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The hidden simplicity of metabolic networks is revealed 
by multireaction dependencies
Anika Küken1, Damoun Langary1,2, Zoran Nikoloski1,2*

Understanding the complexity of metabolic networks has implications for manipulation of their functions. The 
complexity of metabolic networks can be characterized by identifying multireaction dependencies that are 
challenging to determine due to the sheer number of combinations to consider. Here, we propose the concept 
of concordant complexes that captures multireaction dependencies and can be efficiently determined from the 
algebraic structure and operational constraints of metabolic networks. The concordant complexes imply the exis-
tence of concordance modules based on which the apparent complexity of 12 metabolic networks of organisms 
from all kingdoms of life can be reduced by at least 78%. A comparative analysis against an ensemble of randomized 
metabolic networks shows that the metabolic network of Escherichia coli contains fewer concordance modules 
and is, therefore, more tightly coordinated than expected by chance. Together, our findings demonstrate that 
metabolic networks are considerably simpler than what can be perceived from their structure alone.

INTRODUCTION
Advances in technologies and computational approaches for genome 
assemblies coupled with systems biology efforts to annotate gene 
functions and generate omics data have propelled the development 
of large-scale models of metabolism not only of single cell types, 
organs, and organisms but also of metabolic communities of inter-
acting organisms (1–4). In parallel with the detailed modeling of 
metabolic networks for specific biological systems, principles under-
lying the organization of metabolic reactions in metabolic networks 
that support steady states have also been determined. For instance, 
metabolic networks have been shown to exhibit bow tie structure, 
where few metabolites act as intermediates between a large number 
of precursors (i.e., nutrients) transformed in multiple building blocks 
of biomass (5); the bow tie structure is, in turn, reflected in the power 
law distribution of the number of reactions in which metabolites 
participate (6), in the minimal path between precursors and biomass 
components (7), and in the hierarchical ordering of steady-state 
reaction fluxes (8, 9). In addition, pairs of metabolic reactions have 
been grouped into different classes based on the relationships that 
their fluxes exhibit in every steady state that the network supports 
(10,  11), providing means to study the modular organization of 
metabolic networks (12, 13) under operational constraints.

While these findings are exclusively based on pairwise relation-
ships between reaction fluxes, there may exist functional dependen-
cies that include more than two reactions. However, identifying 
principles of functional organization of large-scale metabolic net-
works that go beyond pairwise relationships of reaction fluxes is 
challenging due to the sheer number of combinations of reactions 
and relations to consider. Against this background we ask: Can de-
pendencies between multiple steady-state metabolic fluxes be iden-
tified efficiently by using structural network properties? And what 
are the implications of the multireaction dependencies on the sim-
plification of the underlying networks?

To address these questions, we first define the concept of con-
cordance of complexes that can be used to unravel dependencies 
between multiple steady-state reaction fluxes. We then devise a pro-
cedure for an efficient identification of concordant complexes in 
large-scale networks with arbitrary enzyme kinetics. We show that 
concordant complexes are present in genome-scale metabolic mod-
els across species from all kingdoms of life. In addition, by using the 
notion of concordant complexes, we provide a sound formalization 
of modules in a metabolic network that considers operating con-
straints, in contrast to previous works that rely on either the network 
structure or pairwise flux relations only. We then discuss additional, 
mild structural conditions ensuring that the identified modules can 
be studied in isolation—providing a tangible biochemical implica-
tions of the introduced concepts. We also show that the modules 
specify the extent to which a metabolic network can be simplified. 
Last, we also demonstrate that properties of the modules in the met-
abolic network of Escherichia coli are different in comparison to an 
ensemble of randomized network variants, indicating biological 
relevance of the introduced concepts. Together, our findings demon-
strate that multireaction dependencies between fluxes highlight the 
elegant simplicity underlying seemingly complex metabolic networks 
across organisms from all kingdoms of life.

RESULTS
Concordance of complexes in biochemical networks
To define the relation of concordance of complexes, we first intro-
duce key concepts from stoichiometric models of metabolic net-
works. A biochemical network is composed of reactions through 
which biochemical components, referred to as species, are trans-
formed from substrates into products. The toy example network in 
Fig. 1A includes 10 reactions that transform six species, denoted by 
letters A to F (14). The network structure is described by nodes that 
denote complexes, corresponding to the left- and right-hand sides 
of the considered reactions, and directed edges representing the re-
actions. For instance, the network in Fig. 1A contains eight com-
plexes connected by 10 reactions. Every reaction has a head, or 
substrate, and a tail, or product complex. For instance, 2A is the 
head and B is the tail complex of the first reaction in Fig. 1A. The 
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stoichiometric matrix, N, of the network is then given by the product 
of the matrix, Y, describing the species composition of complexes 
and the incidence matrix, A, of the corresponding directed graph 
(Fig. 1, B to D) (15, 16). Thus, column Y.j gives the species and mo-
larity with which they form the complex j. In addition, the reactions are 
weighted by nonnegative numbers, which correspond to fluxes of a 
steady-state flux distribution, v, which satisfies   dx _ dt   = Nv = YAv = 0 , 
whereby the concentrations of species, gathered in the vector x, are 
invariant in time.

We next consider the activity of a complex, j, denoted by j, given 
by the differences between the sum of fluxes of reactions that have j 
as a product complex and the sum of fluxes of reactions that have j 
as a substrate complex. This activity of a complex is also referred to as 
the complex formation rate (17). Given a flux distribution, v, the 

activity of complex j for that flux distribution can be succinctly writ-
ten as j = Aj.v, where Aj. corresponds to the jth row of the inci-
dence matrix A of the network. For instance, the activity of complex 
C is given by C = v3, while that of complex B + C is given by B + C = 
v5 − v4. Therefore, the activities of complexes represent multire-
action relationships that correspond to linear combinations of re-
action fluxes and reflect the network structure. As a result, the 
steady- state equations can be expressed in terms of activities of 
complexes, i.e.,   dx _ dt   = YAv = Y = 0 .

