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Introduction
Single nucleotide polymorphisms (SNPs) play an important 
role in human genetic diversity, disease susceptibility, and drug 
responses. Several SNP analysis tools have already been devel-
oped, each with its strengths and weaknesses. Some popular 
SNP analysis tools are SIFT (Sorting Intolerant from 
Tolerant),1 PROVEAN (Protein Variation Effect Analyzer),2 
MVP (Multivariate Prediction),3 PolyPhen-2 HVAR 
(Polymorphism Phenotyping v2-Highly-Confident Missense 
Variant),4 PolyPhen-2, HDIV (HumDiv, PrimateAI, REVEL 
(Rare Exome Variant Ensemble Learner),5 MPC (Missense 
Prediction and Classification). There are multiple research 
domains where more than one tool is used for SNP analysis 
such as (i) genome-wide association studies (GWAS)6 which 
involves scanning the entire genome of individuals to identify 
common genetic variants that are associated with a particular 
trait or disease. (ii) whole genome sequencing (WGS)7 which 
encompasses sequencing the entire genome of an individual, 
providing a complete picture of all genetic variants present in 
the genome. This approach can be used to identify rare or novel 
genetic variants that may be missed by other methods and can 
also provide insight into the functional consequences of genetic 

variation. (iii) Population genetic studies employ SNP analysis 
to identify patterns of genetic variation within and between 
populations, providing insight into the evolutionary history 
and migration patterns of various groups.

It is beneficial to analyze SNPs from several tools, as it helps 
to improve accuracy and reliability of the obtained results, 
highlight the error observations or biases in the results, and 
have a deep understanding to genetic variations under study.

PredictSNP8 is an online platform that predicts the impact 
of nsSNPs on protein structure and function. This platform 
combines a machine learning model for prediction and some 
other SNP prediction tools for annotating the SNPs. It is an 
efficient tool with the limitation that input needs to be calcu-
lated manually for each annotation. This may be a time taking 
task. Secondly, the authors of PredictSNP were unable to 
integrate a reasonable number of tools on this platform. This 
tool lacks the filtering of all results into pathogenic or benign 
groups. Capriotti et al9 developed a platform named MetaSNP 
which integrates 4 SNP analysis tools namely SIFT, PhDSNP 
(Predictor of human Deleterious Single Nucleotide 
Polymorphism),10 SNAP (an integrated SNP annotation 
platform),11 and PANTHER (Protein ANalysis THrough 
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Evolutionary Relationships).12 This platform has the same 
problem of manual input preparation. Result filtering into 
common pathogen and benign variants was not available. The 
dbNSFP (Database of Human Non-synonymous SNPs and 
their functional predictions)13 is an integrated platform which 
provides annotation of SNPs executed by 36 tools. However, 
the provided results are not user friendly and the user cannot 
obtain common pathogenic variants. SNPnexus14 is a web 
server developed by Oscanoa ( et  al 2020). This web server 
provides annotation by 8 tools namely FitCons (fitness con-
sequences),15 DeepSEA,16 CADD (Combined Annotation 
Dependent Depletion),17 Eigen,18 FATHMM-MKL19 
(Functional Analysis through Hidden Markov Models—
multiple kernel learning), FunSeq2,20 GWAVA (genome 
wide annotation of variants)21 and ReMM (regulatory 
Mendelian mutation).22 However, this also has the same limi-
tations as described for other tools.

Keeping in view the limitations of available integrated plat-
forms, the proposed web-based tool namely “IPSNP: An 
Integrated Platform for Predicting Impact of SNPs” was devel-
oped in Django which is a python-based framework. It uses 
RESTful API of NCBI and MyVariant.info for obtaining 
required data/annotations of all variants associated with a given 
gene. The input for IPSNP is GeneID, rsID, HGVS format 
variants or a VCF file for the selected tools out 29 tools. The 
results include: (i) a CSV file comprising of IPSNP predictions 
derived from the consensus decisions of the selected SNP anal-
ysis tools (ii) a CSV file for each of the selected tool having 
annotation information for the variants associated with the 
given gene (iii) a CSV file showing variants declared as patho-
genic commonly by the selected tools (iv) a CSV file(s) con-
taining chromosome coordinates based on GRCh37 and 
GRCh38 genome assemblies, rsIDs and proteomic data 
including UniProt id/name, protein sequence, RefSeq protein 
id and amino acid substitutions so that the users may use tools 
directly of their choice. Now the user does not need to collect 
the input parameters manually for each tool from other data-
bases like NCBI and Uniprot.

Problem Statement
The major problem identified from the literature is that input 
calculation for the SNP analysis tools is performed manually. It 
takes a lot of time and effort. A user must perform a number of 
steps in order to prepare input for SNP analysis tools. These 
steps may involve selecting pathogenic or benign SNPs as 
reported on the ClinVar.23 Different SNP predictions tools 
have different input parameters. A prediction server may 
require gene ID, rsID, chromosome number, position and ori-
entation, wild type allele, mutated allele, amino acid positions, 
protein accession ID and protein sequence in FASTA (Fast 
All) format. All these parameters are not available on any single 
platform or a website. A user has to collect all the required 
input data for a selected SNP prediction tool from various 

websites and databases. A user has to visit ClinVar, National 
Center for Biotechnology Information (NCBI) database of 
SNPs (dbSNP). Uniprot for protein sequences or any other 
database, as required by the prediction tools.

