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Abstract: Obesity represents a health problem resulting from a broken balance between energy
intake and energy expenditure leading to excess fat accumulation. Elucidating molecular and cellular
pathways beyond the establishment of obesity remains the main challenge facing the progress in
understanding obesity and developing its treatment. Within this context, this opinion presents
obesity as a reprogrammer of selected neurological and endocrine patterns in order to adapt to
the new metabolic imbalance represented by obesity status. Indeed, during obesity development,
the energy balance is shifted towards increased energy storage, mainly but not only, in adipose
tissues. These new metabolic patterns that obesity represents require changes at different cellular and
metabolic levels under the control of the neuroendocrine systems through different regulatory signals.
Therefore, there are neuroendocrine changes involving diverse mechanisms, such as neuroplasticity
and hormonal sensitivity, and, thus, the modifications in the neuroendocrine systems in terms of
metabolic functions fit with the changes accompanying the obesity-induced metabolic phenotype.
Such endocrine reprogramming can explain why it is challenging to lose weight once obesity is
established, because it would mean to go against new endogenous metabolic references resulting
from a new “setting” of energy metabolism-related neuroendocrine regulation. Investigating the
concepts surrounding the classification of obesity as a neuroendocrine reprogrammer could optimize
our understanding of the underlying mechanisms and, importantly, reveal some of the mysteries
surrounding the molecular pathogenesis of obesity, as well as focusing the pharmacological search for
antiobesity therapies on both neurobiology synaptic plasticity and hormonal interaction sensitivity.
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The nervous and the endocrine systems are the main regulators of the various home-
ostatic functions, including digestion, energy metabolism, cellular replication, tissues
renewal, and fluids circulations. However, following selected factors (diet, intoxications,
etc.) or internal changes (pathogens, cancer, etc.) related to both environmental impacts and
genetic factors, these regulatory properties might lose their efficiency, or their balancing
pathways may be reshaped. Within this context, energy homeostatic patterns are governed
by diverse signals exchanged mainly between the control centers and the metabolic tissues
(mainly adipose tissues, muscles, and the liver). This results in a balance between the
energy intake and energy expenditure. However, under the influence of exogenous stimuli,
such as an increased caloric intake, combined with a sedentary lifestyle (reduced energy
expenditure) or certain therapeutic interventions, these regulatory mechanisms lose their
ability to maintain the balance, and, therefore, the energy homeostasis is broken [1]. Such
broken balance results in the development of obesity, with all its consequences on health at
different tissular levels [2], following the accumulation of the excessive energy storages
within specific tissues and locations.
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It is widely accepted that biology gave to mammals the ability to store energy as an
advantage to make full usage of the available calories during the period of food abundance
in order to survive the periods of food shortage and hunger. Hibernating animals (a
status of deep physiological and metabolic changes [3–6]) are among the best illustrative
examples of this property, as they store enough lipids within their adipose tissues prior to
the hibernating period. Lipids are the nutritive elements with the highest caloric density,
making them the best form of energy biostorage. This last property is confirmed by the fact
that, unlike glucose, the lipids represent a weak stativity signal (“undetected” by centers
sending signals to stop food intake), which increases their ratio within the food amount.
Lipids are extremely important for biological functions, such as thermoregulation, energy
productions, cellular membrane structures, and caloric storages. Therefore, the negative
impacts of lipids seems to start only with excessive fat accumulations or abnormal loca-
tions, such as ectopic deposits [7], leading to the known obesity consequences, including
cardiovascular diseases, inflammation, and metabolic syndrome [2].

Obesity, as a health problem, is an extreme form of fat storage. This fat storage was
initially an ability reflecting a biological adaptation to food availability in the surrounding
environment. Obesity pathogenesis and mechanisms are full of mysteries, and most studies
on obesity focus on its basic definition as excessive abnormal energy storage resulting
from having an energy intake superior to energy expenditure. However, this metabolic
broken balance [1] could be the outcome of obesity rather than its underlying mechanism,
and the starting point could result from numerous neurological and endocrine changes.
Indeed, the implications, effects, and interactions of the nervous and endocrine systems
with the diverse organs and tissues involved in both obesity development and energy
balance indicate a possible classification of obesity as a neurological diseases combined
with endocrine abnormalities.