Given a set of steady-state flux distributions S = {v, Nv = 0, vmin ≤ 
v ≤ vmax}, we say that complexes i and j are concordant in S if the 
concordance ratio,      i   _    j     , of their activities, i and j, is finite, nonzero, and 
invariant over the flux distributions in S. Formally, two complexes 
are concordant if there exists a nonzero constant ij, such that 

A E

B C F
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Fig. 1. Illustration of concordant complexes and implications of metabolite degree. (A) To illustrate the three different types of concordant complexes, we use a 
network (14) with 6 species A to F, 10 reactions with fluxes v1 − v10, and 8 complexes, marked with rectangular boxes. Complexes marked in red are balanced and form a 
concordant module. Complexes C and B + C, marked in blue, are trivially concordant because species C only participates in these two complexes. A group of nontrivial 
mutually concordant complexes, composed of complexes B, B + C, and 2B, is marked with orange boxes. Hence, the complexes B, C, B + C, and 2B form another concor-
dance module. (B) Species-complex matrix Y, with rows corresponding to species and column to complexes. Each entry indicates the molarity with which a species par-
ticipates in a complex. (C) Incidence matrix A of the directed graph given in (A). (D) Stoichiometry matrix N, with rows corresponding to species and columns denoting 
reactions, and each entry indicates the molarity with which a species is produced (positive) or consumed (negative) by a reaction. The stoichiometry matrix of the network 
is given by the product of species-complex matrix and incidence matrix, N = Y A. Illustration of different networks used in the definition of metabolite degree: (E) Bipartite 
reaction-metabolite graph, in which metabolite degree corresponds to the number of reactions in which a metabolite participates, given by the number of edges incident 
on the metabolite node. (F) Bipartite complex-metabolite graph, in which metabolite degree corresponds to the number of complexes in which a metabolite participates. 
In the complex metabolite bipartite representation, a metabolite can participate in one or multiple concordance modules. The effective degree of a metabolite is given 
by the number of concordance modules that contain complexes that include the metabolite. (G) Comparison of classical definition of metabolite degree and the here- 
defined effective metabolite degree.



Küken et al., Sci. Adv. 8, eabl6962 (2022)     30 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 10

i − ijj = 0 holds for every flux distribution in S. For instance, from 
the steady-state equation for species C, we get that C + B+C = 0, 
whereby       C   _    B+C    = − 1 .

Our first contribution consists of showing that concordant com-
plexes can be efficiently identified in large-scale biochemical net-
works by linear fractional programming (see Methods). We note that 
complexes whose activity is zero in every steady state in S are re-
ferred to as balanced and have been used in reduction of metabolic 
networks (18). For instance, complex A + E is balanced because spe-
cies E occurs in only this complex; as a result, the complex 2A is also 
balanced. On the basis of the definition of concordance, all balanced 
complexes can be considered mutually concordant.

Pairs of concordant complexes can be categorized into three 
groups that include (i) balanced complexes, (ii) trivially concordant 
complexes, and (iii) other concordant complexes that are not bal-
anced or trivial. This categorization of concordant complexes can 
be readily related to properties of the species in the network. If a 
species k participates in only two complexes, i and j, then it must 
be that ykii + ykjj = 0, and thereby      i   _    j     = −    y  kj   _  y  ki    . We refer to such 
complexes as trivially concordant. For instance, in the network in 
Fig. 1A, complexes C and B + C are trivially concordant because C 
occurs in only these two complexes in the network. In contrast, 
species B participates in three complexes, B, B + C, and 2B; because 
B = v1 − v2 − v3 = − 2A − v3 = −C, as the complex 2A is balanced, we 
obtain that these three complexes are mutually concordant. This 
example provides a key observation for mutually concordant com-
plexes, whereby the activity of one of these complexes suffices to 
deduce the activities of the others. One can easily see that the extent 
to which species jointly participate in complexes is one factor that 
allows for concordance to occur, leading to the hypothesis that con-
cordance of complexes may be prevalent in metabolic networks, 
given the interplay between species in these networks.

Concordant complexes in genome-scale metabolic networks
Having defined and illustrated the concept of concordance between 
complexes, we next tested the hypothesis about prevalence of con-
cordant complexes in high-quality metabolic network models. To 
this end, we used the metabolic networks of 12 organisms to com-
pare and contrast the percentage of concordant complex pairs in 
the following two scenarios: (i) The reactions follow the irreversibil-
ity constraints imposed in the original models, and (ii) in addition 
to irreversibility constraint, optimality of growth rate is imposed. 
We considered these two scenarios because we aimed to characterize 
the effects of inspecting a subset of feasible flux distributions (e.g., 
due to imposing additional constraints) on the determined concor-
dant complexes. This will also indicate the extent to which optimality 
assumptions, often invoked in constraint-based modeling of meta-
bolic networks, contribute to two pairs deemed as concordant. We 
note that reversible reactions are split into two irreversible reactions 
before applying the approach, and no assumptions are made about 
the reaction kinetics.

We found that in scenario (i), when only reaction reversibility 
constraints are considered, the models that exhibited the largest 
percentage of concordant complex pairs included Methanosarcina 
barkeri (37.8%), followed by Methanosarcina acetivorans (24.3%) 
and Mycobacterium tuberculosis (10.9%) (table S1 and Fig. 2A); in 
contrast, the smallest percentage of concordant complex pairs were 
identified in the models of Natronomonas pharaonis (1.8%) and 
Arabidopsis thaliana (0.6%) (Fig. 2A and table S1). We note that, by 

the imposed convention, the considered concordant complex pairs 
include all pairs of balanced complexes. Upon excluding the pairs of 
balanced complexes from the pairs of concordant complexes, we found 
that the models of N. pharaonis (1.15%) and Pseudomonas putida 
(0.66%) exhibited the largest percentage of concordant complex pairs 
(table S1 and Fig. 2A). In scenario (ii), when optimal specific growth 
rate is imposed as an additional constraint, we observed, as expected, 
an increase in the percentage of concordant complex pairs. For the 
models of A. thaliana, N. pharaonis, P. putida, and Thermotoga maritima, 
the additional constraint resulted in at least 14% increase in the percent-
age of concordant complex pairs, ranging from 1.1% in A. thaliana 
to 3.7% for N. pharaonis and 4.5% for P. putida (Fig. 2A and table S1). 
In other words, imposing restrictive operational constraint—under 
which a metabolic network of interest may function—leads to higher 
concordance of activities of the network complexes.