For example, if a user wants to execute SNP analysis through 
SIFT prediction tool, the parameters required to perform the 
predictions are chromosome number, chromosome coordi-
nates, chromosome orientation, wild type and mutant alleles. 
The input for SIFT looks like 1,41285565,1,G/A. Collecting 
the parameters for hundreds of SNPs is very cumbersome job.

Second, the output from different SNP analysis tools is in 
different formats. The terminology for each output is differ-
ent, for example, some of the tools use the term pathogenic, 
some use as damaging and others as deleterious. Similarly for 
benign variations, the terms non-damaging or neutral are 
used. Some of the tools even calculate the score and the user 
must determine whether the given score lies in the pathogenic 
or benign based on the given benchmark. The problem is to 
filter out the result in a consistent format to make the decision. 
All this work is done manually and can create inconsistencies 
in the input data.

Third, no SNP analysis tool provides common pathogenic 
variants. The user has to perform this task manually which is 
difficult and time consuming task especially if the results have 
been compiled from several tools. IPSNP provides a compre-
hensive solution to these problems by providing an easy to use, 
user friendly and efficient tool to obtain variant’s data, predic-
tions of various tools and consensus result of IPSNP.

Materials & Methods
Integrated tools

The SNP prediction tools are available in 2 forms. First, SNP 
prediction tools are available as command base version such as 
dbNSFP, SIFT, PROVEAN, and Polyphen 2. Second the 
online web-servers such as PredictSNP, MetaSNP, SNPs&Go,24 
and Mutation Assessor.25 In command base versions of SNP 
prediction tools, it is difficult to download and install/configure 
it on the local machine. This is not possible for an individual 
researcher as it involves high costs in terms of time and 
resources. The second option is to run online tools for the 
required predictions. In case 2, each tool has different input 
parameters and formats. Preparing input for several individual 
tools is a time taking job and may lead to inconsistent inputs.

The scope of tools selected (Table 1) for IPSNP platform is 
limited to the tools which can be accessed/run through APIs. 
Therefore, only those tools are embedded in this platform whose 
APIs are exposed for the accessibility from other servers.

Comparison IPSNP with existing prediction tools

The required genetic SNP variant data was downloaded from 
ClinVar and the Prtein IDs were collected from the Uniprot 
databases which are publicly available. We selected 100 benign 
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Table 1. List of SNP prediction tools integrated in IPSNP.

SR. NO PREDICTION TOOL COMPLETE NAME LINk

 1 SIFT Sorting intolerant from tolerant https://sift.bii.a-star.edu.sg/www/Extended_SIFT_
chr_coords_submit.html

 2 SIFT4G Sorting intolerant from tolerant 4G https://sift.bii.a-star.edu.sg/www/SIFT_dbSNP.html

 3 PROVEAN Protein variation effect analyzer http://provean.jcvi.org/index.php

 4 MVP Missense variant pathogenicity prediction https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7820281/

 5 Polyphen2_HVAR Polymorphism phenotyping v2 http://genetics.bwh.harvard.edu/pph2/index.shtml

 6 Polyphen2_HDIV Polymorphism phenotyping v2 http://genetics.bwh.harvard.edu/pph2/index.shtml

 7 PrimateAI PrimateAI https://www.nature.com/articles/s41588-018-0167-z

 8 REVEL Rare exome variant ensemble learner https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5065685/

 9 MPC Missense badness, PolyPhen-2, and 
constrain

efaidnbmnnnibpcajpcglclefindmkaj/https://www.
biorxiv.org/content/10.1101/148353v1.full.pdf

10 MutPred MutPred http://mutpred.mutdb.org/

11 MutationTaster MutationTaster https://www.mutationtaster.org/

12 MutationAssessor MutationAssessor http://mutationassessor.org/r3/

13 MetaRNN MetaRNN http://www.liulab.science/metarnn.html

14 MetaSVM Meta-analytic support vector machine https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5270233/

15 M-CAP Mendelian clinically applicable pathogenicity http://bejerano.stanford.edu/mcap/

16 LIST-S2 LIST-S2 https://list-s2.msl.ubc.ca/;jsessionid=2F4AE6DF20C
0D193843105AC54402693?session=2F4AE6DF20
C0D193843105AC54402693

