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ABSTRACT Identity-by-descent (IBD) is a fundamental concept in genetics with many applications. In a
common definition, two haplotypes are said to share an IBD segment if that segment is inherited from a
recent shared common ancestor without intervening recombination. Segments several cM long can be
efficiently detected by a number of algorithms using high-density SNP array data from a population sample,
and there are currently efforts to detect shorter segments from sequencing. Here, we study a problem of
identifiability: because existing approaches detect IBD based on contiguous segments of identity-by-state,
inferred long segments of IBD may arise from the conflation of smaller, nearby IBD segments. We quantified
this effect using coalescent simulations, finding that significant proportions of inferred segments 1–2 cM
long are results of conflations of two or more shorter segments, each at least 0.2 cM or longer, under
demographic scenarios typical for modern humans for all programs tested. The impact of such conflation is
much smaller for longer (. 2 cM) segments. This biases the inferred IBD segment length distribution, and so
can affect downstream inferences that depend on the assumption that each segment of IBD derives from a
single common ancestor. As an example, we present and analyze an estimator of the de novo mutation rate
using IBD segments, and demonstrate that unmodeled conflation leads to underestimates of the ages of
the common ancestors on these segments, and hence a significant overestimate of the mutation rate.
Understanding the conflation effect in detail will make its correction in future methods more tractable.

KEYWORDS

identity-by-
descent

coalescent
human genetics

In the present study, we consider a genomic region to be shared
identically by descent (IBD) between a pair of individuals if the region
was coinherited from a common ancestor without any intervening
recombination. This and related concepts of coinheritance and IBD
have been useful in numerous applications. For example, identifying
shared haplotypes forms the basis of several imputation (Gusev et al.
2012) and phasing (Kong et al. 2008; S. R. Browning and B. L. Browning

2011) methods; the frequency of IBD within and between cohorts
allows the detection of natural selection and trait-associated loci
(Purcell et al. 2007; Albrechtsen et al. 2010; Gusev et al. 2011;
Han and Abney 2013); and contrasting the number and length of
IBD segments enables inferences of past demographic histories
(Palamara et al. 2012; Ralph and Coop 2013). The concept of IBD
has also been used in recent efforts to estimate key human genetic
parameters such as the mutation rate (Campbell et al. 2012, Palamara
et al. 2015) and trait heritability (Zuk et al. 2012).

Traditionally, the concept of regions or segments sharing IBD has
been defined with respect to a set of founder individuals, such as in a
pedigree (Thompson 2013). More recently, attention has been paid to
IBD segments among pairs of individuals in populations without
known pedigree. Since all homologous regions trace their ancestry to
a single common ancestor, and since the definition we adopted is with
respect to recombination, not mutation, each individual is IBD with
every other individual at every position in the genome. In random
samples from unstructured populations, most of these IBD segments
shared by a pair of individuals are short relative to the spacing of
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polymorphic sites (Chapman and Thompson 2003; Powell et al. 2010;
Thompson 2013). For this reason, only particularly long and hence
recent segments of IBD can be reliably identified. In practice, the seg-
ments studied are the subset of all IBD segments that exceed a partic-
ular length threshold which, on the basis of estimated error rates in
humans, is often chosen to be between 1–2 cM (B. L. Browning and
S. R. Browning 2011). However, this choice could depend on the be-
havior of the specific algorithm one uses and the research question one
seeks to answer.

A number of computer programs exist to detect IBD segments using
high-density array data from population samples. Beagle IBD (S. R.
Browning and B. L. Browning 2010), RELATE (Albrechtsen et al.
2009), IBDLD (Han and Abney 2011), and PLINK (Purcell et al.
2007) detect IBD segments based on a probabilistic hidden Markov
model for IBD status to determine the posterior probability of IBD at a
genomic location. Probabilistic models tend to be computationally in-
tensive (B. L. Browning and S. R. Browning 2013b), thus it is often
unfeasible to apply them to large population datasets. On the other
hand, programs like GERMLINE (Gusev et al. 2009), Beagle fastIBD
(B. L. Browning and S. R. Browning 2011), and Refined IBD (B. L.
Browning and S. R. Browning 2013b) adopt a dictionary approach to
detect IBD, followed by varying degrees of probabilistic assessment of
IBD segments to improve accuracies. These dictionary approaches are
scalable to large sample datasets. These methods identify IBD segments
by looking for long stretches of near-identical sequences (identity-by-
state, or IBS). This is unambiguously useful; but to make use of these
data in a model-based framework, some applications then assume that
such segments, if long enough, have been uninterrupted by intervening
recombination, and thus coinherited from a single common ancestor.

This assumption, as wewill examine in the currentmanuscript, does
not always hold. It is clear that long segments of IBS could be due to the
conflation of two ormore shorter IBD segments, especially usingdiploid
data, where the two IBD segments could be shared between different
pairs of haplotypes. This error in the estimated lengthwill in turn lead to
errors in the estimated ages of common ancestors and bias downstream
inferences. For example, if unmodeled, conflated segments would be
inferred to derive from an erroneously recent common ancestor, thus
biasing estimates of population size andmigration rate. Similarly, and as
wewill show, an approach to estimate themutation rate using the length
of IBDsegmentswoulderroneouslyassignyoungerages toconflationsof
older segments and thus overestimate the mutation rate.

