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Regulation of FT splicing by an endogenous
cue in temperate grasses
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Kai Chen1, Aili Li1, Long Mao1 & Liang Wu1,3

Appropriate flowering timing is crucial for plant reproductive success. The florigen,

FLOWERING LOCUS T (FT), interacts with 14-3-3 proteins and the bZIP transcription factor

FD, functioning at core nodes in multiple flowering pathways. There are two FT homologues,

FT1 and FT2, in Brachypodium distachyon. Here we show that FT2 undergoes age-dependent

alternative splicing (AS), resulting in two splice variants (FT2a and FT2b). The FT2b-encoded

protein cannot interact with FD or 14-3-3s but is able to form heterodimers with FT2a and

FT1, thereby interfering with the florigen-mediated assembly of the flowering initiation

complex. Notably, transgenic plants overproducing FT2b exhibit delayed flowering, while

transgenic plants in which FT2b is silenced by an artificial microRNA display accelerated

flowering, demonstrating a dominant-negative role of FT2b in flowering induction. Further-

more, we show that the AS splicing of FT2 is conserved in important cereal crops, such as

barley and wheat. Collectively, these findings reveal a novel posttranscriptional mode of FT

regulation in temperate grasses.
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T
he correct timing of the transition from the vegetative to
the reproductive stage is a critical point during plant life
cycles. Plants require appropriate environmental condi-

tions, including optimal photoperiod and temperature, to
stimulate flowering at a specific time of the year. Additionally,
plants also must develop to a certain age with fixed amounts
of hormones to achieve flowering1. As the encoder of the
mobile flower-promoting signal florigen, the FLOWERING
LOCUS T (FT) gene has been shown to have key roles in
integrating external and endogenous cues to control the onset of
flowering.

FT proteins are a clade of the phosphatidylethanolamine-
binding protein (PEBP) family, which act as highly conserved
regulators in plants that relay signals from upstream to down-
stream in flowering pathways. In Arabidopsis thaliana, FT
messenger RNA (mRNA) gradually increases with developmental
time under a long-day (LD) photoperiod2. After synthesis in
leaves, FT protein travels through the vasculature to the shoot
apical meristem (SAM) and interacts with a bZIP transcription
factor, named FD, which is expressed specifically in the SAM3,4.
Subsequently, the FT/FD complex activates a number of MADS
box genes, including APETALA1, FRUITFULL and SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS 1 to stimulate floral
organ initiation5. The 14-3-3 proteins, a family of regulatory
molecules conserved in animal and plants, can directly interact
with the FT homologue Heading date 3a in rice apical shoots,
forming a functional complex that translocates to the nucleus6.
Thus, 14-3-3 proteins may function as scaffold proteins to
associate FT with FD to trigger flowering.

Numerous FT transcriptional regulators have been identified to
date. For example, in A. thaliana, CONSTANS and GIGANTEA
activate FT expression in the photoperiod pathway7–9, while
FLOWERING LOCUS C and SHORT VEGETATIVE PHASE
form a MADS-box complex that negatively mediates FT
expression in the flowering vernalization-related pathway10.
Two well-known plant-conserved microRNAs (miRNAs),
miR156 and miR172, directly or indirectly act at the FT region
through their targets, mediating age-dependent flowering
processes11–13. Compared with the extensive knowledge of FT
control at the transcriptional level, our understanding of FT
regulation at the posttranscriptional level is limited.

Temperate grasses, including wheat and barley, are major
sources of food and biofuel worldwide. Some specialized
components, lacking orthologues in A. thaliana and rice, have
been discovered in temperate grasses and can affect FT
gene expression in day-length and vernalization flowering
pathways14–16. The typical Pooideae grass Brachypodium
distachyon has been considered as a suitable model system for
investigating gene function in temperate cereals because of its
small genome, simple growth requirements and short life cycle17.
Phytochrome C, rather than phytochrome A or B, is an essential
light receptor for photoperiodic flowering in wheat and
B. distachyon, suggesting that there are different evolutionary
features of LD flowering responses in temperate grasses18–20.
Moreover, a Pooideae-specific miRNA, miR5200, has recently
been identified that directly silences two FT orthologues and has a
crucial role in the photoperiod-mediated flowering pathway in
B. distachyon, further implying that a distinct flowering control
mechanism exists in temperate cereals14.

Alternative splicing (AS) is a universal mechanism that
produces multiple mRNAs from one gene through the variable
selection of splice sites during mRNA generation21,22. AS can
modulate gene expression levels by introducing a premature
termination codon, resulting in the degradation of a special RNA-
splicing isoform through a nonsense-mediated decay pathway23.
Additionally, different transcript isoforms may produce truncated

proteins that may have different subcellular localization, stability
level or function23. Several studies have implicated the involve-
ment of AS in plant development, circadian rhythm, starch
metabolism, hormone signaling and abiotic stress response, as
well as pathogen defense24–36, suggesting that this mechanism of
gene regulation has a significant role in plant adaptation and
evolution. Despite the revelation by next-generation sequencing
that AS occurs in 460% of A. thaliana and 42% of B. distachyon
genes, the biological significance of most AS events in plants is
still largely unknown21,37–39.