Investigating the percentage of complexes that are in concordance 
relation with at least one other complex, we found that the largest 
fraction in scenario (i) corresponds to the models of M. barkeri 
(83%) and N. pharaonis (70%) (Fig. 2B and table S1). In contrast, 
the models of A. thaliana (42%), Saccharomyces cerevisiae (40%), 
Chlamydomonas reinhardtii (39%), and Escherichia coli (36%) 
showed the smallest percentage of complexes that are in concor-
dance relation with at least one other complex. These findings hold 
in the scenario when optimality of the specific growth rate is im-
posed as a constraint (table S1).

As illustrated above, the concordance ratio for trivially concor-
dant complexes is necessarily negative. Therefore, we next deter-
mined the percentage of complex pairs that are trivially concordant 
and also looked for those complex pairs whose concordance ratios 
is positive. Our findings indicated that the percentage of trivially 
concordant complex pairs ranges from 0.005% in S. cerevisiae to 
0.06% in T. maritima, with an average of 0.02% across the investi-
gated models (table S1 and Fig. 2A). Furthermore, the percentage of 
concordant complex pairs with positive concordance ratio ranges 
from 0.0001% in E. coli to 0.2% in N. pharaonis (table S1). Together, 
our results demonstrated that genome-scale metabolic networks 
harbor nontrivial concordant complexes that arise as a result of the 
interplay between network structure and operational constraints.

Concordance modules and distribution of their sizes across 
metabolic networks
Because concordance is an equivalence relation (Methods), it parti-
tions the set of complexes into classes of mutually concordant com-
plexes that give rise to concordance modules in a metabolic network. 
From the definition of concordance module, it follows that knowl-
edge of the activity of one complex suffices to obtain the activities of 
all other complexes in the module. For instance, the paradigmatic 
network in Fig.  1A is composed of two concordance modules 
(Fig. 1F): The first is given by all balanced complexes, namely, 2A, 
D, A + E, and F, while the second is composed of B, C, B + C, and 
2B. Therefore, the notion of concordance modules can be used to 
quantify the modularity of functional metabolic networks.

We were next interested to examine whether concordance mod-
ules are related to metabolic pathways, as defined in biochemistry 
textbooks (19). To this end, we used the information of metabolic 
subsystems in the analyzed models and investigated the number of 
modules that include more than half of complexes of each metabolic 
subsystem. For instance, in the model of E. coli, more than half of 
complexes in glycolysis/gluconeogenesis as well as valine, leucine, 
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and isoleucine metabolism are covered by eight modules (Fig. 3). In 
S. cerevisiae, more than half of complexes in the metabolic subsystems 
of fatty acid biosynthesis, atrazine degradation, carbapenem bio-
synthesis, and sulfur relay system are grouped in individual modules 
(fig. S1). In A. thaliana, this is the case for 10 metabolic subsystems, 
including light reactions, carbon fixation, and fatty acid synthesis 
(fig. S2). Furthermore, for aspartate synthesis, oxidative phospho-
rylation, proline synthesis, pyruvate decarboxylation, serine synthe-
sis, and sulfur assimilation, only two modules comprise more than 
half of the complexes. To statistically assess whether complexes of 
the same subsystem are overrepresented in a concordance module, 
we used the hypergeometric test (Methods). Considering only con-
cordance modules including at least one complex of the tested sub-
systems, we observed significant enrichment (P ≤ 0.05) for 6, 4, and 
2% of the subsystems in E. coli, S. cerevisiae, and A. thaliana, respec-
tively (table S2). Furthermore, for 42, 33, and 8% of the subsystems, 
we found significant enrichment in at least 50% of the concordance 
modules that contain complexes of that subsystem. Therefore, these 
findings indicated that concordance modules, inferred in an automated 

fashion from the network structure in combination with operational 
constraints, are partly in line with textbook boundaries of metabolic 
pathways and emphasize the relation between these pathways.

Next, we investigated the distribution of the size of concordance 
modules across all used models in the two considered scenarios. For 
scenario (i), without considering balanced complexes, we found that 
these distributions do not follow power law, except for the networks 
of M. tuberculosis, P. putida, and S. cerevesiae (scaling coefficients in 
[5.96, 8.92]; table S3D and fig. S3). These distributions can be hence 
classified in the Super-Weak category, indicating that although power 
law seems to be a better fit compared to some tested alternatives, it 
is not necessarily a statistically plausible choice in these cases (20). 
With consideration of balanced complexes, the size of concordance 
modules does not follow power law for any models (table S2C). The 
distribution of the size of concordance modules is better described 
by stretched exponential distributions of the form  y =  e   −  (    x _ b  )     