Conflation of neighboring IBD segments is one mechanism leading
to misestimation in IBD calling. B.L. Browning and S. R. Browning
(2013b) have previously examined the problem of overestimation of
IBD segment lengths in IBD calling algorithms, implicitly grouping
misestimation due to conflation with other factors such as genotyping
errors. To help distinguish sources of error, we refer to “conflation” as
the conflation of two neighboring long segments, resulting in a large
error in estimated length, and “minor endpoint errors” as any other
error that leads to a small error in estimated length. From the stand-
point of the calling algorithm, at the end of a nonconflated segment the
statistical evidence of IBD should decrease as sequence mismatches
accumulate in regions where two individuals are very distantly related;
eventually the evidence of IBD falls below the necessary threshold and
the called segment is terminated. This is what we consider a minor
endpoint error, which could be alleviated by simply removing ends of
called IBD segments or more sophisticated statistical modeling in sub-
sequent analysis. On the other hand, at the end of a conflated segment,
the statistical evidence for IBD actually increases as the algorithm con-
siders markers in the neighboring IBD segment, and continues until the
end of the second segment. Thus, the problem of conflation of segments

that we study here is one that will not disappear with increasingmarker
spacing or accuracy, as it is driven by the rate at which true segments of
an appreciable length are spatially clustered in the genome. Indeed, it is
this conflation that may have pushed the summed length of IBD in a
region over the length threshold necessary for detection. Furthermore,
this kind of error, as we show here, is more problematic for shorter
segments near the calling threshold and in diploid organisms with
imperfect phasing. Though researchers in the field recognize that
IBD segment distributions are biased and often compensate for these
effects via simulation or numerical procedures, our aim is to explicitly
highlight and characterize this potential mechanism for the biased
length distribution of IBD segments.

To characterize the problem, we used coalescent simulations where
we know the precise ancestral recombination graph [ARG (Hudson
1991; Griffiths and Marjoram 1996)] of the simulated sample. At all
positions of a simulated sequence, the ARG relates individual haplo-
types via a local genealogical tree. As in B. L. Browning and S. R.
Browning (2013b), we identify true IBD segments between two indi-
viduals as those stretches of contiguous sequence on which the time
back to the most recent common ancestor between the two does not
change (Figure 1).

We then simulated genotype data, from which we inferred IBD
segments using published algorithms, and contrast the algorithm-
detected IBDsegments to the true IBDsegments determined from the
ARGs.We show that, under various demographic models appropriate
for modern humans, a significant proportion of the detected IBD
segments 1 cM or longer (predominately due to those between 1–2 cM
long) are composed of at least two subsegments. As an example of
how the conflation can lead to practical problems, we analyze the
behavior of a potential estimator of the de novo mutation rate using
IBD segments. We observed accurate estimates of the input mutation
rate when true IBD segments were used, but overestimates of the
mutation rate by �10–40% using inferred IBD segments, depending
on the amount of conflation in the dataset. Our analysis focused on
using one of the most recent IBD calling algorithms for array data,
Refined IBD (B. L. Browning and S. R. Browning 2013b), but we also
tested a number of other algorithms designed to detect IBD segments
from array data, and demonstrate that the conflation problem is faced
by all algorithms tested.

METHODS

Coalescent simulations
We simulated five 20 Mb regions of 2000 haplotypes each using MaCS
(Chen et al. 2009). To mimic genetic data of actual populations,
we simulated under a demographic model previously estimated for a
European population (Nelson et al. 2012). Specifically, we modeled a
population with constant size: 12,500 diploid individuals up until
17,000 generations ago, 24,500 between 3500–17,000 generations ago,
7700 between 368–3500 generations ago, and exponentially expanding
at a rate of 0.017 per generation (gen)to a present day size of 4 · 106.We
assumed constant mutation rate (1.2 · 1028 per bp per gen) and re-
combination rate (1 · 1028 per bp per gen). TheMaCS command used
is given in the Appendix.

To generate phased sequence data from theMaCs output, we paired
the genotypes from two randomly chosen simulated haplotypes. We
introduced no missing data or genotyping errors. For our parameter
settings,MaCS produced an average of 255,587 (ranged from254,984 to
256,125) variants per simulated regions. To generate genome-wide
(unphased) array data, we down-sampled the sequencing data tomatch
the marker density and allele frequency spectrum typical of array data.
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The marker density was 5800 markers per 20 Mb region, which
extrapolates to approximately 715,000 markers across the entire set
of autosomes for which recombination rate estimates are available
(approximately 2450 Mb). This density is typical of a genome-wide
1 M array after quality controls and filtering on common variants.
The minor allele frequency spectrum was empirically matched to that
found on an array, based on the array data from European individuals
(i.e., approximately a flat distribution for variants . 5% frequency).
Markers with minor allele frequency , 5% were dropped from the
array data. In total, an average of 5833 (range 5721–5944) variants were
retained for the simulated array data for each simulated region. We
next used simulated array data to call IBD segments with a number of
available IBD calling algorithms, and then used the simulated sequenc-
ing data to infer mutation rate (below).

In addition to the plausible demographic model from Nelson et al.
(2012), we also tested a number of other demographic trajectories: the
European and African demography from Tennessen et al. (2012), the
same European model but without the second, rapid, exponential
growth phase, as well as a constant size population of 100,000 individ-
uals. Detailed descriptions of the demography and MaCS commands
used for these scenarios can be found in the Appendix.