Previously, we demonstrated that two orthologous FT genes,
FTL1 (Bradi2g07070) and FTL2 (Bradi1g48830), have miR5200-
targeting sites and are regulated by miR5200 in B. distachyon14.
Because in B. distachyon, more amino acids of FTL2, compared
with FTL1, are identical with those of florigen VRN3 in wheat
and barley, we re-designated FTL1 as FT2 and FTL2 as FT1 to be
clearer when analyzing the phylogenetic relationships among the
FTs of temperate grasses40.

In this study, we show that AS of FT2 has an important role in
controlling florigen activity by producing a competitive repressor
in B. distachyon. FT2b, which only lacks a short section of the
N-terminal PEBP domain, can attenuate the activities of the
flowering initiation complex by interacting with full-size FT2a
and FT1. The FT2b/FT2a ratio progressively decreased with plant
growth, resulting in a slow gradual increase in the florigen activity
level. The overexpression of FT2b in transgenic plants resulted in
delayed flowering, whereas plants with downregulated FT2b
activity through artificial miRNA-induced repression, exhibited
accelerated flowering, further demonstrating that FT2b acts
as a dominant-negative repressor in flowering time control in
B. distachyon. Together, these results reveal a novel molecular
mode of FT posttranscriptional regulation in temperate grasses.

Results
FT2 is subject to AS generating two isoforms. In B. distachyon,
FT1 and FT2 share high amino-acid sequence identity and their
overproduction gives rise to extremely early bolting phenotypes,
indicating that they perform redundant roles in flowering
initiation14,15,40. During the study of the regulatory mechanism of
FT1 and FT2 in flowering, we interestingly found that two PCR
products were generated by a pair of FT2 primers, implying the
existence of FT2 AS in B. distachyon (Fig. 1a). By comparing the
two FT2 cDNA sequences, we discovered that one splicing
product was missing 84 nucleotides at the 50-end of the first exon
compared with a typical FT gene.Thus we designated this form as
FT2b and the full-size transcript as FT2a (Fig. 1b). A protein
sequence alignment showed that the missing 28 amino acids came
from the 50 terminal region of the PEBP domain of FT2b, which
is more variable compared with the middle and 30 regions
(Fig. 1c; Supplementary Fig. 1a). However, no FT1 splicing
variant was detected in B. distachyon, possibly because the gene
structure of FT1 is different from that of FT2 (Supplementary
Fig. 1b,c).

Using specific primers to amplify each FT2 RNA splicing
product, we detected the presence of both variants in
B. distachyon in most cases (Fig. 1a). Most AS events in plants
are shown to be affected by ambient temperature fluctua-
tions24,25,28,41. Similarly, the ratios of FT2b/FT2a were altered
when plants were grown at high temperatures (Supplementary
Figs 2 and 3).

To determine the role, if any, of different FT2 variants in the
control of flowering, we attempted to independently overproduce
FT2a and FT2b in B. distachyon. As previously described by us
and others, the ectopic expression of intact FT2 (FT2a) in
B. distachyon leads to very early flowering and arrested vegetative
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Figure 1 | Identification of FT2AS in B. distachyon. (a) Detection of alternatively spliced FT2 transcripts by RT-PCR. F1 and F2 are specific forward

primers for FT2a and FT2b amplification, respectively, while primer F is used for FT2a and FT2b PCR simultaneously. R is the reverse primer. RT,

reverse transcription. M, marker. bp, base pairs. (b) Protein sequence alignment of different FT2 alternative isoforms and FT1. (c) Schematic genomic

structure of FT2 splicing variants. White boxes indicate untranslated regions and black boxes indicate exons. TSS indicates the transcriptional start site.

(d) qRT-PCR analysis of FT2b expression in wild-type Bd21 and the indicated FT2b-OE transgenic plants. Three four-week-old B. distachyon plants were

pooled and collected for RNA isolation. UBC18 was used as an internal control for normalization of qRT-PCR results. qRT-PCR analyses were performed

in three biological replicates with similar results. The point represents the mean value of three technical replicates in a representative biological

experiment. Error bars indicate s.d. (e) Representative phenotype of FT2b overexpressing transgenic plants.White arrows point to spikes. Scale

bar, 2 cm. (f) Flowering time of wild-type and the indicated FT2b-OE transgenic plants. Error bars indicate s.d. (n¼ 13). Student’s t-test, **Po0.01,

*Po0.05. (g) qRT-PCR analysis of downstream flowering gene VRN1 expression in wild-type and the indicated FT2b-OE transgenic plants. The

four-week-old whole plant tissues including leaves and shoot apex were collected for VRN1 examination. qRT-PCR analyses were performed in three

biological replicates with similar results. The point represents the mean value of three technical replicates in a representative biological experiment.