17 FATHMM Functional analysis through hidden Markov 
model

https://fathmm.biocompute.org.uk/disease.html

18 FATHMM-XF Functional analysis through hidden Markov 
model extra features

https://fathmm.biocompute.org.uk/fathmm-xf/

19 FATHMM-MkL Functional analysis through hidden Markov 
model multiple kernel learning

https://fathmm.biocompute.org.uk/fathmmMkL.htm

20 PERCH BayesDel(addAF) Polymorphism evaluation, ranking, and 
classification for a heritable trait

https://pubmed.ncbi.nlm.nih.gov/27995669/

21 BayesDel(noAF) Polymorphism evaluation, ranking, and 
classification for a heritable trait

https://pubmed.ncbi.nlm.nih.gov/27995669/

22 VEST4 Variant effect scoring tool https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3665549/

23 DANN Deleterious annotation of genetic variants 
using neural networks

https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4341060/

24 Eigen Eigen score https://pubmed.ncbi.nlm.nih.gov/26482676/

25 Eigen-PC Eigen-PC https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4731313/

26 DEOGEN2 DEOGEN2 https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5570203/

27 GenoCanyon GenoCanyon https://www.nature.com/articles/srep10576

28 CADD Combined annotation dependent depletion https://academic.oup.com/nar/article/47/D1/
D886/5146191

29 SnpEff SNP effect https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3679285/

https://sift.bii.a-star.edu.sg/www/Extended_SIFT_chr_coords_submit.html
https://sift.bii.a-star.edu.sg/www/Extended_SIFT_chr_coords_submit.html
https://sift.bii.a-star.edu.sg/www/SIFT_dbSNP.html
http://provean.jcvi.org/index.php
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820281/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820281/
http://genetics.bwh.harvard.edu/pph2/index.shtml
http://genetics.bwh.harvard.edu/pph2/index.shtml
https://www.nature.com/articles/s41588-018-0167-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065685/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065685/
https://www.biorxiv.org/content/10.1101/148353v1.full.pdf
https://www.biorxiv.org/content/10.1101/148353v1.full.pdf
http://mutpred.mutdb.org/
https://www.mutationtaster.org/
http://mutationassessor.org/r3/
http://www.liulab.science/metarnn.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270233/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270233/
http://bejerano.stanford.edu/mcap/
https://list-s2.msl.ubc.ca/;jsessionid=2F4AE6DF20C0D193843105AC54402693?session=2F4AE6DF20C0D193843105AC54402693
https://list-s2.msl.ubc.ca/;jsessionid=2F4AE6DF20C0D193843105AC54402693?session=2F4AE6DF20C0D193843105AC54402693
https://list-s2.msl.ubc.ca/;jsessionid=2F4AE6DF20C0D193843105AC54402693?session=2F4AE6DF20C0D193843105AC54402693
https://fathmm.biocompute.org.uk/disease.html
https://fathmm.biocompute.org.uk/fathmm-xf/
https://fathmm.biocompute.org.uk/fathmmMKL.htm
https://pubmed.ncbi.nlm.nih.gov/27995669/
https://pubmed.ncbi.nlm.nih.gov/27995669/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665549/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665549/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341060/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341060/
https://pubmed.ncbi.nlm.nih.gov/26482676/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731313/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731313/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570203/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570203/
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variations and 100 pathogenic variations, as reported on 
ClinVar. The variations were formatted in the proper format as 
required by all the tools, separately. It contains Gene ID, 
Protein change, Chromosome number and its orientation, 

variation ID, genome assembly, dbSNP ID, wild type allele, 
and the mutant allele. Raw data can be in one of the following 
formats depending upon the requirements of selected SNP 
prediction tools:

Figure 1. Extraction of chromosomal and proteomic data.

GENE(S) PROTEIN CHANGE CHROMOSOME LOCATION DBSNP ID

USH2A S5188G 1 215799170 rs58257972

NAME GENE(S) PROTEIN CHANGE VARIATIONID ALLELEID(S) DBSNP

NM_000059.4 (BRCA2):c.3G>A (p.Met1Ile) BRCA2 M1I 51579 66247 rs80358650

Design and implementation

IPSNP provides 3 interfaces; one is for downloading chromo-
somal and proteomic data (CPD) associated with all the vari-
ants of a given gene id. This interface was named “CPDEI” 
(Chromosomal and Proteomic Data Extraction Interface). It is 
pronounced as cp-de. Here, the user provides only the gene id 
and selects the desired data to be obtained and IPSNP provides 
the required data in CSV format. The complete working of the 
cpdei is shown in Figure 1.

The second interface, which was termed AEFI (Annotation 
Extraction and Filtering Interface) allows the user for getting 
annotation of all variants associated with the given gene id for 
selected tools. In addition, it also provides common pathogenic 
variants, the variants for which annotation is not found and an 
option for extracting CPD for these variants as shown in 
Figure 2. The third interface termed as IPCP (IPSNP consen-
sus predictions) is for obtaining IPSNP’s predictions based on 
the consensus results of the selected SNP analysis tools shown 
in Figure 5.
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IPSNP had been developed using Django 4.1.3 and 
Python 3.10.5. Biopython 1.81 was used to obtain missense 
variants from dbSNP.26 NCBI27 API was used to download 
a string and own written python script was used to extract 
chromosome coordinates for GRCh37 and GRCh38 
genome assemblies, and proteomic data including NCBI 
protein id and amino acid substations for each variant. 
UniProt API28 was used to get UniProt protein id, UniProt 
protein name and protein sequence. Four CSV files are pro-
vided to the user: One file stores GRCh38 chromosome 

coordinates, second file has GRCh37 chromosome coordi-
nates, third file provides proteomic data, and fourth file has 
rsIDs of all variants associated with the given gene. 
MyVariant.info API was used for obtaining a string com-
prising of annotations of variants associated with the given 
gene. Self-written python script was used to extract annota-
tions for the selected tools and allow the user to download 
the results in CSV format.