a
   , with 

parameters a = 1 and b = 0.01 (table S3, C and D) (20). Under sce-
nario (ii), without considering balanced complexes, the size of con-
cordance modules follows Super-Weak power law in the networks 
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Fig. 2. Prevalence of concordant complexes in metabolic networks from 12 organisms. Genome-scale metabolic models of 12 organisms from all kingdoms of life 
are analyzed for occurrence of concordant complexes (i) assuming reaction reversibility as given in the original model and (ii) when optimal specific growth rate is im-
posed as additional constraint. (A) Percentage of concordant complex pairs from the total number of unique complex pairs. Concordant complex pairs can be categorized 
into three groups (legend): concordance of balanced complexes (balanced), trivially concordant complexes including a species that occurs in these two complexes only, 
and other concordant complexes (that are not balanced or trivial). (B) Percentage of complexes in concordance relation to at least one other complex relative to the total 
number of model complexes.
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of A. thaliana, E. coli, Mus musculus, M. tuberculosis, P. putida, and 
T. maritima (table S3D). Similar to scenario (i), when we take 
balanced complexes into account, no distribution follows power law 
(table S3C). In this case, too, the size of concordance modules is better 
described by stretched exponential distributions with estimated of 
a = 1 and b = 0.01 for the parameters (table S3, C and D) (20). 
These findings are in line with the presence of few large and many 
small concordance modules in the analyzed large-scale metabolic  
networks.

Implications of concordance modules 
on the metabolite degree
Because activities of complexes are the building blocks for the steady- 
state equations, we also examined the effect of modularity on the 

structure of these equations and, thereby, on the complexity of the 
metabolic networks at steady state. The number of reactions in which 
a metabolite participates corresponds to the number of reaction 
fluxes appearing in the steady-state equation for that metabolite 
and is termed nominal metabolite degree. For instance, for the net-
work in Fig. 1E, species A participates in four reactions, while spe-
cies B participates in nine reactions, corresponding to their nominal 
degrees. Previous work has indicated that the nominal metabolite 
degree is associated with chemical properties of metabolites (e.g., 
molecular solubility) and their concentrations (21) and that metab-
olites of larger nominal degree may exhibit smaller variability of 
concentrations (22). It has been demonstrated that the number of 
reactions in which metabolites participate follows power law dis-
tribution and that this evidence is the strongest in comparison to 

Fig. 3. Concordant module structure of metabolic subsystems in the model of E. coli. (A) Percentage of complexes assigned to a subsystem grouped in the same 
concordance module. For subsystems that do not sum up to 100%, the remaining complexes are not in concordance relation with any other complex. A horizontal line is 
added in each bar to mark the contribution of a module to a metabolic subsystem. The number on top of each bar indicates the number of concordance modules per 
subsystem. (B) Fraction of the number of concordance modules per subsystem to the number of complexes per subsystem.
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degree distributions in different types of biological networks ana-
lyzed to date (6, 20). However, because activities of complexes are 
used to specify the steady-state equation of a metabolite, we hereby 
define the degree of a metabolite as the number of complexes in 
which it participates. For instance, in the network in Fig. 1A, species 
A is of degree two as it participates in complexes 2A and A + E, 
while species B is of degree three due to its appearance in complexes 
B, B + C, and 2B (Fig. 1F). We found that for 67% of networks, the 
metabolite degree distribution follows power law (20) with expo-
nents ranging from 1.96  in the M. acetivorans to 2.65  in the 
A. thaliana network (Fig. 4 and table S3A). Furthermore, the de-
gree distributions of Aspergillus niger and T. maritima can be 
classified in the Strongest scale-free category [see (20) for classifica-
tion details], as Strong in case of A. thaliana and Weak for E. coli, 
M. acetivorans, M. barkeri, and M. musculus. In contrast, the degree 
distributions of C. reinhardtii, M. tuberculosis, N. pharaonis, 
P. putida, and S. cerevisiae are not power law and can be better 
described by stretched exponential functions of the form  y =  

e   −  (    x _ 0.01  )     1    (Fig. 4). In line with the analysis based on the number of 
reactions, ubiquitous metabolites, such as H+ and water, followed 
by adenosine triphosphate, phosphate, adenosine diphosphate, 
and nicotinamide adenine dinucleotides, participate in the largest 
number of complexes and thus exhibit the largest degree across the 
analyzed metabolic networks (table S4).

To better analyze the implications of the concordance modules 
on the structure of the underlying equations and the degree of me-
tabolites (see fig. S4 for distributions of metabolite degrees), let us 
first define the following notions: We say that a metabolite appears 
in a concordance module if the module includes at least one com-
plex containing the metabolite. The effective degree of a metabolite 
is then given by the number of concordance modules in which it 
appears. For instance, while species B is of degree three, as it partic-
ipates in three complexes in the network in Fig. 1A, its effective 
degree is one, because all these complexes are contained in one con-
cordance module (Fig. 1G). Therefore, on the basis of the algebraic 
structure alone, metabolites of large degree may, in fact, have small 
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Fig. 4. Log-log plot of distributions of metabolite degree and effective degree in networks of 12 organisms. We fit power law distributions to metabolite degree, 
i.e., the number of complexes in which a metabolite participates, and effective degree, i.e., the number of concordance modules in which a metabolite participates, ob-
tained for scenario (i). The distributions of effective degrees are drawn in blue, while those of the metabolite degrees are drawn in black. While 58% of distributions of 
degree and 58% of distributions of effective degree follow power law, the classification shows power law to be less plausible for the effective degree (table S3, A and B).
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effective degree, when steady state and other operational constraints 
are imposed—which is a key implication of concordance modules. 
Our analysis demonstrated that the effective degree follows Super- 
Weak power law only in the metabolic networks of A. thaliana, 
M. acetivorans, M. barkeri, M. tuberculosis, and N. pharaonis for 
both scenarios (table S3B). Furthermore, the effective degree fol-
lows power law for the network of M. musculus for scenario (i) 
and T. maritima for scenario (ii) (Fig. 4 and table S3B). Therefore, 
unlike the case with nominal degree distributions, power law is 
hardly a plausible fit when it comes to the distribution of effective 
degrees—that capture the operational constraints of the network. 
For at least 42% of the analyzed models in both scenarios (i) and (ii), 
the effective degree is better described by stretched exponential dis-
tributions of the form  y =  e   −  (    x _ b  )     a   , with estimated parameters a 
ranging from 0.8 to 1 and b ranging from 0.01 to 0.02 (table S3B) 
(20). These findings motivate the following analysis of reducibility 
of metabolic networks.