Error bars indicate s.d. Student’s t-test, **Po0.01, *Po0.05. (h) qRT-PCR analysis of FT2a expression levels in wild-type and the indicated FT2b-OE

transgenic plants.
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growth14,40, demonstrating the positive florigen activity of FT2a.
Next, we generated FT2b overexpression (FT2b-OE) transgenic
plants and determined the flowering time in their T1 generations
under LD conditions. Wild-type and transgenic plants displayed
similar rates of vegetative development. However, eight inde-
pendent positive FT2b-OE plants exhibited significantly late
heading dates compared with wild-type and the null segregants of
the transgenic plants (Supplementary Fig. 4).

Because FT2b-OE#1 and FT2b-OE#3 displayed a severe
and mild delay of flowering time, respectively, we chose their
T3 homozygous plants for further molecular and phenotypic
analyses. Quantitative real-time PCR (qRT-PCR) showed that
FT2b was approximately 12- and 9-fold higher in FT2b-OE#1 and
FT2b-OE#3 plants, respectively, than in the parental wild-type
(Fig. 1d; Supplementary Fig. 5a,b). FT2b-OE#1 bolted 12 days
(59 versus 47 days) and FT2b-OE#3 bolted more than 6 days
(53 versus 47 days) later than wild-type plants under LD
conditions (Fig. 1e,f). Furthermore, the expression of VRN1, an
APETALA1 orthologue acting downstream of FT in temperate
grasses, was dramatically reduced in FT2b-OE#1 and FT2b-OE#3
plants (Fig. 1g; Supplementary Fig. 5c,d). The FT2b-OE plants
exhibited wild-type levels of FT2a mRNA, excluding the
possibility that the late flowering of FT2b-OE was caused by
the suppression of FT2a expression (Fig. 1h; Supplementary
Fig. 5e,f). Thus FT2a and FT2b may have different effects on
floral transition in B. distachyon.

FT2b does not interact with FD or 14-3-3 proteins. In
A. thaliana and rice, during transport from leaves to SAM,
florigen interacts with several 14-3-3 proteins in the cytoplasm
and subsequently translocates to the nucleus to bind FD and form
a flowering activation complex.

The interaction of TaFDL2, the FD-like protein in wheat, with
FT1 and FT2 has been previously demonstrated4,42.Thus we
cloned its orthologue from B. distachyon and assigned the same
name as in wheat (Supplementary Fig. 6). To address whether
FT2a and FT2b in B. distachyon can form a flowering initiation
complex with FD, we first used yeast two-hybrid assays to
determine their interactions with FDL2. Strong interactions were
detected between FT2a and FDL2 in yeast cells. However, there
was no detectable binding of FT2b to FDL2 in yeast (Fig. 2a). To
verify these results, we examined the associations between the two
FT2 isoforms and FDL2 using bimolecular fluorescence
complementation (BiFC) assays with a split yellow fluorescent
protein (YFP) system in Nicotiana benthamiana leaf mesophyll
cells. As shown in Fig. 2b, there was a strong fluorescent signal in
the nucleus when FT2a was transiently co-expressed with FDL2.
By contrast, no YFP fluorescence could be detected in leaves co-
expressing FT2b and FDL2, suggesting that FT2b cannot bind
FDL2 in vivo. Co-immunoprecipitation (Co-IP) assays further
confirmed a strong binding between FT2a and FDL2 but no
interaction between FT2b and FDL2 (Fig. 2c).

Similar to Heading date 3a in rice, wheat FT1 can also interact
with two 14-3-3 proteins, GF14b and GF14c6,42.Thus we selected
several B. distachyon 14-3-3 proteins including GF14b and GF14c
to determine their abilities to interact with FT2a and FT2b
(Fig. 2d; Supplementary Fig. 7a). Both GF14b and GF14c
interacted with FT2a in the yeast two-hybrid and BiFC assays
(Fig. 2d,e). In contrast, FT2b did not bind to any 14-3-3 proteins
(Fig. 2d,e; Supplementary Fig. 7b). Thus 14-3-3 proteins may not
form bridges with FT2b to trigger flowering in B. distachyon.
Together, these observations suggest that FT2 splicing variants
may have different actions, with one forming a flowering
activation complex as a result of direct physical interactions
with 14-3-3s and FD, while the other has lost this ability.

FT2b attenuates the bindings of florigen to FD and 14-3-3s.
Genetic engineering experiments have shown that unnatural
splicing variants can act as dominant-negative mutants to inter-
rupt the activities of wild-type isoforms24,25,28. FT2b’s inability
to bind to FD and 14-3-3s implied that it may interfere with
flowering activation complex formation. To test this possibility,
we expressed FT2b in yeast cells, which contained BD-FT2a and
AD-FDL2 fusions (Fig. 3a). b-Galactosidase (b-Gal) activity
assays revealed that the expression of FT2b substantially
repressed FT2a-FD binding (Fig. 3b). Likewise, the interaction
between FT2a and GF14b in yeast three-hybrid systems was
significantly reduced when FT2b was expressed (Fig. 3b).