The design of the proposed IPSNP framework is imple-
mented as depicted in the following algorithm:

Figure 2. Retrieving SNP annotations from the selected prediction tools.
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To measure accuracy of IPSNP 100 benign and 100 path-
ogenic SNPs were collected from ClinVar public archive. 
These selected missense SNPs are reported by different 
research institutes and reviewed by an expert panel. The 
reported benign and pathogenic SNPs were downloaded and 
formatted as per the requirements of the tools chosen to com-
pare them IPSNP.

Tools for comparing with IPSNP

Five most popular SNP prediction tools namely SIFT, Provean, 
PolyPhen-2, Fathmm, and Mutation assessor were selected to 
compare their accuracy with the accuracy of IPSNP. Input data 
was prepared manually for the variants to run on the selected 
tools. Each tool has different input format and parameters. The 
input was given to the tools individually and results were 
calculated.

Working of IPSNP

Several SNP analysis tools are provided on IPSNP platform. 
The given input was executed on all tools. For a given input, 
IPSNP executes all prediction tools to get the output. Now this 
output is calculated on the pattern of random forest tree to get 
the consensus prediction from all these tools. It provides the 
output in the form of consensus prediction. If a variation is 
predicted as benign or pathogenic by 15 or more tools then it 
will be declared as benign pathogenic, accordingly.

Results
This study presented an easy-to-use web application for ana-
lyzing missense variants in the human genome and extracting 
CPD associated with a given gene. The user can select the 
required option from home page to get chromosomal/prot-
eomic data, annotations for the selected tools or consensus pre-
diction results (Figure 3a). In case of AEFI, (Figure 3b) the 
user can provide gene id, HGVS or a VCF file as per NCBI 
format such as BRCA1 (Breast Cancer type 1 susceptibility 
protein), CYP11B2 (Cytochrome P450 family 11 subfamily B 
member 2) and Hand1 (Cytochrome P450 family 11 subfamily 
B member 2) and select the desired tools for which annotations 
are required. The IPSNP then performs the whole job for the 
user that is, providing output of each selected tool in a separate 
CSV file, common pathogenic variants, the variants that are 
not found by MyVariant.info and an option to get CPD for 
these variants through CPDEI.

Home interface of IPSNP lets user to select the desired task 
(Figure 3a). The user can provide the input to get annotation 
results and can select all or desired tools to get SNP analysis 
results (Figure 3b). Interface shown by subfigure c provides 
The output of the AEFI on the next interface (Figure 3c). The 
tab allows the user to download results of each selected tool 
(column 1), shows variants declared pathogenic by each tool 
(column 2), the variants declared non-pathogenic by each tool 
(column 3). The link on the top right of table allows the user to 
put the table in CSV format. At the same interface, the user is 
provided common pathogenic variants by all selected tools. 

IPSNP (gene_id, SNP_analysis_tools)

Variants ← fetch_variants_from_clinvar(gene_id)

for j ← 1 to length[Variants]
for k ← 1 to length[SNP_analysis_tools]

tool_specific_variant_data[j, k] ← fetch_tool_specific_variant_data(gene_id, 
Variant[j], SNP_analysis_tools[k])
tool_prediction[j, k] ← execute(gene_id, tool_specific_variant_data[j, k], 
SNP_analysis_tools[k])

 for j ← 1 to length[Variants]
 variant_prediction[j] ← consensus_prediction(tool_prediction[j])

 return variant_prediction

consensus_prediction (tool_prediction)

 total_count ← 0
 pathogenic_count ← 0

 for j ← 1 to length[tool_prediction]
 if tool_prediction[j] = “pathogenic”

 then pathogenic_count ← pathogenic_count + 1
 total_count ← total_count + 1

 if (pathogenic_count / total_count) >= 0.5
 then return “pathogenic”

 else
 return “benign”Dataset and Preprocessing
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The variants that were not found by MyVarint.info API are 
also shown on the output page.

The second interface that is, CPDEI has made it very con-
venient to retrieve chromosome coordinates based on GRCh37 
and GRCh38, proteomic data and rsIDs. This information is 

very useful for running SIFT, PolyPhen and other tools, 
through their own web interfaces as shown in Figure 4. The 
CPDEI main interface allows the user to select desired task 
(Figure 4a). The CPDEI results interface provides results in 
the form of separate files for each selected tool to be 

Figure 3. (a) Interface of IPSNP for predicting impact of variants for a given gene (Home page). (b) Interface of IPSNP for predicting impact of variants for 

a given gene (Tools selection). (c) Interface of IPSNP for predicting impact of variants for a given gene (Output results).
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downloaded by the user (Figure 4b). The user can download 
rsIDs, GRCh37 chromosome coordinates, GRCh38 chromo-
some coordinates and proteomic data in CSV format so that it 
can be easily used in other studies.

The third interface, that is, IPCP analyzes predictions pro-
vided by tools and declares a variant as benign or pathogenic 
based on the predictions by majority of the selected tools. For 
example, if a user selects 10 tools, IPCP declared a variant as 
pathogenic if more than 5 tools declare it as a pathogenic vari-
ant. This utility of IPSNP is the most accurate as shown in the 
section entitled “Performance of IPSNP” (Figure 5a). The user 
can input a gene ID, HGVS or a VCF file to get consensus 
results (Figure 5b). The output of consensus results can be 
downloaded in a CSV file (Figure 5c). The details architecture 
of IPSNP is presented in Figure 6.