Reducibility index highlights the hidden simplicity 
of metabolic networks
We note that the effective degree implies simplification of the steady- state 
equations, because it denotes the smallest number of complexes that 
suffice to obtain mathematically equivalent descriptions of the steady- 
state equations. For instance, the steady-state equation of species 
B in terms of activities of complexes is given by B + B+C + 22B = 0, 
which simplifies to B + 2B = 0, because       B   _    B+C    = 1 . As a result, we 
define the reducibility index of a metabolic network as  1 −  m _ c   , with 
m denoting the number of concordance modules and c representing 
the total number of complexes. A larger value for the index indi-
cates a higher reducibility of the metabolic network. For instance, 
the reducibility index for the network in Fig. 1 is 0.75, because there 
are two concordance modules and eight complexes. Our results 
showed that the reducibility index across the 12 metabolic networks 
analyzed ranges from 0.82 to 0.94 in scenario (i) and from 0.85 to 
0.96 in scenario (ii) (fig. S5). In addition, we investigated the reduc-
ibility index when balanced complexes were not considered and 
observed ranges from 0.78 to 0.94 in scenario (i) and from 0.78 to 

0.96 in scenario (ii) (Fig. 5), indicating that metabolic networks can 
be effectively reduced at steady state. Together, the concordance 
modules that arise because of the interplay of the network structure, 
steady-state constraints, and flux capacity constraints reveal the sim-
plicity of seemingly complex metabolic networks.

Concordance modules and reducibility of randomized 
metabolic networks
To obtain insights into how different the properties of concordance 
modules are in networks that obey physicochemical constraints 
(e.g., mass balancing, number of substrates, and products of reac-
tions) on the same set of metabolites, we created an ensemble of 
randomized network variants from the metabolic network model of 
E. coli (23). We then determined the concordance modules in each 
of the network variants and investigated the following statistics: the 
number of concordance modules, the size of the largest concor-
dance module, the mean concordance module size, and the reduc-
ibility index, all associated with the degree of coordination between 
activity of complexes; furthermore, we determined the mean and 
maximum effective metabolite degree, hinting at the simplicity of 
the existing metabolic network of E. coli. Assuming that the null 
distributions generated for each property based on the ensemble of 
metabolic networks are normal (fig. S6), we then used the z score 
to calculate the significance of the observed values. By solving 
~275 million large-scale linear programs (see Methods), we found that 
the number of concordance modules (P = 2 × 10−9) as well as their 
mean (P = 1 × 10−16) and maximum size (P = 0.01) was statistically 
smaller than expected at random. These findings suggest that the 
real-world metabolic network of E. coli has experienced evolutionary 
pressure toward higher coordination of the activity of complexes. In 
addition, we also observed a statistically smaller mean (P = 4 × 10−22) 
and maximum (P = 0.002) effective metabolite degree than expected 
by chance, indicating that the higher coordination in metabolism of 
E. coli is associated with larger simplicity of its metabolic network. 
This is in line with the larger reducibility index of the observed 
metabolic network in comparison to the randomized network vari-
ants (P = 2 × 10−31).
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Fig. 5. Reducibility index in metabolic networks from species across kingdoms of life. Genome-scale metabolic models of 12 organisms from all kingdoms of life are 
analyzed for their reducibility index when balanced complexes were not considered. We considered two scenarios: (i) assuming reaction reversibility as given in the 
original model and (ii) when optimal growth is imposed as an additional constraint.



Küken et al., Sci. Adv. 8, eabl6962 (2022)     30 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 10

Classification of concordance modules and their implications
Next, we show that the concept of concordance module has important 
implications with respect to decomposability of metabolic networks. 
First, we note that a balanced complex that has out-degree of one 
can be removed without affecting the steady-state supported by the 
rewired network (18), because this amounts to substitution of the 
flux of the outgoing reaction by the sum of fluxes of the incoming 
reactions. On the basis of the number of reactions incoming and 
outgoing to a concordance module in the network obtained by re-
moval of such balanced complexes, we define four classes of con-
cordance modules: (i) source modules that have no input from any 
complex outside of the concordant module but have output to other 
concordant modules, (ii) sink modules that have no output to any 
complex outside of the concordant module but have some inputs 
from other concordant modules, (iii) intermediate modules that 
have input and output from complexes outside of the concordant 
module, and (iv) closed modules that have no input or output from 
any complex outside of the concordant module. For instance, the 
network obtained upon removal of the balanced complexes in Fig. 1A 
is composed of balanced complex D, which cannot be removed 
from the network without further assumptions on reaction kinetics, 
and concordance module composed of B, C, B + C, and 2B (see fig. 
S7). Because there are two reactions incoming to the module from 
complex D and one reaction outgoing from the module to complex D, 
this represents an intermediate module. Moreover, a module that only 
includes species that do not appear in any other module will be called 
independent, because it paves the way to analyze the corresponding 
steady-state equations in isolation from the rest of the network. 
For instance, the intermediate module in fig. S7, composed of B, C, 
B + C, and 2B complexes, is an independent module. In addition, 
we call a module pseudo-independent, if it only includes species that 
do not appear in any other module or species that can be assumed to 
be buffered (i.e., their concentration can be considered constant 
over different environmental conditions) under the analyzed scenarios.