Detecting IBDcalled segments
Themain algorithmof IBDdetection testedhere is Beagle’s Refined IBD
(B. L. Browning and S. R. Browning 2013b), though we also tested a
number of other algorithms designed to detect IBD segments from
array data, namely fastIBD (B. L. Browning and S. R. Browning
2011), GERMLINE (Gusev et al. 2009), IBDLD (Han and Abney
2011), and PLINK (Purcell et al. 2007).

We followed the recommendations of the authors of Refined IBD/
Beagle andcalled IBDsegments inour simulateddataset usingBeagle 4.0

(version 1399) with ibdtrim and overlap parameters set to typical
marker density in 0.15 cM and 1.5 cM windows in the dataset, respec-
tively. We used the default LOD score of 3. Only segments greater than
1 cM were retained for analysis. To avoid artifacts due to the edges of
simulated regions, we also removed segments that overlapped the
boundary of the simulated region. In total, we were left with 5459
IBD segments greater than 1 cM in length across the five simulated
regions (between 1036–1157 segments per region).

For comparisonwith IBD segments called by other algorithms,we
also used GERMLINE (v.1.5.1), fastIBD (v.3.3.2), and IBDLD
(v.3.004.4) to call IBD segments (Gusev et al. 2009; B. L. Browning
and S. R. Browning 2011; Han and Abney 2013). We applied each
method to only a single simulated region to reduce the amount of
computation.

To estimate IBD segments using GERMLINE, we first subjected the
simulated data to 10 iterations of phasing by Beagle. Following previous
performance comparisons of GERMLINE to Refined IBD, we required
theminimum length of the segment to be 1Mb (–min_m= 1), and seed
size for exact matching to be 32 (–bit 32). However, we set –err_hom
and –err_het to be 0, as we introduced no genotyping errors in our
simulation and higher values could spuriously lead to more apparent
conflations. We also used the haploid mode (–h_extend), which allows
GERMLINE to utilize the haplotype phase information, and should
improve performance (B. L. Browning and S. R. Browning 2013b).
Default parameters were otherwise used. Increasing the value of bit
parameter decreased the number of segments detected but produced
otherwise qualitatively similar results (data not shown). We also used
–haploid on the computationally phased data and obtained qualita-
tively similar results (data not shown). We did not test GERMLINE
in haploid mode with perfectly phased data (from simulation) as it is
unrealistic in practice. In total, we detected 786 IBD segments greater
than 1 cM from one simulated region.

Default settings were used to estimate IBD segments using fastIBD.
Following the authors’ recommendations, IBDdetectionwas conducted
10 independent times and then combined, retaining only segments
supported by at least two independent runs and at least one segment
reaching a confidence score below 10210. We dropped approximately
1.3% of the segments that would otherwise be merged by criteria adop-
ted by others who have similarly analyzed IBD segments detected by
fastIBD (B. L. Browning and S. R. Browning 2013b; Ralph and Coop
2013; Durand et al. 2014), as we found that much of the need for
merging may have come from genotyping errors or missingness, which
are not allowed in simulations here. A total of 558 IBD segments greater
than 1 cM from one simulated region were detected.

Our initial run with IBDLD, using all 1000 diploid individuals for
one simulated region, did not complete within 72 hr. Therefore, we
randomly selected a subset of 500 diploid individuals for our evalu-
ation.We used the method GIBDLD (–method GIBDLD) and chose to
output only segments with length. 1000 kb (–length 1000); otherwise,
default settings were used. A total of 643 IBD segments were detected.

We also tested PLINK [v1.07, (Purcell et al. 2007)]. As recom-
mended, we first thinned the dataset so that no pair of SNPs within a
window of 100 markers (moving at windows of 25 markers) would
have an r2. 0.2. However, estimation of IBD segments on the thinned
dataset, using default settings, detected no segments. Less stringent
thinning, increased marker density, a lowered minimum number of
SNPs, or minimum segment length did not significantly improve de-
tection of IBD segments using PLINK (data not shown). This is con-
sistent with the lower power to detect IBD segments by PLINK as
observed by others (S. R. Browning and B. L. Browning 2010), and
PLINK was thus not further evaluated.

Figure 1 A schematic relating IBDARG and IBDcalled segments. The
cartoon shows the alignment of four haplotypes belonging to two
diploid individuals. Across the region multiple ARGs exist to relate
the four haplotypes in a tree. Across the first IBDARG region (orange,
IBDARG,1), the two middle haplotypes have recent, unchanging, local
graphs for the entire region. Across the second IBDARG region (red,
IBDARG,2), two different haplotypes have recent, unchanging, local
graphs for the entire region. The two IBDARG segments happens to
occur near each other such that the entire region may be detected by
algorithms based on long stretches of sequence similarity (IBDcalled