Performance of IPSNP
The proposed IPSNP model has novel features that were not 
available in all existing platforms.

Genomic data provision

Genomic data is provided to user in a CSV file which includes 
chromosome coordinates based on both GRCh 37 and GRCh 
38 genome assemblies. A user is able to download a separate file 

of proteomic data which contains the variants along with required 
parameters used by different SNP prediction tools. Data collec-
tion from NCBI and Uniprot databases has been automated. 
This data enables the user to choose a SNP prediction tool with-
out the burden of collecting manual input parameters.

Tool-specif ic annotations

IPSNP provides the segregated annotation results for benign 
and pathogenic variants in a CSV format for all the variations 
in a selected gene. In this way, the user is able to study and 
analyze the annotation results that are provided by each SNP 
prediction tool separately.

Common pathogenic variants

Our proposed model provides the users with the common 
pathogenic or benign variants in a CSV file for a given gene. 
The users are able analyze the significance of these variations 
using this feature.

Consensus predictions

Finally, our model provides the facility to find out the consen-
sus results in CSV file. The consensus results provide the ease 

Figure 4. (a) The interface to provide gene id, choices to be selected and to download required information. (b) The interface to provide gene id, choices 

to be selected and to download required information.
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to see the output results in the form of pathogenic or benign 
results which are declared as pathogenic or benign by the 
majority of selected tools.

Different tools apply a separate criteria for the analyzing the 
mutations. Some of the tools provide distinct categorization of 
the results such as benign or pathogenic. The other tools 

Figure 5. (a) IPSNP Consensus Predictions (IPCP). (b) Interface for providing input to get consensus results. (c) Interface to download consensus results.
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calculate prediction score which may be a continuous value 
from 0 to 1. The threshold is set as benign when score is 0 to 
0.5 and as damaging from 0.5 to the score as 1. IPSNP takes 
the adopted the same approach and provides the consensus 
result on the basis of maximum results as benign or pathogenic. 
Then the consensus result from all tools is provided.

Criteria for pathogenicity prediction

The criteria to predict pathogenicity of variants are tool spe-
cific. Each tool has its own criteria for prediction. As the pro-
posed web server IPSNP is getting predictions from 29 
different tools. So, there is no common criterion for finding the 
pathogenicity. The result obtained by different prediction tools 
have their own methods for it. IPSNP collects results from 
each prediction tools and get consensus results on voting basis 
like the random forest algorithm.

Feature Based Comparison
A few platforms are available that provide impact of SNPs 
from multiple tools. Some examples include: PredictSNP 
predicts the impact of nsSNPs on protein function, using a 
combination of 8 bioinformatics tools. However, the major 
problem in this integrated platform is that the user has to col-
lect the input data manually, which is one of the most time-
consuming tasks. Second, they integrated only 9 tools on a 
platform. Third, it does not provide facility for filtering vari-
ants that are declared pathogenic by all the selected tools. 
MetaSNP includes predictions from 4 tools namely SIFT, 
PhDSNP, SNAP, and PANTHER. However, the user has no 
choice to select the tools and must prepare the input for them 
manually. It does not filter common pathogenic variants. The 
dbNSFP provides annotation of SNPs of 38 tools on a single 
platform. However, this server does not provide a facility for 
retrieving data automatically. To get results using dbNSFP, 

Figure 6. Proposed model of IPSNP.
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the user must provide input in a specific format which is not 
an easy task especially when multiple SNPs have to be ana-
lyzed from the multiple variant annotation tools. SNPnexus 
provides annotation by 8 tools namely FitCons, DeepSEA, 
CADD, Eigen, FATHMM-MKL, FunSeq2, GWAVA, and 
ReMM. However, this tool does not have the mechanisms to 
get the input automatically. Recently, Hassan et  al29 devel-
oped a platform ISTJRip. They integrated 5 snp prediction 
tools; mutation assessor, iFish, Provean, SIFT and FATHMM. 
They found it was better to use the combined prediction tools 
rather than individual one. The major limitation in all these 
tools/databases is that they do not provide an approach for 
getting input data automatically. IPSNP outperformed all 
these tools (Table 2) by accepting only gene id. There is no 
need to provide protein sequence, chromosome coordinates, 
mutations, or genetic variant ids (rsIDs). All other platforms 
require input data to be entered by the user manually which 
leads to inconsistent input. Secondly, IPSNP provides an 
interface for retrieving CPD from NCBI dbSNP and UniProt 
based only on the gene id which is very useful for the user 
who wants to run SNP analysis tools directly by visiting their 
web servers or on their own local machines for analyzing a 
long list of genetic variants.

IPSNP provides results for almost all inputs provided to it. 
However, if there is some error reported for missing values, 
then the user is provided with facility to download the required 
input coordinates so that a user can get results for the same 
input directly from respective SNP prediction tool. Although 
there are many prediction tools, but in this research, 5 tools 
were selected for the comparison with IPSNP. The reason 
behind selecting these tools was that these tools are available 
online and easy to operate. Some other tools are also available, 
but they need to be downloaded and run on the local machine. 
It is required to download database for and configuring it is 
very difficult. The hardware requirements for running these 
tools may be very high in the form of cost and resources. 
Therefore, the scope of comparing this approach was focused 
to these 5 tools.