Equipped with these definitions and motivated by the suggested 
bow tie structure of metabolism (6), we next ask whether the con-
cordance modules have similar interconnections across the analyzed 
metabolic networks in the simpler scenario (i). Unexpectedly, we 
found that 7 of 12 networks do not contain source and sink modules, 
and the remaining networks include less than 5% of source or sink 
modules (table S5). Intermediate modules can be found to a large 
extent across all networks, ranging from 37.3% in the network of 
A. niger to 100% in networks of T. maritima and S. cerevesiae. In 
addition, we identified that between 0.3 and 58.1% of modules are 
closed, with the highest percentage found in networks of A. niger 
(58.1%), M. barkeri (56.0%), and N. pharaonis (36.8%) and the lowest 
percentage found in networks of C. reinhardtii (0.3%), M. tuberculosis 
(1.5%), M. acetivorans (2.3%), and P. putida (4.2%). Closed modules are 
small, with a median number of two complexes across all networks 
and maximum number of complexes ranging from two complexes in 
the networks of C. reinhardtii and M. tuberculosis to 48 complexes 
in the network of A. niger (table S5). These findings indicate that 
metabolic networks differ in the interconnectedness of their con-
cordance modules, which either are tightly linked or fully detached 
from the rest of the modules. However, additional assumptions on 
the reaction rate laws are needed to make further claims regarding 
the concentration of metabolites.

Because we did not find any independent modules among 
the identified modules, we next investigated the existence of 

pseudo- independent modules, assuming that currency metabolites 
are of buffered concentration. We identified pseudo-independent 
modules in 5 of 12 analyzed networks, i.e., 11 in the network of 
A. niger, 8 in the network of E. coli, 5 such modules in the network 
of M. barkeri, 4 in the network of N. pharaonis, and only 1 pseudo- 
independent module in the network of M. musculus (table S5). 
These pseudo- independent modules are of small size and include 
up to four complexes. We also found that these pseudo-independent 
modules include a few (three to eight) metabolites (tables S5 and S6 
and fig. S8) from pathways like alternate carbon metabolism, citric 
acid cycle, glycolysis/gluconeogenesis, cell envelope biosynthesis, and 
glycerophospholipid metabolism in E. coli or nucleotide metabolism, 
cysteine metabolism, and alanine and aspartate metabolism in 
M. barkeri. With the assumption that the kinetic rates in these 
pseudo-independent modules depend only on the metabolites in 
the respective modules, our findings show that these modules can 
be analyzed in isolation from the rest of the network.

DISCUSSION
Network science has sparked interest in characterizing the com-
plexity and self-organizing capacity of networks across different 
domains, largely by contrasting seminal properties, like the degree 
distribution and average path length, of real-world networks with 
classical models of random graphs (24). However, these analyses with 
metabolic networks neglect physicochemical and functional con-
straints that such networks must obey. Here, we focused on proper-
ties of steady-state flux distributions along with the implications that 
they have on multireaction dependencies that arise because of 
the interplay between the network structure, physio-chemical, and 
functional constraints. By using the representation of the steady-
state equations in terms of activities of complexes, we defined the 
notion of concordance of complexes. The concordance of com-
plexes appears to have a loose connection to full coupling of fluxes 
(11), whereby two fluxes have an invariant nonzero ratio for any 
steady-state flux distribution. We showed that all concordant 
complexes can be efficiently identified in large-scale metabolic 
networks. The concordance relation allows us to identify concor-
dance modules in metabolic networks. The presence of concor-
dance modules indicates the possibility for network simplifications, 
because fewer activities of complexes suffice to obtain equivalent 
steady-state equations.

On the basis of the network concepts of effective degree of a 
metabolite and reducibility index and by using metabolic models 
across species from all kingdoms of life, we showed that (i) the ef-
fective degree does not follow power law degree distribution for the 
majority of studied networks; (ii) the metabolic networks can be 
effectively reduced due to the presence of concordance complexes; 
(iii) the network properties based on concordance modules sig-
nificantly differ between the metabolic network of E. coli and an 
ensemble of randomized network variants, hinting at larger degree 
of coordination of activity of complexes than expected at random; 
and (iv) characterization of concordance modules based on their 
connectedness allows us to identify (pseudo)independent mod-
ules that pave the way for their analysis without considering the 
network context. All these results hold irrespective of the enzyme 
kinetics that the reactions may assume. Because the findings are 
obtained on the basis of simple techniques from convex optimiza-
tion, our study opens the possibility to study effective complexity in 
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other types of networks where constraints other than those com-
ing from the network structure dictate the network function.

METHODS
Models and their processing
The genome-scale metabolic models of 12 organisms (table S1) 
were obtained from their original publications (23, 25–35). Each re-
versible reaction was split into two irreversible reactions. The lower 
bounds for the irreversible reactions were set to zero, while the up-
per bounds were fixed to corresponding values in the original model. 
In the next step, the blocked reactions, i.e., reactions with absolute 
flux values below 10−6 mmol/gDW per hour in any feasible steady 
state supported by network [as determined by Flux Variability 
Analysis (36)], were removed from the original models. Note that 
the threshold to consider a reaction blocked can influence the num-
ber of identified balanced complexes [compare results of (18) where 
balanced complexes are identified using threshold 10−9]. Optimum 
specific growth rate was determined per flux balance analysis (37) 
with the assumed reaction reversibility.

Identification of concordant complexes
Let Y denote the nonnegative matrix of complexes, with rows 
denoting species and columns representing complexes. The entry yij 
denotes the stoichiometry with which species i enters the complex j. 
Let A denote the incidence matrix of the directed graph with nodes 
representing complexes and edges denoting reactions. The rows of 
A denote the complexes, and its columns stand for the reactions. 
Because the graph is directed, each column of A has precisely one 
−1 and one 1 entry, corresponding to the substrate and product 
complexes of the respective reaction. The stoichiometry matrix is 
then given by N = YA. The activity of a complex i is the sum of 
fluxes around the complex, given by the ith entry of the vector Av, 
denoted by [Av]i, where v is a flux distribution. Two complexes i 
and j are concordant in the set of flux distributions S = {v∣Nv = 0, 
vmin ≤ v ≤ vmax} if, for every v ∈ S, it holds that [Av]i − ij[Av]j = 0, 
where ij is a nonzero constant. This condition can be verified by 
determining that the minimum and maximum values of [Av]i/[Av]j 
over all v ∈ S are nonzero and equal to each other. The latter can be 
ensured for two complexes i and j, which are not balanced, by solving 
two linear fractional programs

  min / max  [Av]  i   /  [Av]  j    

subject to (s.t.)
  YAv = Nv = 0  

   v  min   ≤ v ≤  v  max    

which can be transformed into four linear programs following the 
Charnes-Cooper transformation (38), leading to.