segment). ARG, ancestral recombination graph; IBD, identity-by-
descent.
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Calling ground-truth IBDARG segments from
simulated data
Wenext used the simulated ARGs to determine the true IBD segments.
MaCS reports the ARG as a sequence of genealogical trees along the
simulated region, so that neighboring trees differ if a recombination
event has occurred somewhere in that genealogical tree. Such an event
may not affect the IBD status of a given pair of diploids, if it does not
involve any of their four haplotypes. An IBDARG segment shared by a
pair of diploids is then defined as a continuous stretch of genealogies
with unchanging age to common ancestor (i.e., no recombination since
the common ancestor) between at least one pair of the four pairwise
haplotype configurations. This may conflate segments on which there
has been an ancestral recombination but both common ancestors lived
at the same time; but the chance of this is very small. We then aimed
to identify all IBDARG segments between all pairwise comparisons of
diploid individuals in the simulation. However, it is computation-
ally challenging to enumerate all such segments in an ARG, so we
implemented two approximations to make the problem computa-
tionally tractable. First, we sampled a genealogy only every 0.01 cM
(or 10 kb) of the simulated dataset, greatly reducing the number of
genealogies that need to be processed. Second, we extract only
IBDARG segments less than 3000 generations old, greatly reducing
the number of IBD segments to follow and keep in memory. To-
gether, these approximations allowed us to obtain nearly all seg-
ments with length $ 0.2 cM at a cost of uncertain boundary
resolution within 0.01 cM, as none of . 5.7 million segments have
age very close to 3000 generations (Supplemental Material, Table
S1). While our approach may not detect all IBDARG segments in the
simulated dataset (especially the very short ones), we can ensure
that all detected IBDARG segments in this manner will be true IBD
segments, free of any conflation effects.

These simulations produced rates of IBD somewhat lower than
published, empirical estimates. Ourmain simulation adopts a European
demography (Nelson et al. 2012) that assumed a panmictic population
experiencing an explosive recent expansion reaching an effective pop-
ulation size of 4,000,000. We detected 4208 IBDARG segments . 1cM
among 1000 simulated individuals, which translates to an IBD rate of
8.42 · 1023 segments per pair of individuals per 100 Mb region. For
comparison, Ralph and Coop (2013) used fastIBD and detected
�1,900,000 (IBDcalled) segments. 1 cM genome-wide in a population
of�2200 general Europeans. This translates to an IBD rate of approx-
imately 29.95 · 1023 segments per pair of individuals. The difference in
rates is likely due to unmodeled local population structure, which in-
creases recent coalescence rates relative to a randomly mating popula-
tion, as well as due to other differences such as imperfectly modeled
demography, marker density, genotyping errors, and false positives of
the calling algorithm.

Estimating mutation rate based on IBD segments
There has been recent interest in estimating mutation rates based on
principles of IBD sharing to complement existing approaches from trios
and phylogenetic analyses (Campbell et al. 2012; Palamara et al. 2015).
Here, we adopted a simplistic estimator of mutation rate based on IBD,
similar in spirit to that used in Campbell et al. (2012) with autozygous
segments, assuming that the phase and demographic history of the
sample are known and that no genotyping or sequencing errors exist.
We will show that without taking the conflation phenomenon into
consideration, our mutation rate estimates will be biased. However,
we note that the studies referenced here have utilized external infor-
mation, such as pedigrees and trio-based phasing, to implicitly over-
come the conflation problem; see Discussion.

Differences between IBD segments must have occurred more re-
cently than the common ancestor giving rise to the IBD. Therefore, an
estimator of the mutation rate m is:

m ¼
X

i2ImðiÞ
X

i2I2LseqðiÞTIBDðiÞ
(1)

where I is the set of all IBD segments, and for a given IBD segment i,
m(i) is the number of sequence mismatches on the two IBD haplo-
types, Lseq(i) is the total sequenced region (= the length of the IBD
segment, LIBD(i) (if completely sequenced), and TIBD(i) is time since
the common ancestor in generation.

Simulating conflated segments to test the impact of
conflation on mutation rate estimator
Based on all of the IBDARG segments with length . 0.2 cM, we first
estimate the distribution of IBD segment ages given segment length in
the simulation. As suggested by visual inspection, we binned lengths to
0.1 cM resolution, and for each length bin, fitted a mixture of two g

distributions to the true distribution of ages in that bin using an EM
algorithm implemented in the R package mixtools (Table S2). In prac-
tice, this distribution will change depending on the underlying demog-
raphy of the population andwill likely be difficult to estimate. However,
for the purpose of our illustration here, we assumed that the demog-
raphy is known.

Then, tosimulateconflatedsegments inamoreefficientmanner than
using thecoalescent,wesampledIBDsegment lengths fromtheapparent
length distribution and assigned each sampled IBD segment as a
conflated segment or a nonconflated segment, depending on its length
and the appropriateproportionof conflation given its lengthobserved in
the simulations. For nonconflated segments, we sampled an age, TUC,
from the age distribution given its length, LUC, using the mixture g

(parameters given in Table S2). The number of sequencemismatches in
each IBD segment were then sampled from a Poisson distribution with
mean 2LUCTUCm, where m is the mutation rate and set to 1.2 · 1028.

Forconflatedsegments,wemake the simplifyingassumption that the
entire segment of length LC is composed of only two subsegments of
length LC1 and LC2, with no gap. Lc is sampled from the apparent length
distribution (with conflation), LC1 is sampled from the true length
distribution of IBDARG segments, and LC2 = LC – LC1. For each pair
of subsegments, we then sampled ages TC1 and TC2, and sampled
numbers of sequence mismatches as above.