Accuracy Based Comparison
To compare IPSNP with other tools, 100 benign and 100 
pathogenic variants were obtained from ClinVar. All tools sup-
ported by IPSNP were selected to obtain the prediction results. 
Other SNP analysis tools namely SIFT, Provean, PolyPhen-2, 
Fathmm, and Mutation assessor were run with provided vari-
ants. The prediction was performed from the selected tools. 
The results of all tools were taken and documented. The same 
dataset of benign and pathogenic variations was analyzed on 
our proposed model IPSNP. The results were transformed in 
the form of True Negative (TN), False Positive (FP), True pos-
itive (TP), and False Negative (FN). The results of all predic-
tion tools were analyzed using the evaluation parameters 
accuracy, precision, recall/sensitivity, specificity, negative pre-
dictive value (NPV), Mathew correlation coefficient (MCC), Ta
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and F-score. All these parameters were calculated based on 
above mentioned 4 values. The accuracy of our proposed tool is 
the highest of all these selected tools. The accuracy of IPSNP 
was 87.5% which is more than all the tools executed for pre-
dicting the variants as benign or pathogenic. High accuracy 
means that IPSNP has a high proportion of correct predic-
tions. Precision of our proposed tool IPSNP is 81.5, which is 
greater than all selected tools. High precision means the result 
is correct as compared to other prediction tools. Then specific-
ity was calculated for all tools. It was 78% for IPSNP. It was 
from 41% to 72% for the other prediction tools. Sensitivity / 
recall for IPSNP are 97% which was among the best perform-
ing prediction algorithms. NPV for IPSNP is 96.3% which is 
the best of all selected prediction tools. MCC is 76.4 that mean 
IPSNP performs balanced results between TP, FN, TN, and 
FP. F-Score is 88.58 that mean the precision and recall is bal-
anced. Overall IPSNP performed better than all selected tools 
based upon the given metrics. The results of accuracy and other 
parameters are shown in Table 3. The scope of comparison of 
IPSNP results was focused to the selected 5 tools. The ration-
ale behind selecting these tools is that they are available online. 
A user does not have to put time and effort to download and 
install these tools on the local machine. Downloading and 
installing the SNP prediction tools involves much time and 
raise the cost for hardware resources.

Discussion
A few databases and tools have been developed to analyze mis-
sense variants by using more than one tool simultaneously but 
each of these approaches has its own limitations such as some 
tools allow using limited number of tools, for example 
MetaSNP combined only 4 tools and SNPnexus supports 
results by 5 tools. Most of the tools lack the provision of com-
mand base tool. Other more important feature that lack in 
almost all these tools is that they don’t provide facility to filter 
common pathogenic variants that may be needed by several 
studies including GWAS and analyzing SNPs associated with 

a gene which is one of the most focused studies. Deng et al31 
conducted research was confined to only APOC2 and APOA5 
genes. They used only 8 SNPs of APOC2 genes and 17 
APOC5 genes. The dataset used was very limited. They used 8 
tools for predictions. In their research they did not consider the 
nod coding variations. In our proposed model the number of 
tools is sufficient. Also non-synonymous SNPs are considered 
for prediction and analysis. Prakasam et al (2023) studied the 
effects of SNPs on the structure and function of TL4 gene.32 
There was no integration of computational prediction tools. 
Shah et  al33 focused on UTR gene for studying functional 
importance of SNPs and their impact on the human diseases. 
They did not integrated and obtained any consensus results. 
Joshi et  al34 used Support Vector Machine, Artificial Neural 
Network and Random forest for implementation but their 
scope was limited to selected genes only. In contrast to all above 
mentioned tools, most important functionality provided by 
IPSNP is that now the user does not have to collect CPD man-
ually by visiting different web pages. This task is required when 
the user intends to analyze the SNPs associated with a gene 
available in a repository such as dbSNP. For example, a user will 
have to retrieve chromosome coordinates based on GRCh37 or 
GRCh38 and protein mutations by visiting NCBI dbSNP, 
UniProt Id, protein sequence from UNiProt database of all 
variants one by one to investigate them using SIFT, Polyphen2, 
MetaSNP, SNPnexus, or other similar tools. This is a very 
cumbersome and laborious job especially when the user must 
analyze tens of hundreds of variants by using more than one 
annotation tools.

There were 2 main objectives of developing IPSNP. First 
objective was to provide an integrated framework that enables 
a user to execute predictions of more than one tool simultane-
ously and provision of list of variants that have been declared 
pathogenic by all selected tools. The second target was the pro-
vision of an application that allow the user to extract chromo-
some coordinates and protein mutations to get predictions of 
variants by running tools by visiting their web interfaces. First 

Table 3. Accuracy evaluation of IPSNP.