Min/ max [Aw]i Min/ max [Aw]i

s.t. s.t.

YAw = Nw = 0 YAw = Nw = 0

[Aw]j = 1 [Aw]j = 1

vmint ≤ w ≤ vmaxt vmaxt ≤ w ≤ vmint

t ≥ 0 t ≤ 0

The complexes i and j are then concordant if the optima from the four 
linear programs coincide. The implementation of this approach is 
available at https://github.com/ankueken/concordant_complexes.

The concordance relation is reflexive (i.e., the ratio of the activity 
of a complex with itself is always of value one and, hence, constant), 
symmetric (i.e., the ratio of the activities of two complexes is con-
stant if and only if the reciprocal ratio is constant), and transitive 
(i.e., if complex i is concordant with complex j, and complex j is 
concordant with complex k, then so are complexes i and k) and 
therefore represents an equivalence relation.

Fit of power law distributions
To test whether distributions of (i) the metabolite degree, as the 
number of complexes in which the metabolite participates; (ii) 
effective degree of a metabolite, as the number of concordance 
modules in which the metabolite participates; and (iii) the size 
of concordance modules, given by the number of complexes per 
module, follow power law distribution, we used the implementation 
of Broido and Clauset (20). In addition, the software is used to test 
whether other distributions (i.e., log-normal distribution, power 
law with exponential cutoff, and exponential and stretched expo-
nential distribution) can better fit the abovementioned data.

Enrichment analysis
Enrichment analysis is performed on the basis of hypergeometric 
test to determine whether complexes participating in a given meta-
bolic subsystem (extracted from the models) are overrepresented in 
concordance modules. The resulting P values are corrected for mul-
tiple hypotheses testing using the Benjamini-Hochberg procedure.

Randomized network variants
Using mass-balanced randomization (39), we create 58 random 
network variants for which we determine concordance modules. 
We test for differences in the number of concordance modules, the 
size of the largest concordance module, the mean concordance 
module size, the mean effective metabolite degree, the maximum 
effective metabolite degree, and the reducibility index using z scores, 
assuming that the null distributions over the ensemble of randomized 
metabolic networks are normal.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl6962

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
 1. F. Zorrilla, K. R. Patil, A. Zelezniak, metaGEM: Reconstruction of genome scale metabolic 

models directly from metagenomes. bioRxiv, 2020.12.31.424982 (2021).
 2. C. Gu, G. B. Kim, W. J. Kim, H. U. Kim, S. Y. Lee, Current status and applications 

of genome-scale metabolic models. Genome Biol. 20, 121 (2019).
 3. M. Masid, M. Ataman, V. Hatzimanikatis, Analysis of human metabolism by reducing the 

complexity of the genome-scale models using redHUMAN. Nat. Commun. 11, 2821 
(2020).

 4. I. Thiele, S. Sahoo, A. Heinken, J. Hertel, L. Heirendt, M. K. Aurich, R. Mt Fleming, 
Personalized whole-body models integrate metabolism, physiology, and the gut 
microbiome. Mol. Syst. Biol. 16, e8982 (2020).

 5. T. Friedlander, A. E. Mayo, T. Tlusty, U. Alon, Evolution of bow-tie architectures in biology. 
PLOS Comput. Biol. 11, e1004055 (2015).

 6. H. Jeong, B. Tombor, R. Albert, Z. N. Oltval, A. L. Barabásl, The large-scale organization 
of metabolic networks. Nature 407, 651–654 (2000).

 7. E. Noor, E. Eden, R. Milo, U. Alon, Central carbon metabolism as a minimal biochemical 
walk between precursors for biomass and energy. Mol. Cell 39, 809–820 (2010).

https://github.com/ankueken/concordant_complexes
https://science.org/doi/10.1126/sciadv.abl6962
https://science.org/doi/10.1126/sciadv.abl6962
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abl6962


Küken et al., Sci. Adv. 8, eabl6962 (2022)     30 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 10

 8. E. Almaas, B. Kovács, T. Vicsek, Z. N. Oltvai, A. L. Barabási, Global organization of metabolic 
fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004).

 9. S. Robaina-Estévez, Z. Nikoloski, Flux-based hierarchical organization of Escherichia coli’s 
metabolic network. PLOS Comput. Biol. 16, e1007832 (2020).

 10. G. Basler, Z. Nikoloski, A. Larhlimi, A. L. Barabási, Y. Y. Liu, Control of fluxes in metabolic 
networks. Genome Res. 26, 956–968 (2016).

 11. A. P. Burgard, E. V. Nikolaev, C. H. Schilling, C. D. Maranas, Flux coupling analysis of 
genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).

 12. A. C. Müller, A. Bockmayr, Flux modules in metabolic networks. J. Math. Biol. 69, 
1151–1179 (2014).

 13. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A. L. Barabási, Hierarchical organization 
of modularity in metabolic networks. Science 297, 1551–1555 (2002).

 14. G. Shinar, M. Feinberg, Structural sources of robustness in biochemical reaction networks. 
Science 327, 1389–1391 (2010).

 15. S. Müller, G. Regensburger, Generalized mass action systems: Complex balancing 
equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM 
J. Appl. Math. 72, 1926–1947 (2012).