For both conflated and nonconflated segments, we also sampled the
apparent age based on the apparent length (the full length for non-
conflated segments, and the sum of the two lengths for conflated
segments). These will be the estimated TIBD used in Equation 1. We
generated 1000 sets of 5000 IBD segments (roughly the number of
segments . 1 cM detected by Refined IBD across the five 20 Mb
regions), and report the median, fifth and 95th percentile estimates
of the mutation rate.

Note that our strategy here is aimed at examining the potential
impact of conflation, and conflation alone, on our mutation rate
estimator in a conservative manner. As such, we assumed that there
are no genotyping or sequencing errors, the phase and the demography
are known, and that there is no misestimation of the IBD segment
boundaries and no gaps between the conflated segments. In practice,
these are all issues that can further confound the analysis.

Data availability
Codes used for analysis in this paper are available upon request.
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RESULTS

The prevalence of subsegment conflations among called
IBD segments
Across the simulations, Refined IBD called a total of 5459 IBDcalled

segments. A random subset of 250 IBDcalled segments, together with
how they are composed of IBDARG segments, is displayed in Figure 2;
the entire dataset is displayed in Figure S1. Some of the subsegments
completely overlapped with the longest IBDcalled segment due to dip-
loidy, but 22.4% of the IBDcalled segments with length. 1 cM include
portions of IBDARG segments that are shorter but at least 0.2 cM long,
17.5% of the IBDcalled segments have their length extended by at least
0.2 cM (Figure 3A). When extended, the length of the IBD segments is
extended by an average of 0.31 cM. One illustration of a conflated
segment is shown in Figure 4, where between the four possible pairs
of haplotypes between two diploid individuals, two separate segments
were inherited from two sets of recent, but different, common ancestors
that are in close proximity to each other, leading the algorithm to call
the entire region IBD.

Comparing segment length biases due to conflations as a function of
the called segment length, we see that the contribution due to conflation
of subsegments. 0.2 cM is greater than that due to minor endpoint
errors and gaps in the calling (defined here as the regions of the
called segment that are not attributed to a subsegment . 0.2 cM)
(Figure 3B). The minor endpoint and gap errors are relatively in-
dependent of the length of the IBDcalled segment length, while biases
due to conflation are concentrated among the shorter segments
(, 1.75 cM, Figure 3, A and B). Discarding 0.1 cM from either
end of the IBDcalled segments improved the calling slightly, reducing
the proportion of conflated segments to 19.9% (12.9% of segments
have their length extended by at least 0.2 cM), with an average of
0.26 cM increase in length when a segment is extended. However,
the improvement is mostly due to reducing the minor endpoint
errors, with little impact on the errors due to conflation (Figure
S2). Together, these results suggest that a significant contributor
to the biases in the length of IBDcalled segments is the conflation
of subsegments that are themselves stretches of IBD inherited
from a relatively recent, though different, common ancestor. The

conflation error also differs from the typical minor inaccuracies of
detecting endpoints, in that the overlap with a true segment does not
improve if we discard the ends of the called segment.

While we have thus far focused on IBDcalled segments produced by
the Refined IBD program, our observation should not be specific to
Beagle, but is more generally applicable to any IBD calling algorithm so
long as these programs depend solely on sequence identity for infer-
ence. To test this hypothesis, we also used fastIBD (B. L. Browning and
S. R. Browning 2011), GERMLINE (Gusev et al. 2009), and IBDLD
(Han and Abney 2013) to call IBD segments in each of our simulated
regions. We observed the same conflation effects across these algo-
rithms, though different algorithms were affected to different degrees
(Figure S3 and Figure S4).

Finally, the conflation effect is alsonot specific to thedemographywe
simulated. In addition to the European-like human demography esti-
mated in Nelson et al. (2012), we also simulated under both the Euro-
pean and African demographic histories published in Tennessen et al.
(2012), an alternative European-like model without the most recent
exponential growth phase, as well as a constant size population. Though
different demographic scenarios are affected by the conflation events to
different degrees, the conflation effect is evident in all cases (Figure S5).

The rate of conflation of true IBD segments in the
simulated ancestral recombination graphs
Though we have observed significant conflation among IBD segments
called by a number of algorithms, it remains possible that this is
particular to the technical aspects of the calling algorithm, and avoidable
somehow. Thus, we next characterized the rate of conflation events
between true IBD segments identified from the simulated ancestral
recombinationgraph.Wedefinea conflationevent inour simulateddata
as when two IBDARG segments, each of length at least w cM, separated
by a gap no greater than a small number 0 (two subsegments overlap)
or 0.01 cM, together account for an end-to-end length of at least 1 cM.
The simplest model of IBD segment conflation is that, given the
length distribution determined by the coalescent time distribution,
observed long IBD segments are uniformly and independently dis-
tributed along the genome. To test this, we simulated 100 replicate

Figure 2 The prevalence of subsegments among
algorithm-detected IBD segments. Each of a set of
250 randomly chosen IBDcalled segments detected
by Refined IBD is represented by a vertical bar. The
IBDcalled segments are sorted along the x-axis
according to the detected length in decreasing or-
der. For each IBDcalled segment, the longest inter-
secting IBDARG segment is shown in yellow. The
second longest intersecting IBDARG subsegment, if
present, is shown in blue. The overlap between the
two longest IBDARG segments, if any, is shown in
olive green. The remainder of the detected region
is clumped in black. For each IBDcalled segment dis-
played, we also show the number of subsegments
. 0.2 cM detected in simulation using the vertical
axis on the right. For completeness, we also display
cases where the second IBDARG segment is com-
pletely overlapping the longest IBDARG segment,
in which case it would not confound the calling al-
gorithm. See Figure S3 for results based on IBDcalled

segments detected by GERMLINE, fastIBD, and
IBDLD. ARG, ancestral recombination graph; IBD,
identity-by-descent.
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datasets by permutation where we assigned each segment randomly
(with replacement) to two diploid individuals uniformly across the
genomic regions.