Starting with the nervous system, the existence of brain centers that both receive sig-
nals form the digestive system (where the nutritive elements are detected) and controlling
food intake support such a neuroendocrine approach. These signals include ghrelin [8],
glucagon-like peptide 1 [9], and peptide YY [10], which act on centers including the hy-
pothalamic melanocortinergic system [11]. These signals have been associated with diseases
and complications linked to obesity such as diabetes [12], and they represent promising
therapies for neurological diseases due to properties such as neurotrophic and neuroprotec-
tive actions [13]. This again shows the “neurological” character of these energy-metabolism
signals. The concept of food addiction [14,15] in the context of obesity [16], with the neuro-
biological mechanism similar to drug abuse with the dopaminergic rewarding system [17],
further highlights the neurological reprogramming that results from a neuroplasticity [18]
of the involved neurons through functional and structural adaptation [19]. This aims to
meet the novel neuronal activities required to adapt to obesity status. In addition, the
existence of pharmacological approaches targeting the nervous system to treat obesity,
such as utilization of the glucagon-like peptide-1 receptor [9,20], go beyond the usage of
the classical obesity-related pillars; exercise and diet [21] further indicate that the nervous
system’s involvement in obesity development. Coming back to the endocrine system,
both insulin resistance [22] and leptin resistance [23] illustrate best how obesity status
reprograms hormonal functions during obesity via modifying the interaction quality of
energy balance-control hormones with their target tissues.

Biology provides organisms (mainly mammals) with the ability to store energy as a
mechanism to face possible hunger periods or adapt to a lack of food resources. However,
with an increase in food resources, this biostorage ability, initially vital, could transform
into a leading cause of obesity development. This ability of organisms to store energy (fat)
makes it difficult to lose weight afterwards. Indeed, once an increased body weight/fat
stores level is reached, it becomes the “new reference” toward which the metabolism and
energy homeostasis are shifted in order to maintain or return to the newly set up point
of fat storage level, thereby hindering weigh loss attempts. Within the context of brain
involvement in energy control, this central new “reference” of body/fat weight could
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be explained through a neuroplasticity related to the centers controlling food intake and
energy expenditure. This neuroplasticity could also occur in the peripheral neurons and,
therefore, impact the innervations or the peripheral metabolic tissues. This is another
illustration of the reprogramming of the neurological control of energy balance and how it
contributes to obesity. For instance, the liver [24] and adipose tissues [25] are innervated
by neurons that modify their metabolic activities. These properties explain the observed
decrease in the basal metabolic rate seen with weight loss [26]. This decrease in the basal
metabolic rate occurs to compensate for the reduced food intake or, more generally, the
energy balance in order to prevent or limit weight loss, thereby predisposing individuals
to weight regain. This property is a consequence of the setup of the new body/fat level
reference, as described above, and is representative of the survival ability provided by
biology to store energy to endure food-shortage periods. Similar to neuroplasticity, the
modifications of receptor sensitivity, such as that of insulin receptors, indicates endocrine
reprogramming that makes receptors in need of the strongest stimulations. This may
also represent the need to store more energy to adapt to the obesity status of requiring
more energy storage and, therefore, more insulin (and also more leptin, for which a
resistance also develops during obesity). These calorie- and hormonal-centric explanations
(neuroendocrine) also extend to the regulation of metabolic diseases like obesity. Indeed, it
fits, for instance, with the hypothesis linking a high-fat diet with trefoil factor 2 (TFF2) as
a lipid-induced signal for which the corresponding gene (Tff2) is induced by the high-fat
diet [27], whereas its knockout provides protection from obesity [28] by leading to an
antiobesity metabolic phenotype [29].

This concept of neuroendocrine reprogramming has as a particular outcome: the
establishment of a novel energy balance status for optimum energy storage rather than
limitation of caloric intake. Indeed, before obesity develops, satiety signals are strong
enough to limit food intake, whereas once obesity is established, the hunger becomes
“chronic” (reduced/inefficient satiety signals), leading to an increased food intake and
more energy storage with less energy expenditure (metabolic slowing). Therefore, this
reprogramming is the process via which the organisms shape their metabolic phenotype as
an adaptation to the new status that obesity represents in terms of the need for increased
energy intake and storage capacity. These neuroendocrine changes could explain obesity
outcomes such as regeneration impairment [30] as well as the beneficial effects of exer-
cise [31–33] and the molecules induced by exercise (e.g., [34–36]), beyond which there is
exercise-induced neuroendocrine reprograming that shapes the metabolic phenotype and
explains the importance of regular exercise in obesity therapy.

Elucidating the concepts surrounding the classification of obesity as a neuroendocrine
reprogrammer could optimize the understanding of its underlying mechanisms and, im-
portantly, reveal some of the mystery surrounding the molecular pathogenesis of obesity,
as well as focusing the pharmacological search for antiobesity therapies on neurobiology
synaptic plasticity and hormonal interaction sensitivity.
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