To further investigate the negative effects of FT2b on flowering
activation complex formation, we transiently co-expressed
FT2b with split YFP-tagged FT2a and FDL2 proteins in
N. benthamiana leaf mesophyll cells. Compared with the GUS
protein, which was expressed instead of FT2b as a control, the
numbers of fluorescent cell nuclei, as well as the intensity of
fluorescence, generated by the interaction of FT2a and FDL2 was
reduced when FT2b was co-expressed (Fig. 3c,d). Meanwhile, in
line with the yeast three-hybrid assay results, competition BiFC
experiments also showed a repressive effect of FT2b on
the association of FT2a with GF14b in the cytoplasm of
N. benthamiana leaf cells (Fig. 3e,f).

Because FT1 and FT2 may have redundant roles in flowering
initiation4,14,40, we investigated whether FT2b could affect the
efficiency of flowering induction complex formed by FT1, in
addition to that formed by FT2a. Indeed, FT2b had an inhibitory
effect in the competition BiFC assay (Supplementary Fig. 8).
Collectively, these results indicate that FT2b functions as a
repressor of the formation of the flowering initiation complex
containing FT1, FT2a, 14-3-3s and FD.

FT2b forms heterodimers with FT2a and FT1. FT2b suppresses
the interactions of florigen proteins with FD and 14-3-3s;
however, we did not detect any physical interactions of FT2b with
FDL2 or 14-3-3s (Fig. 2). Thus we next investigated another
possible mechanism.

It has been suggested that heterodimers may be generated by
different splicing isoforms24,25,28, thus we investigated whether
FT2b was able to form a heterodimer with FT2a to produce a
nonfunctional protein complex. To test this possibility, we first
performed a yeast two-hybrid analysis and observed a strong
interaction between FT2a and FT2b (Fig. 4a). The formation of a
heterodimer between FT2a and FT2b was also detected in the
nuclei as well as in the cytoplasm of N. benthamiana leaf cells
using BiFC assays (Fig. 4b). Furthermore, a yeast two-hybrid
analysis showed an interaction of FT2b with FT1, suggesting that
FT2b is able to form heterodimers with both florigen proteins
(Supplementary Fig. 9).

Interestingly, yeast two-hybrid and BiFC assays revealed that
both FT2a and FT1, but not FT2b, could form homodimers
(Fig. 4a–c; Supplementary Fig. 9). Thus we propose that the
negative effect of FT2b on flowering time results from the binding
of FT2b to FT2a and FT1, which prevents them from interacting
with FD and 14-3-3s, thereby reducing the number of functional
flowering initiation complexes.

FT2 AS is controlled by an endogenous cue. Having discovered
a molecular mode by which FT2b represses flowering, we
wondered when FT2b contributes to the regulation of
floral initiation in B. distachyon. Unlike in A. thaliana,
temperature has a very limited impact on the timing of phase
transition from the vegetative to reproductive stage in
B. distachyon43; therefore, FT2 splicing may have little, if any,
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relevance to temperature-mediated flowering, even though the
FT2b/FT2a ratio can change in response to the environmental
temperature.

Previously, we reported that FT1 and FT2 transcription level
gradually increase with development under LD conditions in
B. distachyon14. Thus we asked whether FT2 AS changes with
plant age. Using a qRT-PCR analysis with splicing-variant-
specific amplification primers, the ratio of FT2b/FT2a abundance
was found to decline during plant growth (Fig. 5a,b; Supple-
mentary Figs 10 and 11). Although the transcription levels
of FT2a and FT2b gradually increased throughout plant
development as a result of photoperiodic induction, the
proportions of different FT2-splicing isoforms changed with
increasing plant age. FT2b accumulated to a much higher level
than FT2a during the first 4 weeks, but FT2a rose much faster
than FT2b afterwards (Fig. 5a; Supplementary Figs 10 and 11),
thereby resulting in a gradual decrease in the FT2b/FT2a ratio as
development progressed (Fig. 5b).

To further determine the effects of increasing age on FT2 AS,
we examined the diurnal expression rhythms of FT2a and FT2b
in 4- and 7-week-old B. distachyon leaves. As shown in Fig. 5c
and Supplementary Fig. 12, the FT2b expression level was higher
than that of FT2a in 4-week-old plants during the day–night
cycle. By contrast, more FT2a accumulated than FT2b in 7-week-
old plants (Fig. 5d; Supplementary Fig. 12), further confirming
the development-dependent change in FT2 AS.

Therefore, in addition to the transcriptional control of FT, the
posttranscriptional regulation of FT by AS may also contribute to
flowering at the appropriate time in B. distachyon. We propose
that a high level of FT2b in young plants may prevent precocious
flowering, which allows plants to accumulate sufficient biomass to
produce enough seeds to propagate the next generation.