TOOS SIFT PROVEAN POLYPHEN-2 FATHMM MUTATION 
ASSESSOR

IPSNP

PARAMETERS SCORE %AGE SCORE %AGE SCORE %AGE SCORE %AGE SCORE %AGE SCORE %AGE

Accuracy 0.67 66.5 0.83 82.9 0.72 72 0.76 75.84 0.72 72.16 0.88 87.5

Precision 0.61 60.93 0.78 78.15 0.64 64.04 0.67 66.67 0.67 67 0.82 81.51

Specificity 0.41 41 0.72 72.04 0.56 56.38 0.55 54.84 0.65 64.52 0.78 78

Sensitivity/
Recall

0.92 92 0.93 93 0.9 90.12 0.99 98.82 0.81 80.72 0.97 97

NPV 0.84 83.67 0.91 90.54 0.87 86.89 0.98 98.08 0.79 78.95 0.96 96.3

MCC 0.38 38.36 0.67 66.84 0.49 48.66 0.59 58.94 0.46 45.59 0.76 76.39

F-score 0.73 73.31 0.85 84.93 0.75 74.87 0.8 79.62 0.73 73.22 0.89 88.58
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objective was achieved by developing AEFI and second inter-
face that is, CPDEI allow the user to extract CPD by single 
click. The proposed study is very useful for getting predictions 
of more than one tool. The user provides only gene id and 
selects the desired tools. No need to provide chromosome coor-
dinates, protein mutations or rsIDs that are the requirement of 
almost all SNP analysis tools. Secondly, if a user wants to ana-
lyze SNPs by running tools directly visiting their web inter-
faces (e.g. SIFT,35 Polyphen-2,36 PredictSNP, MetaSNP etc), 
then there is no need to get parameters needed by these web 
servers manually. CPDEI of the IPSNP will extract all required 
data and save a lot of time.

IPSNP outperforms in comparison with other discussed 
tools in the scope of this research. This platform provides flex-
ibility to user in selection of prediction tools rather than hard 
bounded facility of tools. A user can select one or all the tools 
as per requirements. Secondly, the input methods provided by 
IPSNP are versatile. A user has liberty to provide either rsID, 
gene ID, or HGVS Id as per ease. Third, the user has been 
provided the facility to download the results in CSV format. 
Fourth, the user gets the common pathogenic results which 
are not available in other tools, as per our best of knowledge. 
Five, if a user does not want to run the prediction tools using 
the IPSNP platform then it is provided the facility to down-
load the input coordinates based on GRCH37 and GRCH28 
assemblies as required by the user some specific SNP predic-
tion tools. Six, IPSNP provides the tools wise results. This 
unique feature differentiates the IPSNP from all other tool. 
Lastly, IPSNP provides the consensus results which enable the 
user to get confident results based on the fact that it has been 
declared as benign or pathogenic by most of the SNP predic-
tion tools. Although IPSNP is an efficient platform, however 
it has some limitations. We are using data from NCBI and 
Uniprot; and API of MyVariant.info. If any of these servers is 
down then IPSNP platform will not be able to execute and 
give the required results. If any of selected SNP prediction 
tools is down, the user will not be able to run the selected tools 
to get results.

Conclusions
IPSNP is a powerful tool that brings together various software 
tools to assist the interpretation of genetic variants. The plat-
form allows researchers and clinicians to analyze genetic vari-
ants in a more comprehensive manner and make more efficient 
diagnosis, treatment, and disease management. It has revolu-
tionized the way genetic data is analyzed and interpreted and 
has led to significant advancements in personalized medicine. 
This study facilitates to obtain predictions of variants associ-
ated with a gene by integration of 29 SNP annotation tools 
with a single click, filtering common pathogenic variants and 
retrieving CPD to execute various SNP analysis tools by visit-
ing their web interfaces. Overall, the IPSNP platform has the 
potential to greatly improve patient outcomes by providing 

clinicians with more information to make better decisions 
regarding treatment and management of genetic diseases.

Acknowledgements
We are grateful to Virtual University of Pakistan and higher 
education commission for their support during this research 
work.

Author’s Contributions
Syed Shah Muhammad conceived the idea conducted litera-
ture survey, designed and performed experiments, analyzed the 
data, drafted the research article, prepared the figures and/or 
tables, revised it critically for important content. Muhammad 
Tariq Pervez contributed in code writing, design of Platform 
and in drafting the research article. Muhammad Shoaib con-
tributed in designing experiments, verified the experiments 
and results, writing the research article and proof reading of the 
document.

Availability
The link of web application is: http://ipsnp.vu.edu.pk:8000/

The complete code of Web application and command line 
version is available at: https://github.com/usmanathar2023/
snp/tree/snp_pline_cmd

DOI: 10.5281/zenodo.8319444

ReFeReNCeS
 1. Sim NL, Kumar P, Hu J, et al. SIFT web server: predicting effects of amino acid 

substitutions on proteins. Nucleic Acids Res. 2012;40:W452-W457.
 2. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect 

of amino acid substitutions and indels. Bioinformatics. 2015;31:2745-2747.
 3. Hartley SW, Monti S, Liu CT, Steinberg MH, Sebastiani P. Bayesian methods 

for multivariate modeling of pleiotropic SNP associations and genetic risk pre-
diction. Front Genet. 2012;3:176.

 4. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human 
missense mutations using polyphen-2. Curr Protoc Hum Genet. 2013;76: 
7.20.1-7.20.41.

 5. Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method 
for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 
2016;99:877-885.

 6. Uffelmann E, Huang QQ , Munung NS, et al. Genome-wide association stud-
ies. Nat Rev Methods Primers. 2021;1:59.

 7. Van El C, Cornel M, Borry P, et al. Whole-genome sequencing in health care. 
Eur J Hum Genet. 2013;21:580-584.

 8. Bendl J, Stourac J, Salanda O, et al. PredictSNP: robust and accurate consensus 
classifier for prediction of disease-related mutations. PLoS Comput Biol. 
2014;10:e1003440.