We observe that the conflation rate increases substantially as in-
creasingly smaller IBDARG segments are allowed (Figure 5A and Figure
S6).When counting conflation events due to segments as small as 0.2 cM,
the rate of conflation (2.66 events per 1000 pairs of individuals per
100Mb) is actually on the same order ofmagnitude as the true IBD rate
. 1 cM in length (8.42 events per 1000 pairs of individuals per 100Mb)
in the simulated dataset.When compared with the simulated replicates,
the levels of conflation are comparable (Figure 5A), suggesting that the
majority of the observed conflations are due to the random indepen-
dent placement of IBD segments along chromosomes. Therefore, any
potential correlation in long segment placement induced by the haploid
coalescent or the pedigree structure appears minimal.

To further investigate this, one can also assign each pair of conflated
segments as being in cis or trans based on whether the pairs involved 2, 3,
or 4 of the possible four haplotypes: a pair is cis if both IBD segmentswere
shared by the same two (out of the four possible) haplotypes, implying
that the segments descend from recent but different common ancestors;
the pair is trans if the pairs involve three or four of the possible haplotypes
(Figure S7). In theory, trans conflations should only be problematic to a
haploid-based IBD detection algorithm if phasing is imperfect, and thus
represent the amount of conflation problems that can be avoided with
better phasing. We find that approximately 80% of the conflations occur
in trans rather than in cis (2.13 events vs. 0.498 events per 1000 pairs of
individuals per 100 Mb). As there are three times as many possible trans
arrangements as cis, the proportion predicted by independent placement,
75%, is within the confidence interval.

Theobserved rateof conflation leads toanoticeablebias in the length
distribution of apparent IBD segments with length greater than 1 cM

(Figure 5B and Figure S6). Specifically, approximately 27% of the ap-
parent IBD segments between 1–1.2 cM long are due to conflation.

Evaluating the impact of conflation on a mutation
rate estimator
We evaluated the impact of the biased length distribution of IBD
segments due to conflation on a mutation rate estimator. Given
accurately defined IBD segments and perfect sequence and phase
information, the sequence mismatches between a pair of individ-
uals in the IBD segment reveals mutations that have arisen since the
common ancestry of the two IBD haplotypes. Therefore, we devised
a simplistic mutation rate estimator based on observed sequence
mismatches between a pair of IBD haplotypes and a conservative
heuristic to generate simulated data (Methods).

When we applied the mutation rate estimator on a set of non-
conflated segments. 1 cM (i.e., all IBD segments are called perfectly),
we would estimate the same mutation rate (1.201 · 1028/bp/gen; fifth
and 95th percentiles = 1.174 · 1028 and 1.228 · 1028 /bp/gen, re-
spectively) as the value used to simulate the data (1.20 · 1028 /bp/gen).
When the estimator is applied on a set of conflated segments, all com-
posed of two subsegments, we would estimatem to be 1.647 · 1028 /bp/
gen (fifth and 95th percentiles = 1.596 · 1028 and 1.702 · 1028 /bp/
gen, respectively), which is a 37% inflation. When we applied the esti-
mator to a mixture set composed of �34% conflated segments (as
would be predicted by Figure 5B), the estimated m is 1.311 · 1028 /bp/
gen (fifth and 95th percentiles = 1.287 · 1028 and 1.337 · 1028/bp/gen),
a more modest 9% inflation. As one increases the length cut-off for
IBD segments for analysis, the median estimate of m becomes less
inflated, though still higher than the true value due to the persistent
low level of conflation, and with a wider confidence interval due to
fewer IBD segments for analysis (Table S3).

Figure 3 The conflation effect as a function of the length of IBDcalled segments. (A) The complementary cumulative distribution functions (i.e.,
1-CDF) for the total length extended due to subsegments . 0.2 cM (except for the longest IBDARG segment). The distributions are also stratified
by four levels of length: Between 1–1.25 cM, between 1.25–1.5 cM, between 1.5–1.75 cM, and . 1.75 cM. The conflation effect is generally
driven by segments , 1.75 cM in detected length. (B) The biases in estimated length due to subsegments and end point errors as a function of
the estimated length. We binned all IBDcalled segments in 7 bins: [1, 1.2), [1.2, 1.4), [1.4, 1.6), [1.6, 1.8), [1.8, 2), [2, 2.2), [2.2, 20), and for each bin
examined the average length extended (from both ends) beyond the longest IBDARG segment found in the called region due to either a
subsegment . 0.2 cM (blue), or other minor endpoint errors and gaps between subsegments (black). Each data point is plotted on the x-axis
at the median length of the bin. ARG, ancestral recombination graph; CDF, cumulative distribution function; IBD, identity-by-descent.
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DISCUSSION
A number of population genetic analyses focus on the information
provided by the IBD segment length distribution. So far, nearly all
applications assume that each detected IBD segment is derived from a
singlecommonancestor.However, theobservedIBD lengthdistribution
is often biased, and extensive efforts are undertaken to empirically
correct the observed distribution in order to ensure the validity of the
downstream conclusions. In this manuscript, we studied this core
assumption, and examined through simulations the phenomenon of
conflation of shorter segments. Our characterization of this phenom-
enon shed light on one of the mechanisms by which the IBD length
distribution is biased in practice.