Down regulation of FT2b induces early flowering. We previ-
ously found that the overexpression of miR5200, which
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simultaneously targets both FT1 and FT2, led to a severe delay of
flowering onset in B. distachyon14, suggesting that the suppre-
ssion of FT2a expression may result in late flowering. To further
characterize the role of FT2b in flowering control, we attempted
to use artificial miRNAs to knock down FT2b expression, because
artificial miRNA can specifically silence one splicing variant but
not the other.

In plants, most of miRNAs start with a 50uridine (U) for
their correct sorting into ARGONAUTE 1 (AGO1) silencing

complex44. However, there is no adenine (A) nucleotide available
for the design of artificial miRNA with a 50U across the
FT2b transcripts that skips the exon nucleotides of FT2a
(Supplementary Fig. 13a). Even beginning with a 50A, miR172
can be properly loaded into AGO1-silencing effectors as a result
of its specific secondary structure44. Thus we designed an artificial
miRNA using MIR172a as a backbone to downregulate FT2b
(Fig. 6a; Supplementary Fig. 13a,b). We successfully obtained
eight independent transgenic Bd21-3 plants and termed them
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effects on FT2a and 14-3-3 interactions in N. benthamiana leaf cells. GUS was used as a control in the absence of FT2b. Scale bar, 50mm. (f) Relative

fluorescence intensity in BiFC assays used for determination of FT2b-inhibitory activities to FT2a and 14-3-3 interactions. Bars indicate s.e.m. of three

replicates (Student’s t-test, **Po0.01).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14320

6 NATURE COMMUNICATIONS | 8:14320 | DOI: 10.1038/ncomms14320 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


amiRFT2b. RNA analysis revealed high accumulation of artificial
miRNA and are resultant decrease of FT2b expression in typical
transgenic plants (Fig. 6b,c; Supplementary Fig. 14a,b). In
addition,we did not find reductions in the gene expression
levels of FT2a or other potential amiRFT2b targets in amiRFT2b
plants (Fig. 6d; Supplementary Figs 14c,d and 15), suggesting that
our artificial miRNA, which was introduced into plants, can
specifically act on the desired transcripts.

An analysis of the flowering time of these transgenic plants, in
the T3 generation, under LD conditions revealed early heading
(Fig. 6e). The heading date was earlier by an average of 8 days in
amiRFT2b compared with those of control plants (54 versus 62
days, on average) (Fig. 6f). Consistent with these phenotypic
observations, VRN1 expression was two fold to four fold higher in
amiRFT2b than in wild-type plants (Fig. 6g; Supplementary

Fig. 14e,f). The extent of early flowering phenotype in different
amiRFT2b lines correlated with the mature artificial miRNA
accumulation as well as the reduced FT2b expression, suggesting
that the acceleration of flowering by reduced FT2b activity is
likely due to the formation of more flowering activation complex
and the resulting enhanced VRN1 expression.

To help exclude the possibility that the early flowering in
amiRFT2b is due to the unspecific effects of the artificial miRNA,
we generated amiRFT2a transgenic lines, which specifically
silenced FT2a expression by introducing a different artificial
miRNA that targeted the intron region of FT2a where
it is different from that of FT2b (Supplementary Fig. 13). We
observed a severe delay of flowering (94 versus 68 days) and a
reduction in VRN1 expression in strong amiRFT2a lines
(Supplementary Figs 16 and 17). Weak amiRFT2a lines exhibited
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comparable heading dates with those of wild-type plants
(Supplementary Figs 16 and 17). This may be because of the
limited decrease in FT2a expression or the redundant activities of
FT1 and FT2 in B. distachyon. The lack of early flowering
phenotypes in all four amiRFT2a lines suggested that the
precocious heading of amiRFT2b was due to the compromised
FT2b activity rather than the unspecific effects of the artificial
miRNA.

Taken together, the acceleration and delay in heading dates in
amiRFT2b and amiRFT2a plants, respectively, further indicated
that FT2b and FT2a have antagonistic roles in the flowering
processes of B. distachyon.

Dynamic change in FT2 AS is prevalent in temperate grasses.
In light of the opposite roles of FT2 splicing isoforms in
B. distachyon flowering control demonstrated above, we asked
whether the age-dependent modulation of FT2 AS was conserved
among other plants. Using RT-PCR, similar splicing variants of
FT2 orthologues in A. thaliana, rice and maize were not detected,
even though the gene structures of the FT2 homologous genes
in rice and maize are the same as that in B. distachyon
(Supplementary Fig. 18).

As B. distachyon belongs to Pooideae, we investigated whether
AS of FT2 is present in other temperate grasses. Indeed, we found
two splicing variants of FT2 in Aegilops tauschii, wheat and
barley, which differed by the loss of nucleotides that encode the
same amino acids as in B. distachyon (Supplementary Fig. 19).
Additionally, we observed that wheat and barley FT2b were
expressed at much lower levels than FT2a in 8-week-old plants,

whereas FT2a transcripts were less abundant in 2-week-old plants
(Fig. 7a,b). These results suggest that the change in the AS of FT2
regulated by development is conserved in temperate grasses.