 16. J. Neigenfind, S. Grimbs, Z. Nikoloski, On the relation between reactions and complexes 
of (bio)chemical reaction networks. J. Theor. Biol. 317, 359–365 (2013).

 17. M. Feinberg, in Applied Mathematical Sciences (Switzerland) (Springer, 2019), vol. 202, pp. i–454.
 18. A. Küken, P. Wendering, D. Langary, Z. Nikoloski, A structural property for reduction 

of biochemical networks. Sci. Rep. 11, 17415 (2021).
 19. D. Voet, J. G. Voet, Biochemistry (Wiley, ed. 4, 2010), pp. 1520.
 20. A. D. Broido, A. Clauset, Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).
 21. Q. Zhu, T. Qin, Y.-Y. Jiang, C. Ji, D.-X. Kong, B.-G. Ma, H.-Y. Zhang, Chemical basis 

of metabolic network organization. PLOS Comput. Biol. 7, e1002214 (2011).
 22. A. Akbari, J. T. Yurkovich, D. C. Zielinski, B. O. Palsson, The quantitative metabolome is 

shaped by abiotic constraints. Nat. Commun. 12, 3178 (2021).
 23. J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. Feist, B. Ø. Palsson,  

A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. 
Mol. Syst. Biol. 7, 535 (2011).

 24. D. J. Watts, S. H. Strogatz, Collective dynamics of “small-world” networks. Nature 393, 
440–442 (1998).

 25. M. R. Andersen, M. L. Nielsen, J. Nielsen, Metabolic model integration of the bibliome, 
genome, metabolome and reactome of Aspergillus niger. Mol. Syst. Biol. 4, 178 (2008).

 26. A. Arnold, Z. Nikoloski, Bottom-up metabolic reconstruction of Arabidopsis and its 
application to determining the metabolic costs of enzyme production. Plant Physiol. 165, 
1380–1391 (2014).

 27. S. Imam, S. Schäuble, J. Valenzuela, A. Lõpez García De Lomana, W. Carter, N. D. Price, 
N. S. Baliga, A refined genome-scale reconstruction of Chlamydomonas metabolism 
provides a platform for systems-level analyses. Plant J. 84, 1239–1256 (2015).

 28. M. N. Benedict, M. C. Gonnerman, W. W. Metcalf, N. D. Price, Genome-scale metabolic 
reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina 
acetivorans C2A. J. Bacteriol. 194, 855–865 (2012).

 29. A. M. Feist, J. C. M. Scholten, B. Palsson, F. J. Brockman, T. Ideker, Modeling 
methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina 
barkeri. Mol. Syst. Biol. 2, 2006.0004 (2006).

 30. L.-E. Quek, L. K. Nielsen, On the reconstruction of the Mus musculus genome-scale 
metabolic network model. Genome Inform. 21, 89–100 (2008).

 31. X. Fang, A. Wallqvist, J. Reifman, Development and analysis of an in vivo-compatible 
metabolic network of Mycobacterium tuberculosis. BMC Syst. Biol. 4, 160 (2010).

 32. O. Gonzalez, T. Oberwinkler, L. Mansueto, F. Pfeiffer, E. Mendoza, R. Zimmer, 
D. Oesterhelt, Characterization of growth and metabolism of the haloalkaliphile 
Natronomonas pharaonis. PLOS Comput. Biol. 6, e1000799 (2010).

 33. J. Nogales, B. Palsson, I. Thiele, A genome-scale metabolic reconstruction of Pseudomonas 
putida KT2440: i JN746 as a cell factory. BMC Syst. Biol. 2, 79 (2008).

 34. Y. Zhang, I. Thiele, D. Weekes, Z. Li, L. Jaroszewski, K. Ginalski, A. M. Deacon, J. Wooley, 
S. A. Lesley, I. A. Wilson, B. Palsson, A. Osterman, A. Godzik, Three-dimensional structural 
view of the central metabolic network of thermotoga maritima. Science 325, 1544–1549 
(2009).

 35. H. Lu, F. Li, B. J. Sánchez, Z. Zhu, G. Li, I. Domenzain, S. Marcišauskas, P. M. Anton, 
D. Lappa, C. Lieven, M. E. Beber, N. Sonnenschein, E. J. Kerkhoven, J. Nielsen, A consensus 
S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing 
cellular metabolism. Nat. Commun. 10, 3586 (2019).

 36. S. Gudmundsson, I. Thiele, Computationally efficient flux variability analysis. BMC 
Bioinformatics 11, 489 (2010).

 37. J. D. Orth, I. Thiele, B. Ø. O. Palsson, What is flux balance analysis? Nat. Biotechnol. 28, 
245–248 (2010).

 38. A. Charnes, W. W. Cooper, Programming with linear fractional functionals. Nav. Res. 
Logist. Q. 9, 181–186 (1962).

 39. G. Basler, O. Ebenhöh, J. Selbig, Z. Nikoloski, Mass-balanced randomization of metabolic 
networks. Bioinformatics 27, 1397–1403 (2011).

Acknowledgments 
Funding: This work was supported by Human Frontier Science Program grant RGP0046/2018 
(to A.K. and Z.N.). Author contributions: Conceptualization: Z.N. Data collection: A.K. Formal 
analysis: A.K. and D.L. Investigation: A.K. and Z.N. Software: A.K. Validation: A.K. and Z.N. 
Writing—original draft: Z.N. Writing—reviewing and editing: A.K., D.L., and Z.N. Competing 
interests: The authors declare that they have no competing interests. Data and materials 
availability: All data needed to evaluate the conclusions in the paper are present in the paper 
and/or the Supplementary Materials and at https://doi.org/10.5281/zenodo.5752480 or 
https://github.com/ankueken/concordant_complexes.

Submitted 29 July 2021
Accepted 8 February 2022
Published 30 March 2022
10.1126/sciadv.abl6962

https://doi.org/10.5281/zenodo.5752480
https://github.com/ankueken/concordant_complexes