 9. Capriotti E, Altman RB, Bromberg Y. Collective judgment predicts disease-
associated single nucleotide variants. BMC Genomics. 2013;14 Suppl 3:S2-S9.

 10. Capriotti E, Fariselli P, Calabrese R, Casadio R. Predicting protein stability 
changes from sequences using support vector machines. Bioinformatics. 2005; 
21:ii54-ii58.

 11. Li S, Ma L, Li H, et al. Snap: an integrated SNP annotation platform. Nucleic 
Acids Res. 2007;35:D707-D710.

 12. Mi H, Ebert D, Muruganujan A, et al. PANTHER version 16: a revised family 
classification, tree-based classification tool, enhancer regions and extensive API. 
Nucleic Acids Res. 2021;49:D394-D403.

 13. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of 
transcript-specific functional predictions and annotations for human nonsynon-
ymous and splice-site SNVs. Genome Med. 2020;12:103-108.

 14. Oscanoa J, Sivapalan L, Gadaleta E, et al. SNPnexus: a web server for functional 
annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 
2020;48:W185-W192.

http://ipsnp.vu.edu.pk:8000/
https://github.com/usmanathar2023/snp/tree/snp_pline_cmd
https://github.com/usmanathar2023/snp/tree/snp_pline_cmd


14 Evolutionary Bioinformatics 

 15. Gulko B, Gronau I, Hubisz M, Siepel A. Probabilities of fitness consequences for 
point mutations across the human genome. Nat Genet. Posted online September 
11, 2014. bioRxiv 006825. doi:10.1101/006825

 16. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep 
learning-based sequence model. Nat Methods. 2015;12:931-934.

 17. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predict-
ing the deleteriousness of variants throughout the human genome. Nucleic Acids 
Res. 2019;47:D886-D894.

 18. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spectral approach integrat-
ing functional genomic annotations for coding and noncoding variants. Nat 
Genet. 2016;48:214-220.

 19. Shihab HA, Gough J, Mort M, et al. Ranking non-synonymous single nucleo-
tide polymorphisms based on disease concepts. Hum Genomics. 2014;8:11-16.

 20. Fu Y, Liu Z, Lou S, et al. FunSeq2: a framework for prioritizing noncoding reg-
ulatory variants in cancer. Genome Biol. 2014;15:480.

 21. Ritchie GR, Dunham I, Zeggini E, Flicek P. Functional annotation of noncod-
ing sequence variants. Nat Methods. 2014;11:294-296.

 22. Smedley D, Schubach M, Jacobsen JOB, et al. A whole-genome analysis frame-
work for effective identification of pathogenic regulatory variants in Mendelian 
disease. Am J Hum Genet. 2016;99:595-606.

 23. Landrum MJ, Chitipiralla S, Brown GR, et al. ClinVar: improvements to access-
ing data. Nucleic Acids Res. 2020;48:D835-D844.

 24. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional anno-
tations improve the predictive score of human disease-related mutations in pro-
teins. Hum Mutat. 2009;30:1237-1244.

 25. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein muta-
tions: application to cancer genomics. Nucleic Acids Res. 2011;39:e118-e118.

 26. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of 
genetic variation. Nucleic Acids Res. 2001;29:308-311.

 27. Schoch CL, Ciufo S, Domrachev M, et al. NCBI Taxonomy: a comprehensive 
update on curation, resources and tools. Database. 2020;2020:baaa062.

 28. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 
2015;43:D204-D212.

 29. Hassan MS, Shaalan AA, Khamis S, Barakat A, Dessouky MI. Integrated rules 
classifier for predicting pathogenic non-synonymous single nucleotide variants in 
human. Gene Rep. 2024;34:101887.

 30. Huang D, Zhou Y, Yi X, et al. VannoPortal: multiscale functional annotation of 
human genetic variants for interrogating molecular mechanism of traits and dis-
eases. Nucleic Acids Res. 2022;50:D1408-D1416.

 31. Deng H, Li J, Shah AA, Ge L, Ouyang W. Comprehensive in-silico analysis 
of deleterious SNPs in APOC2 and APOA5 and their differential expres-
sion in cancer and cardiovascular diseases conditions. Genomics. 2023;115: 
110567.

 32. Prakasam P, Abdul Salam AA, Basheer Ahamed SI. The pathogenic effect of 
SNPs on structure and function of human TLR4 using a computational 
approach. J Biomol Struct Dyn. 2023;41:12387-12400.

 33. Shah H, Khan K, Badshah Y, et al. Investigation of UTR variants by computa-
tional approaches reveal their functional significance in PRKCI gene regulation. 
Genes. 2023;14:247.

 34. Joshi I, Bhrdwaj A, Khandelwal R, et al. Artif icial intelligence, big data and 
machine learning approaches in genome-wide SNP-based prediction for 
precision medicine and drug discovery. In: Basak SC, Vračko M, eds. Big 
Data Analytics in Chemoinformatics and Bioinformatics. Elsevier; 2023; 
333-357.

 35. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 
2001;11:863-874.

 36. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting 
damaging missense mutations. Nat Methods. 2010;7:248-249.