We have shown that using simulated SNP array data, under a
reasonable demography forwestern European humans, and irrespective

of the choice of IBD-calling algorithm examined, an appreciable pro-
portion of called IBD segments shorter than 2 cM are composed of
conflationsof shorter,moredistantly related, subsegments. For instance,
of segments. 1 cM inferred usingRefined IBD, greater than 22%have the
IBD segment length extended due to other short subsegments. 0.2 cM;
most of these were extended by 0.2–0.5 cM. The rate of conflation is
reduced to�6% for longer IBD segments (. 2 cM) (Figure 3A). In our
simulations, chance conflations often arose between independent,
shorter segments (e.g., two of sizes 0.5 cM); this creates more segments
near the shorter end of our detection threshold (1 cM) than longer
because the true segment length distribution is so strongly peaked near
zero (Figure 5). Furthermore, we have shown that the conflation errors
are unlike typical minor endpoint estimation errors, which would be
improved by removing ends of the segments from downstream analysis

Figure 4 An illustrative exam-
ple of the conflation effect on
the mutation rate estimator. For
a particular IBDcalled segment of
length 1.145 cM, we show the
distribution of IBDARG subseg-
ment age (y-axis) as a function
of position (x-axis, between
9.45–10.59 Mb of a 20 Mb sim-
ulated region). Each of the four
different pairwise haplotype
configurations between the
two diploid samples is illus-
trated with a different color.
The simulated haplotype num-
bers are displayed in the upper
right hand corner. The vertical
dashed lines demarcate the
10% segment length from both
ends of the segment that one
could remove from analysis
due to the uncertainty in esti-
mating the ends of the IBDcalled

segments. The age of each sub-
segment is plotted as a step
function of its length. In this
case, the IBD region is domi-
nated by two long segments of
IBD, one between simulated
haplotypes 1865 and 654, an-
other between simulated haplo-
types 911 and 654. (There is
actually a third, very short, seg-
ment of recent coalescence be-
tween simulated haplotypes
911 and 654 that is not obvious
here.) Regions that do not pro-
duce long IBD segments can be
clearly seen with the deep coa-
lescences. In this case, the pre-
dominate IBD haplotype should
be between haplotypes 1865
and 654, but the conflation with
a neighboring IBD haplotype
between haplotypes 911 and
654 led to the estimation of a
single long IBD segment. ARG,
ancestral recombination graph;
IBD, identity-by-descent.
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(Figure 3B and Figure S2). However, we note that the severity of the
conflation problem may differ in real data, as other factors such as the
marker density and the underlying, unobserved population demogra-
phy could also be in play.

The conflation effect described here could potentially in part explain
the recent observation of pervasive false-positive IBD segments
detected in pedigrees (Durand et al. 2014). In Durand et al. (2014),
the authors noted that over 67% of the IBD segments they identified
with GERMLINE between a child in a trio to an unrelated individual
are not observed between either of the parents in the trio to the same
unrelated individual. This false positive effect is also exacerbated near
the algorithm’s length threshold for making a call. Conceivably, at
least a subset of these false positive events is not due to blatant errors
in the calling algorithm. Instead, some of the IBD segments called in
the child-to-other comparisons could be due to conflations of IBD
segments, independently inherited from the two parents. As a result,
the full-length IBD segments are not observed in either of the parents.
However, also note that implementation differences of the pipelines
utilizing GERMLINE could cloud direct comparisons. For example,
Durand et al. (2014) used different length thresholds as used here, and
did not use the haploid mode of GERMLINE, which is expected to
improve performance.

The failure to account for the biased length distribution of IBD
segments due to conflationwould lead to errors in downstreamanalysis,
which we demonstrated with a simplistic estimator of themutation rate
based on IBD segments. While we focus only on the issue of conflation,
other hurdles exist to estimating mutation rates from IBD segments,
such as estimating the age of the MRCA or dealing with imperfect
computational phasing. Indeed, utilizing external information (such as
focusing on autozygous segments or using trio-phasing) to overcome
these issues, as well as modeling of genotyping errors, are the focus
of recent attempts to estimate mutation rate using the IBD concept

(Campbell et al. 2012; Palamara et al. 2015). However, the external
information used by these studies is not always available, and would
reduce the sample sizes available for analysis. As such, there remains
room for improvement.