Discussion
AS is a common gene regulatory mechanism that greatly
increases the complexity of transcripts and proteins encoded by
an organism’s genome. From high-throughput transcriptome
studies in plants, it is now clear that AS is much more prevalent
than previously estimated37. However, when, how and why
these splicing variants are generated remains, to a large extent,
unknown22,23. In this study, we reported that the highly
conserved flowering integrator gene, FT, is also subjected to AS
in temperate grasses. FT2b can heterodimerize with FT2a and
FT1 in plant leaves and is unable to bind FD and 14-3-3s at the
shoot apex, resulting in its interference with the formation
of flowering inductive complexes. Thus it has a dominant-
negative role in controlling flowering onset. The importance of
change in FT2 AS during development was demonstrated by the
alteration in heading date timing, which results from artificial-
miRNA induced reduction in FT2b activity in B. distachyon
(Fig. 6).

AS is thought to regulate functional gene actions in two ways:
by directly altering mRNA stability or by encoding distinct
protein isoforms, which may influence physical interactions
between the original protein and its associates23. The latter is
frequently associated with AS that is regulated by environmental
stress or temperature response24,25,28,45,46. Although we detected
that FT2b/FT2a ratio was influenced by ambient temperature

1.50a b

c d

F
T
2/
U
B
C
18

F
T
2/
U
B
C
18

F
T
2/
U
B
C
18

FT2�
FT2�

FT2�
FT2�

FT2�
FT2�

R
at

io
 (
F
T
2
�/
F
T
2�

)

1.25

1.00

0.75

0.50

0.10

0.05

0.16 1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0 0

1

2

3

1

0 4 8 12 16 20 24 (h) 0 4 8 12 16 20 24 (h)

2 3 4 5 6 7 (w)

4 w 7 w

1 2 3 4 5 6 7 (w)

Figure 5 | Age-dependent FT2 AS. (a) Expression analysis of FT2a and FT2b along with different age. Upper flat leaves from five Bd21 plants with the

indicated age were pooled and collected for RNA isolation. Each qRT-PCR analysis was performed in three biological replicates with similar results. The

point represents the mean value of three technical replicates in a representative biological experiment. The transition from vegetative to reproductive stage

of Bd21 plants occurs at 4–5 weeks. Standard curve for FT2a, FT2b and UBC18 quantification is shown in Supplementary Fig. 2. The absolute value of FT2a,

FT2b and UBC18 is shown in Supplementary Fig. 10a. Error bars indicate s.d. w, weeks. (b) FT2b/FT2a ratio during plant development. (c) and (d) Diurnal

expression analysis of FT2a and FT2b in 24-h period when plants were 4 and 7 weeks old. The absolute value of FT2a, FT2b and UBC18 at each time point is

shown in Supplementary Fig. 12. Upper flat leaves from five Bd21 plants at the indicated time were pooled and collected for RNA isolation. The white and

black bars along the horizontal axes represent light and dark periods, respectively. The numbers below the horizontal axes indicate the time in hours. Error

bars indicate s.d. h, hours, w, weeks.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14320

8 NATURE COMMUNICATIONS | 8:14320 | DOI: 10.1038/ncomms14320 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


changes, the AS of FT2 may not be involved in temperature-
mediated flowering control in B. distachyon, as increased ambient
temperatures have limited influences on flowering signal
induction in temperate grasses43.

Interestingly, the FT2b/FT2a ratio was progressively reduced
during development, indicating that FT2 AS is regulated by an
endogenous cue rather than an external cue for fine-tuning plant

flowering. FT2 AS may be modulated by some special splicing
factors that abundance-, localization- or posttranslational
modification-related changes as plant grow. Because miR156
and miR172 participate in the age-dependent regulation of
flowering in diverse plants12,13, it will be interesting to explore
whether alterations in FT2 growth-related AS in B. distachyon is
controlled by these two miRNAs during flowering processes.
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FT2 and FT1 in B. distachyon are thought to have redundant
roles on florigen activity because of their high amino-acid
identities, similar temporal and spatial expression patterns, and
same early flowering phenotype if overproduced. Thus it seems
likely that FT2 and FT1 may have an analogous regulatory
mechanism14,15. However, FT2 and FT1 are not regulated by
identical schemes at the posttranscriptional level. First, their
regulation by miR5200 is different. The base-pairing of miR5200
with the FT2 target site is not as perfect as that of FT1, resulting
in the cleavage of FT2 by miR5200 at a non-canonical miRNA
cleavage site14. Second, FT2’s function is modulated by AS, which
is altered during development to repress flowering in the early
stage, while no FT1 AS events occur during the life cycle. Because
both AS- and miRNA-mediated gene silencing are posttrans-
criptional gene regulatory mechanisms in eukaryotes, we propose
that posttranscriptional modulation may be the major force for
differentiating and fine-tuning different FT-like protein activities
in Pooideae plants during evolution.

