction; 4 RPD, Ratio of performance to deviation (Standard deviation/SEP).

Different properties of samples have different spectrum. Therefore, Soxhlet method was used
to treat the influence on the NIRS. In this study, the best spectrum pretreatment method was first
derivation for the NIRS calibration model of oil content. The Rc, SEC, offset, bias, and slope were
evaluated (Table 2). A good selected model should have high correlation coefficient of calibration
(Rc) and low standard error of calibration (SEC) [33,34]. In our study, Rc values were high, 0.98 for
C. gauchowensis Chang kernels oil and 0.95 for C. semiserrata Chi. Besides, SEC values were 1.57 for
C. gauchowensis Chang kernels oil and 1.72 for C. semiserrata Chi, while SEP was 1.73 for C. gauchowensis
Chang oil and 1.92 for C. semiserrata Chi. Results indicated that the SEC or SEP for Camellia oil in
this study was relatively lower than sunflower (15.4–32.7 of SEP) [24] but higher than oilseed Brassica
species (0.21–0.85 of SEC/SEP) [16], soybean (0.07–0.10 of SEP), and palm kernel (0.10–0.73 of SEP) [31].
The models’ accuracies for C. gauchowensis Chang and C. semiserrata Chi were both evaluated by offset
(1.59 and 5.26, respectively), bias (1.99 × 10−6 and 1.26 × 10−6, respectively), and slope (0.97 and
0.91, respectively).

Typically, calibration models must be validated before application in practice [35]. Hence, the oil
content by NIRS should be estimated with high correlation and good accuracy [36]. Partial least squares
(PLS) regression was used to develop the quantitative model from cross-validation with different
spectra pretreatments (data not shown). Table 1 shows the oil content of C. gauchowensis Chang and
C. semiserrata Chi kernels in validation set. Besides the minimum and mean of Camellia semiserrata
Chi, the data range of all calibration set covered the validation set. The maximal oil content of the
106 C. gauchowensis Chang samples in validation set was 56.82%, minimum 22.16%, mean ± SD 45.32
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± 7.57%, and CV 0.17. For the 104 C. semiserrata Chi kernels, the maximum, minimum, mean ± SD,
and CV of oil content were 70.00%, 51.71%, 62.73 ± 4.38%, and 0.07, respectively.

The ratio of performance to deviation (PRD) indicates excellent validation accuracy when the
value is more than 2.5; a value between 2.0 and 2.5 indicates approximate prediction is possible; and a
value less than 1.5 indicates the prediction is poor [37]. In this study, RPD values were all above 2.5
(5.94 for C. gauchowensis Chang kernels oil and 4.92 for C. semiserrata Chi oil). The validation models of
oil content for C. gauchowensis Chang and C. semiserrata Chi seeds kernels showed preferable accuracy.

Figure 2A,C shows that the sample scores were uniformly distribution by PCA. After the PCs
from 0 to 20 were analyzed by residual validation variance, the regression coefficients were ideal when
the PCs were both selected at 5 (Figure 2B,D). In Figure 3, the linear relationships were established
between predicted and measured values. The regression equations were y = 0.9679x + 1.5805 (R2 = 0.96)
for C. gauchowensis Chang and y = 0.9107x + 5.2561 (R2 = 0.91) for C. semiserrata Chi, which was similar
to the accuracy of rapeseed (R2 = 0.91–0.96) [33].
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Thereby, the models by NIRS of C. gauchowensis Chang and C. semiserrata Chi seeds kernels were
practicable to predict the oil contents.
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3.2.2. NIRS Analysis of Camellia Moisture

In Table 1, the maximum, minimum, mean ± SD, and CV of the moisture content of C. gauchowensis
Chang samples in calibration set were 9.02%, 2.40%, 4.39 ± 1.08%, and 0.25, respectively. For the
C. semiserrata Chi kernels, they were 6.37%, 2.32%, 3.49 ± 0.71%, 0.20, respectively. The oil content of
C. gauchowensis Chang (48.71% of mean) was lower than C. semiserrata Chi (58.37% of mean); contrarily,
the moisture content was higher (4.39% of C. gauchowensis Chang and 3.49% of C. semiserrata Chi,
respectively). The lower moisture content is considered important for the specific application of
Camellia, with regard to the economics of Camellia trading and quality-keeping to prevent the growth
of microorganisms and mold spoilage [38]. C. semiserrata Chi seeds kernels had higher oil content and
lower moisture compared with C. gauchowensis Chang, implying that C. semiserrata Chi was probably
more suitable for cultivating, storage, processing, and application.

The calibration model for C. gauchowensis Chang and C. semiserrata Chi seeds kernels moisture is
shown in Figure 4. The scores showed uniform distribution by PCA in Figure 4A,C for 106 samples
of C. gauchowensis Chang and 104 samples of C. semiserrata Chi. The relationship between validation
variance and regression coefficients (Figure 4B,D, respectively) was analyzed to set up the prediction
models (Figure 5); the calibration parameters of which are also shown in Table 2.

Rc value for moisture content of C. gauchowensis Chang seeds kernels was as high as 0.92, and
0.89 for C. semiserrata Chi. SEC for C. gauchowensis Chang and C. semiserrata Chi was 0.26 and 0.27,
respectively, lower than sunflower (SEC of 1.6–3.2) [24]. The offset (0.61 and 0.70, respectively), bias
(2.20 × 10−7 and4.87 × 10−8, respectively), and slope (0.86 and 0.80, respectively) values were all
within the reasonable range for these two species.

For C. gauchowensis Chang and C. semiserrata Chi samples, the maximum (9.00 and 5.15,
respectively), minimum (2.74 and 0.71, respectively), mean ± SD (4.62 ± 0.84% and 3.19 ± 0.84%,
respectively), and CV (0.18 and 0.26, respectively) in validation set are shown in Table 1. Table 2
presents that SEP was 0.29 and 0.30, respectively, lower than black tea (SEP of 2.8–3.0) [38].
The RPD values (4.22 and 2.77, respectively) were both above 2.5. The regression equations were
y = 0.8595x + 0.6052 (R2 = 0.85) for C. gauchowensis Chang (Figure 5A) and y = 0.7982x + 0.7025
(R2 = 0.78) for C. semiserrata Chi (Figure 5B), respectively. All results implied a good predictive ability
of the calibration model for C. gauchowensis Chang and C. semiserrata Chi kernels moisture content.
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4. Conclusions

This study demonstrated that NIRS was a powerful technique to predict oil and moisture content
of Camellia gauchowensis Chang and Camellia semiserrata Chi seeds kernels. Principal components
analysis (PCA) was used and the sample scores examined to detect outlying or unusual spectra [25].
Then, partial least squares (PLS), one of the most classical multivariate calibration methods, was
obtained the best calibration models in this research. High coefficient of calibrations showed that NIRS
analysis, a fast and effective method, could be applied in Camellia oil industry. This predictive model
had good accuracy and sufficient credibility. Compared with traditional chemical measurement and
analysis, NIRS possessed the advantage of obviously shortened detection time, mainly due to the
practical calibration models. Based on the establishment of a relatively accurate calibration model, the
efficient determination of oil and moisture content for large number of C. gauchowensis Chang and
C. semiserrata Chi seeds kernels samples could be realized. It would be important with regard to the
economics of Camellia trading and potentially impact the procurement price of two species oil.
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