Other types of analyses that rely heavily on the length and age
distribution of IBD segments are demographic inferences based on IBD
segments. For example, Ralph and Coop (2013) devised a nonparamet-
ric approach to infer the number and age of recent shared ancestors
between populations based on IBD sharing between populations. This
provides estimates of distributions of the ages of IBD segments given
their lengths, but analytic difficulties inherent to demographic inference
may make these quite noisy. Palamara et al. (2012) avoided this by
fitting demographic models parameterized with few parameters. In
both cases, it would be preferable to directly model conflation of short
segments, although both carefully corrected the observed length distri-
bution of IBD segments to reach robust conclusions. Ralph and Coop
(2013) focused only on IBD segments longer than 2 cM, whichwe show
could remove the majority of conflation effects, and further modeled
the power, false-positive rates, and length misestimation of IBD de-
tection. Instead of using a hard cut-off, Palamara et al. (2012) used an
approach that iterates between demographic inference and IBD detec-
tion, until they converged on a set of parameters for GERMLINE
that minimized the difference between called and true IBDs from sim-
ulation specific to the data at hand, prior to the formal demographic
inference procedures. Alternative approaches using IBS directly rather
than IBD can also be taken, as the length of IBS segments can be more
precisely obtained given high-coverage sequencing data (Harris and
Nielsen 2013). It will be interesting to investigate if a theoretical frame-
work contrasting IBS and apparent IBD segments can predict the rate
of conflated segments within a dataset.

Though we focused on an IBD detection framework using high-
density array data, as the field develops algorithms aimed to detect even

Figure 5 Conflations of shorter IBD segments will bias the length distribution. (A) For each bin of segment length range, we calculated the rate at
which two IBDARG segments in our simulations, both within the length range, are adjacent and together constitute an end-to-end length of at least
1 cM (i.e., maximum gap sizes = 0 cM and combined length . 1 cM). The blue dot is the actual value observed in simulation. The boxplot shows
the variance around the observed value by randomly sampling from the observed segment length distribution but randomly assigning the
location of a segment and sample IDs 100 times. (B) The biased length distribution if each conflated IBDARG segment is counted for its conflated
length rather than the two true lengths. Note that the apparent length of each conflated segment is due to conflation of two IBDARG segments,
independent of any imprecision due to algorithm calling. Dotted line is the true length distribution if each conflated segment can be resolved
based on the coalescent genealogy. Inset shows the comparison between the biased length distribution and the true length distribution in log
scale. For results based on a maximum gap size of 0.01 cM, refer to Figure S6. ARG, ancestral recombination graph; IBD, identity-by-descent.
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shorter segments due to the improved density of markers in the era of
whole genome sequencing [e.g., programs like IBDseq (B. L. Browning
and S. R. Browning 2013a)], it seems imperative to note and reevaluate
the potential problem of conflation. We found that �75–80% of the
conflated segments are the result of pairs of segments existing in trans,
suggesting that improvements in phasing may greatly reduce, but not
completely eradicate, biases due to conflated segments. Therefore, in
addition to improvements in phasing, considerations of the conflation
effect and external information such as availability of other individuals
in the pedigree could all contribute toward improved accuracy in IBD
detection and interpretation.
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APPENDIX

MaCS Commands for Simulations
The primary demographic model used throughout the manuscript is one based on deep resequencing of 202 genes across 14,000 European

individuals (Nelson et al. 2012): the population has ancestral size of 12,500 up until 17,000 generations ago, 24,500 between 3500–17,000
generations ago, 7700 between 368–3500 generations ago, and exponentially expanding at a rate of 0.017 per generation to a present day size
of 4 · 106. The MaCS command used is:

macs 2000 20000000 -T -t 0.192 -r 0.16 -G 0.017 -eN 0.000023 0.001925 -eN 0.00021875 0.006 -eN 0.0010625 0.003125

All input parameters are scaled by 4N0 for MaCS, with N0, the present day effective population size, equaling 4 · 106 in this case.
Moreover, we simulated under a number of other demographic scenarios, primarily based on those published by Tennessen et al. (2012). These

include: the European and African demography from Tennessen et al. (2012), a European model but without the aggressive second exponential
growth phase, as well as a constant size population. Specifically, the African demography was modeled with a population of size 7310 until 1480
generations ago, 14,474 between 205–1480 generations ago, and then exponentially growing at rate 0.0165 per generation until reaching a present
day size of 424,000. For the European demography, we modeled a population with ancestral size 7310, that has a population size of 14,474 between
2040–5920 generations ago, 1861 between 920–5920 generations ago, after which the population experienced exponential growth at rate 0.003 per
generation until 204 generations ago, when the growth rate increases to 0.0195 per generation to reach a present day size of 496,500. The alternative
European model without the aggressive second exponential growth phase is similar, but reaching only a present day size of 9300. Finally, the
constant size population has a constant size of 100,000. The MaCS command for these simulations are:

Tennessen European model (N0 = 496,500):

macs 2000 20000000 -T -t 0.023832 -r 0.01986 -G 0.0195 -eG 0.000102718 0.00307 -eN 0.000463746 0.00374823 -eN 0.00102719 0.02915204
-eN 0.002980864 0.01472305

Tennessen African model (N0 = 424,000):

macs 2000 20000000 -T -t 0.020352 -r 0.01696 -eG 0.0 0.016475022 -eN 0.000120873 0.034136873 -eN 0.003490568 0.017240607

Tennessen European alternate model (N0 = 9300):

macs 2000 20000000 -T -t 0.0004464 -r 0.000372 -eN 0.0 1.0 -eG 0.005510753 0.003074847 -eN 0.024758065 0.20010753 -eN 0.05483871
1.55634409 -eN 0.159139785 0.78602151

Constant size population model (N0 = 100,000):

macs 2000 20000000 -T -t 0.0048 -r 0.004 -eN 0.0 1.0
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