In A. thaliana, BROTHER OF FT AND TFL1 (BFT), a member
of the FT/TFL1 protein family, mediates the link between

flowering and stress signaling47. BFT is expressed at low levels,
irrespective of day length, but can be dramatically induced under
highly saline conditions. BFT and FT have similar abilities to bind
FD. Thus, when plants encounter salt stress, BFT causes delayed
flowering by competing with FT for FD binding47. Similarly,
TFL1 represses FT activity through its interactions with FD,
which is involved in the prevention of flowering in immature
meristems of A. thaliana, A. alpina and even apple trees48,49–52.
In B. distachyon, although developmentally regulated FT2b
also interferes with flowering initiation complex formation, its
molecular mechanism is different from that of BFT in A. thaliana
because FT2b does not bind FD. In a sense, FT2b functions as a
competitor of FD, because both FT2b and FD can dimerize with
FT2a. FT2b/FT2a ratio is high in young plants and this prevents
the rapid progression towards flowering. If there was no FT2b
generated at the vegetative stage, then the florigen activity
conferred by either FT2a or FT1 would immediately exceed the
threshold for the reproductive phase transition, which may
lead to precocious flowering and detrimental effects on seed
production.

We found that full-length FT2 in B. distachyon can form
homodimers and FT2-FT1 heterodimers. Similar findings that FT
interacts with itself in A. thaliana suggest a possible biological
relevance for the multimeric forms of FT proteins in plants48.
Hence, further studies on when and where FT proteins form
polymers in vivo will be important for determining their exact
roles in accelerating flowering.

Plants contain complex regulatory machineries to optimize
the seasonal timing of flowering. Our present discovery of
AS-mediated FT2 regulation in temperate grasses not only
extends the manner of flowering control by FT but also reveals
florigen control at both the transcriptional and posttranscrip-
tional levels during the process of floral transition (Fig. 7c). In
respect that multiple alternatively spliced forms of FT ortholo-
gous genes have been detected in Platanus acerifolia53, it will be
interesting to determine whether the blocking flowering complex
formation by splice variants is the same FT regulatory mechanism
in trees.

Methods
Plant materials and growth conditions. B. distachyon used in this study were
grown under LD conditions (16 h light/8 h dark) in growth chambers with tem-
peratures of 22 �C during the day and 16 �C at night. For most experiments, the
B. distachyon accession Bd21 was used. To minimize the crosstalk effects of
photoperiod and vernalization on Bd21-3, seeds of transgenic and control plants
were placed on moistened filter paper in Petri dishes and subjected to 4 �C cold
treatment for 1 week before planting under the indicated conditions. Unless stated
otherwise, all plant seedlings or leaves were harvested at Zeitgeber time 16 for use
in the experiments.

Constructs and plant transformation. The FT2 (FT2a and FT2b) coding
sequences and the miR172a backbone of the artificial miRNA were amplified
from B. distachyon cDNA. FT2a, FT2b and artificial miRNAs constructs were all
under the control of the maize (Zea mays) UBIQUITIN (UBI) promoter for
overexpression in Bd21 or Bd21-3 plants. The sequences of the primers for
B. distachyon FT2a, FT2b and artificial miRNA amplification, as well as for binary
vector construction, are listed in Supplementary Table 1. Transformation of
B. distachyon was mediated by Agrobacterium tumefaciens strain AGL1 using
compact embryogenic calli derived from immature embryos54. Independent
transgenic lines were genotyped for T-DNA using HPT II-specific forward
and reverse primers. The confirmed positive T3 transgenic plants were used in
flowering time determination and gene expression assays.

Plant flowering time measurements. The flowering times of the indicated plants
were measured as the number of days from the date of planting in soil to the day
when the first spike emerged. At least 10 plants of each transgenic line were
recorded to calculate the average flowering time. Statistical significance was
determined using Student’s t-test.
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RNA expression analysis. Total RNA was isolated from at least three pooled
B. distachyon plants using TRIzol reagent (Invitrogen). The total RNA sample was
pretreated with RNase-free DNase I (Promega) prior to cDNA synthesis to remove
DNA and then reverse transcribed by EasyScript reverse transcriptase (TransGen
Biotech) using oligo (dT) primers. RT-PCR analyses of gene transcripts were
essentially carried out as previously described55. qRT-PCR reactions were
performed with SYBR Premix EX Taq (Takara) and run on an ABI 7,500 Fast
system with the following procedure: 95 �C for 1 min, then 40 cycles of 95 �C
for 10 s, 62 �C for 10 s, and 72 �C for 30 s, followed by a melting dissociation
program.

For the quantification of FT2a and FT2b transcripts, FT2a and FT2b cDNAs
were cloned into pGADT7 vectors, and an absolute standard curve of each
transcript was made using 10-fold serial dilutions from 10� 18 to 10� 23 mol ml� 1.
The gene expression levels (Fig. 5 and Supplementary Fig. 3) were calculated based
on the ratio of absolute quantifications of FT2a and FT2b to the corresponding
absolute value of UBC18. For gene relative expression analysis, UBC18 mRNA was
examined in parallel and used for data normalization, and the relative expression
levels were calculated using the DDCt method.

All of the qRT-PCR analyses were performed at least in three independent
biological replicates with three technical repetitions. For artificial miRNA
detection, 2 mg total RNA was used for RNA gel blots. 32P-end-labelled
oligonucleotides complementary to the artificial miRNA sequences were used as
probes. The sequences of the primers and small RNA blot probes are listed in
Supplementary Table 1.

Yeast assays. Yeast two-hybrid assays were conducted using the Matchmaker
GAL4 Two-Hybrid System (Clontech). The PCR products of FT2a, FT2b, FT1,
FDL2 and diverse 14-3-3s from B. distachyon cDNA were independently cloned
into the pGBKT7 and pGADT7 vectors. Transformation of AH109 cells was
performed according to the general protocol. The transformed yeast cells were
spread on the selective medium SD/-Leu/-Trp/-His/-Ade plus 2.5 mM 3-amino-
triazole to determine the interactions.

For the yeast three-hybrid assay, bait and prey were co-transformed with or
without the competitor FT2b into yeast AH109 cells. The interaction strengths
were quantified by a liquid b-Gal assay using chlorophenol red-b-D-
galactopyranoside (CPRG) as substrates according to the Yeast Protocol Handbook
(Clontech). Briefly, the yeast cells were broken open using several freeze/thaw
cycles and mixed with CPRG buffer. When the colour of the sample turned to red,
3.0 mM ZnCl2 was added to stop the reaction. The b-Gal units were calculated by
the supernatant absorbance at 578 and 600 nm.

BiFC assays. To generate the constructs for the BiFC assays, full-length cDNA
fragments of FT2a, FT2b, FT1, FDL2 and GF14b were amplified and cloned into
the pDONRZeo (Invitrogen) vector for fusion with the N-terminus of YFP or the
C-terminus of CFP by LR reaction. The resulting plasmids were introduced into
A. tumefaciens EHA105, which were then infiltrated into 4-week-old N. ben-
thamiana leaves for transient expression. In brief, the A. tumefaciens strains were
resuspended to OD600¼ 0.8 in infiltration buffer (150 mM acetosyringone, 10 mM
MgCl2 and 10 mM MES). The resuspensions containing each BiFC construct as
well as the p19 plasmid were mixed at 1:1:1 ratio and then infiltrated into leaves
with a syringe.

For the protein-binding competition assay, the A. tumefaciens harbouring the
FT2b plasmid was co-infiltrated with an equal volume of the indicated construct.
A. tumefaciens harbouring GUS in place of FT2b was infiltrated in parallel as a
control. The tobacco leaves were imaged under Zeiss LSM 700 confocal microscope
3 days after infiltration. Excitation of YFP was performed using an argon laser line
at 514 nm and red fluorescent protein (RFP) with 563 nm, while capture of YFP
fluorescence was at 518–555 nm and RFP at 568–636 nm. Primers used to construct
BiFC plasmids are shown in Supplementary Table 1.

Co-IP assays. Full-length coding sequences of FT2a, FT2b and FDL2 were cloned
into tagging plasmids under the control of Cauliflower Mosaic Virus 35S promoter.
The 4-week-old N. benthamiana leaves were infiltrated with an A. tumefaciens
strains harbouring FT2a-FLAG plus HA-FDL2 or FT2b-FLAG plus HA-FDL2.
The infected leaves were collected 3 days after infiltration. Total protein was then
extracted with IP buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 10% glycerol, 1 mM phenylmethyl sulfonyl fluoride, 1 mM NaVO4,
50mM MG132 and 1� protease inhibitor cocktail) and centrifuged three times at
16,000g at 4 �C. The supernatant was incubated with Anti-Flag M2 Affinity Gel
(Sigma, A2220) at 4 �C for 3 h with gentle shaking. After centrifugation at 600g at
4 �C for 1 min, the agarose beads were washed five times with washing buffer
(50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% Triton X-100). The
precipitate was suspended, boiled in SDS loading buffer, separated by an SDS-
PAGE and detected by anti-HA (Sigma, H6908, 1:5,000 dilution) or anti-FLAG
antibody (Sigma, H7425, 1:3,000 dilution). The full scan picture of Co-IP assay
results is shown in Supplementary Fig. 20.

Data availability. The sequence of FT2b has been submitted to Genbank under
accession code (KP637176). The authors declare that all other data that support the

findings of this study are available in the manuscript and its Supplementary files
or are available from the corresponding author upon request.
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